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Abstract. In this paper we argue that hybrid logic is the deductive setting most natural

for Kripke semantics. We do so by investigating hybrid axiomatics for a variety of systems,

ranging from the basic hybrid language (a decidable system with the same complexity as

orthodox propositional modal logic) to the strong Priorean language (which offers full first-

order expressivity).

We show that hybrid logic offers a genuinely first-order perspective on Kripke semantics:

it is possible to define base logics which extend automatically to a wide variety of frame classes

and to prove completeness using the Henkin method. In the weaker languages, this requires

the use of non-orthodox rules. We discuss these rules in detail and prove non-eliminability

and eliminability results. We also show how another type of rule, which reflects the structure

of the strong Priorean language, can be employed to give an even wider coverage of frame

classes. We show that this deductive apparatus gets progressively simpler as we work our way

up the expressivity hierarchy, and conclude the paper by showing that the approach transfers

to first-order hybrid logic.
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1. Introduction

The development of Kripke semantics (initiated, among others, by Saul
Kripke [27, 26, 28], Jaakko Hintikka [23], and Stig Kanger [24, 25]) was arguably
the most important technical advance in the history of modal logic. Hitherto
difficult questions concerning the characterisation of modal logics suddenly be-
came simple: completeness theory reigned, and researchers such as Lemmon
and Scott [29] and Segerberg [35], proved results giving elegant semantic char-
acterisations of all the better known modal logics. True, a decade later the work
of S. K. Thomason [42] and Kit Fine [19] (on the existence of frame incomplete
logics) showed that the Kripkean paradise was more complex than anticipated,
but the insights provided by work on modal completeness in the 1960s are still
considered fundamental.

At the heart of Kripke semantics is a simple, but powerful, idea: view modal-
ities as mechanisms for performing first-order quantification over worlds. Now,
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orthodox modal notation has no mechanisms for naming worlds, or asserting
their equality, but when such languages are interpreted in Kripke models it
becomes clear that 2 and 3 are, in essence, disguised quantifiers over worlds.
This interpretation, coupled with the insight that different modal logics arise
when different conditions on accessibility relations between worlds are imposed,
is what makes Kripke semantics so fruitful.

This paper can be viewed as an attempt to take the Kripkean approach to its
natural conclusion. We are going to be working with hybrid languages, and we
are going to be examining their completeness theory in detail. What is a hybrid
language? A variant of orthodox modal logic in which the notion of a world has
been internalised. We shall examine several different kinds of hybrid languages,
some very powerful, and some that are only a little stronger than orthodox
modal logic. What they have in common is that they offer mechanisms for
naming worlds, asserting equalities between worlds, and describing accessibility
relations. Moreover, they do this in an intrinsically modal way, in essence by
viewing worlds as propositions. That is, hybrid languages employ no modally-
artificial devices (indeed, nowadays the hybrid languages discussed below are
considered more-or-less standard by the modal logical community).

And yet the consequences of hybridisation for completeness theory are pro-
found. It becomes straightforward to prove general completeness results, includ-
ing results for frame classes that are not definable in orthodox modal languages.
Moreover, the way these results are provable differs from the standard modal
approach (that is, the use of canonical models). In essence, the completeness
proofs we shall give are Henkin proofs. That is, our proofs make use of the
standard model building machinery familiar from first-order logic — and (as
will become clear) it is the extra ingredients introduced by hybridisation that
makes this possible. To put it in a nutshell: hybrid languages fully internalise
the concepts needed to define Kripke semantics. And this internalisation al-
lows us to work with hybrid languages very much as if they were first-order
languages. Hybrid languages thus provide a setting in which the key ideas of
Kripke semantics find their clearest technical expression.

Hybrid logic has a long history. Its roots lie in philosophy. A strong form of
hybrid logic was invented by Arthur Prior [32, 33] and technically explored by
Robert Bull [14] in the late 1960s. The Sofia School (notably Solomon Passy
and Tinko Tinchev [31] and George Gargov and Valentin Goranko [20]) proved
important results about a number of different systems, including hybridised ver-
sions of Propositional Dynamic Logic. These earlier authors were well aware
that hybridisation gave them access to Henkin-style model building machinery;
not only do they use Henkin approaches, they also discuss the methodological
shift involved ([31] is a particularly inspiring source of such discussion). But
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during the 1990s weaker hybrid languages were developed (notably the basic
hybrid language which forms the basis of our work in this paper) and new hy-
brid machinery was introduced (such as the ↓ binder); it is only in the last
few years that it has become clear how to handle the axiomatics of weaker hy-
brid languages (non-orthodox proof rules are required), what the links between
Hilbert-style axiomatisations and other proof styles (such as natural deduction
and tableaux) are, and how to use the Henkin machinery in a simple way.

The present paper gathers together what is known about hybrid axiomatics,
generalises and in many cases simplifies it, and applies it in a systematic way
all the way from the basic hybrid language to the strong languages developed
by Prior. We discuss non-orthodox proof rules in detail, prove novel non-
eliminability and eliminability results, and show how a new type of rule (which
reflects the structure of the strong Priorean language) can be employed to
give completeness for an even wider range of frame classes. We show that
this deductive apparatus gets progressively simpler as we work our way up the
expressivity hierarchy, and conclude the paper by showing that the approach
transfers to first-order hybrid logic. In short, we put hybrid axiomatics on a
general and systematic footing — a footing that is clearly first-order in nature.
We view hybrid logic as the natural home of Kripke semantics, and the goal of
this paper is to explain why.

2. The languages

Hybrid languages internalise worlds into modal logic. How do they do this?
Arthur Prior showed the way. We add a second sort of propositional symbol to
orthodox modal logic, and impose a semantic restriction on its interpretation:
the new symbols must be true at exactly one world in any Kripke model. Such
symbols are nowadays called nominals, and they are the heart of hybrid logic.
Nominals name the unique world they are true at. To put it another way,
nominals internalise worlds as propositions.

This simple change already yields a stronger logic. Consider, for example,
the following orthodox modal formula:

3(p ∧ q) ∧3(p ∧ r) → 3(q ∧ r).

This formula is not valid: the information that there is an accessible p and q
world, and also an accessible p and r world, does not warrant the conclusion
that there is an accessible q and r world. But now consider the following hybrid
variant of the previous formula:

3(i ∧ q) ∧3(i ∧ r) → 3(q ∧ r).
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Here i is a nominal, and the substitution of i for p has resulted in a validity. For
the information that there is an accessible i and q world, and also an accessible
i and r world, does guarantee that there is an accessible q and r world. After
all, i is a nominal, and nominals are true at exactly one world in any model.

Nominals are the heart of hybrid logic, but they do not work alone. The
other crucial ingredient of what is nowadays called the basic hybrid language is
the @ operator. For any nominal i and any formula φ we are allowed to build
a new formula of the form

@iφ,

and such a formula is true if and only if φ is true at the world named by i. As
we shall see when we axiomatise basic hybrid logic, @ is a useful tool. For a
start, it gives us a modal theory of world equality. For consider the formula

@ij,

where j is a nominal. This says that at the world named i, the nominal j is
true too. That is, it says the world named by i is the same as that named by
j. It is a modal analog of a first-order equality statement. Moreover, @ enables
us to make accessibility assertions. For consider the formula

@i3j.

This says that at the world named by i the world named j is accessible. The
ability to make this style of assertion is crucial to the way our basic axiom
system works. In particular, the BG rule we shall introduce (and variants
such as the Paste3) hinge on the use of accessibility assertions. A key theme
of the paper is that hybridisation permits us to make use of essentially first-
order techniques. In particular our completeness proofs are Henkin proofs, but
with nominals playing the role usually played by first-order constants. It is
our ability to make statements about accessibility and equality of worlds that
makes Henkin machinery so straightforward to apply.

With nominals and @ introduced, we have met the two fundamental ingre-
dients of hybrid logic. But we have not met all the devices that are nowadays
considered standard in hybrid logic. Putting aside such variants as the use of
the universal modality in place of @ (we shall discuss this later) let’s ask our-
selves a question: given that we can now name worlds using nominals, why not
let ourselves quantify across them by binding nominals with ∀ and ∃? That is,
why not allow ourselves to write expressions such as

∀s∃t.@t3s



Pure Extensions, Proof Rules, and Hybrid Axiomatics 5

(“For any world s, there is some world t that it is accessible from”)? Why
not indeed. And in fact, such languages were the earliest hybrid languages of
all: Arthur Prior developed them in the late 1960s (the key sources for Prior’s
work on hybrid logic are [32, 33]; for a critical discussion of his contributions,
see [6]). Nowadays, hybrid languages containing these binders are often called
strong Priorean languages. The reason for the “strong” should be clear: they
are in a completely different expressivity league from the basic hybrid language.
Indeed (as Prior himself showed) they offer full first-order expressive power over
worlds; more on this below.

But strong Priorean languages don’t exhaust the possibilities inherent in
the idea of binding nominals. Over the last decade another option has been
extensively explored, namely the ↓ operator, which binds a nominal to the world
of evaluation (to put is another way, ↓ allows us to create names for the current
world on the fly). Here’s an example, a formula that is true at a world if and
only if that world has two distinct successors where p is true:

↓s.3↓t.(p ∧@s3↓u.(p ∧ ¬t)).

This formula works by using ↓ to label the world of evaluation with s and then
asserts that there is an accessible world (which it calls t) at which p is true.
Now the interesting step: it then uses @ to assert something else about the
original world s, namely that is has a successor, called u, which also makes p
true, but which is distinct from t (note that ¬t is true at u). The use of ↓ to
store a value and of @ to retrieve and make use of that value that this formula
illustrates, is typical of the way these constructs tend to be used — and is the
reason for the special place ↓ occupies on the logical expressivity hierarchy.

Nominals, @, ↓ and the strong Priorean binders ∃ and ∀ are the core con-
structs of contemporary hybrid logic. And now that we’ve introduced them
informally, let’s make our account more precise.

The basic hybrid language: H(@)

Given a denumerably infinite collection of propositional symbols p, q, r and
so on, and a denumerably infinite collection of nominals i, j, k and so on, we
define the wffs of the basic hybrid language H(@) over these atoms as follows:

Wff ::= i | p | > | ¬φ | φ ∧ ψ | 2φ | @iφ.

Boolean connectives such as ⊥, ∨ and→ are defined in the usual way, and 3φ is
defined to be ¬2¬φ. For any nominal i, the symbol @i is called a satisfaction
operator. So, syntactically speaking, the basic hybrid language is simply a
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multi-modal language (the modalities being 2 and all the @i), whose atomic
symbols are subdivided into two sorts. If a formula contains no propositional
variables (that is, if its only atoms are nominals) we call it a pure formula.

The basic hybrid language is interpreted on Kripke models. A Kripke model
M is a triple (W,R, V ), where (W,R) is a frame (that is, W is a non-empty set
whose elements are called worlds, and R is a binary relation on W , the acces-
sibility relation) and V is a valuation. But although the definition of frames is
orthodox, we want nominals to act as names, so we insist that while a valuation
V on a frame (W,R) is free to assign arbitrary subsets ofW to ordinary proposi-
tional variables, it must assign singleton subsets of W to nominals. That is, we
place no restrictions on the interpretation of ordinary propositional variables,
but we ensure that each valuation makes every nominal true at a unique world.
We call the unique world w in V (i) the denotation of i under V . We interpret
the basic hybrid language as follows:

M, w |= i iff w ∈ V (i)
M, w |= p iff w ∈ V (p)
M, w |= > always
M, w |= ¬φ iff not M, w |= φ

M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= 2φ iff for all v ∈W such that Rwv, M, v |= φ
M, w |= @iφ iff M, d |= φ. where d is the denotation of i under V .

Save for the clauses for nominals and @, these are the familiar Kripke-style
interpretation clauses for orthodox propositional modal logic. As usual, M |= φ
means that φ is true at all worlds in M, F |= φ means that φ is valid on the
frame F (that is, that φ is true at all worlds in F regardless of the valuation
that is used), and |= φ means that φ is valid on all frames.

It should be clear that H(@) is a relatively simple extension of orthodox
modal logic. This is borne out by the following result: the problem of deter-
mining whether a basic hybrid formula is satisfiable is decidable. Moreover, the
complexity of this problem is (up to a polynomial) no more complex than the
problem for orthodox modal logic. For we have:

Theorem 1. The satisfiability problem for the basic hybrid logic is PSpace-
complete.

Proof. See [1].

But in spite of its simplicity, the basic hybrid language is surprisingly strong
when it comes to defining properties of frames. For a start, many of the proper-
ties definable in the basic modal language can be defined using pure formulas.
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As the reader can easily check, for each of the properties listed below, a frame
F has the property stated if and only if it validates the hybrid formula listed
alongside:

∀wRww reflexivity @i3i
∀wu(Rwu→ Ruw) symmetry @i23i

∀wuv(Rwu ∧Ruv → Rwv) transitivity @i3j ∧@j3k → @i3k
∀wu(Rwu→ ∃v(Rwv ∧Rvu)) density 3i→ 33i

Moreover, pure formulas also enable us to define many properties that are
not definable in the basic modal language. Here are some well-known examples:

∀w¬Rww irreflexivity @i¬3i
∀wu(Rwu→ ¬Ruw) asymmetry @i¬33i

∀wu(Rwu ∧Ruw → u = w) antisymmetry i→ 2(3i→ i)
∀wu(Rwu ∨ w = u ∨Ruw) trichotomy @j3i ∨@ji ∨@i3j

All the frame properties defined above are first-order. This is no coincidence:
all pure formulas define first-order frame conditions (see [9, 36, 3]). But not only
do pure formulas define first-order properties, when used as axioms they are
also automatically complete with respect to the class of frames they define (see
[31, 20, 7]). More precisely, it is possible to define a base logic that is complete
with respect to the class of all frames, and that extends automatically to a
complete system for the class of frames defined by any set of pure axioms.

These two simple observations motivate much of the work that follows (and
indeed, other papers on hybrid axiomatics stretching all the way back to the
work of Bull). Exploiting these observations (in the basic hybrid language)
turns out to require the use of non-orthodox proof rules, rules which let us build
Henkin models. And extending these ideas to classes of frames not covered by
pure formulas also leads to non-orthodox rules, rules inspired by the strong
Priorean language.

For now, that’s all we need to know about H(@), but before moving on and
defining the ↓ binder, let’s briefly consider H(A), an alternative to H(@) that
uses the universal modality (or the global modality, as it is sometimes called)
instead of @. The diamond form of the universal modality is written E, the
box form is written A, and they have the following semantics: Eφ means φ is
true at some world in the model, and Aφ means φ is true at all worlds in the
model. That is:

M, w |= Aφ iff for all v ∈W , M, v |= φ
M, w |= Eφ iff for some v ∈W , M, v |= φ.

The universal modality is interesting for a number of reasons (it is often
useful to be able to impose global constraints on models) but for present pur-
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poses its most important property is that it is strong enough to define the @
operator. For

E(i ∧ φ)

says that “somewhere in the model there is a world where i is true, and at that
world φ is true too”, and this is exactly what @iφ means. That is, we can define

@iφ =def E(i ∧ φ).

Alternatively, we can define

@iφ =def A(i→ φ).

This says “at all worlds in the model where i is true, φ is true too”, and this
has the same effect.

Thus H(A) is at least as expressive as H(@). And it is not difficult to
show that it actually strictly more expressive: we cannot define the universal
modality in terms of @. This expressive difference is reflected in the computa-
tional behaviour of the two languages. We have already remarked that H(@)
is decidable, and indeed H(A) is too. However, whereas H(@) has a PSpace-
complete satisfiability problem, the satisfiability problem for H(A) is known
to be ExpTime-complete (see [22]). Assuming that the standard assumptions
about complexity classes are correct, this means H(A) has a harder satisfia-
bility problem. As we shall see, however, deductively the two languages are
not so different: axiomatising H(A) turns out to be extremely straightforward.
Indeed, we will be able to do so by adding one single axiom (namely Ei) to our
axiomatisation of H(@).

The basic language with downarrow: H(@, ↓)

Let’s now be precise about the syntax and semantics of the ↓ binder. When
we explained it informally, we said that ↓ allowed us to “bind a nominal”
to the world of evaluation. Now, it would be possible to define its binding
syntax in this way, but we think it is somewhat cleaner to draw a notational
distinction between bindable and non-bindable symbols. Accordingly, we shall
assume that we have a denumerably infinite set of world variables (typically
written s, t, u, and so on) at our disposal that are distinct from both nominals
and orthodox propositional variables. Syntactically and semantically world
variables will behave just like nominals, except that they will be open to binding
by ↓, and nominals will not. Accordingly, we define the syntax of H(@, ↓), the
language obtained by adding world variables and ↓ to H(@), as follows:

Wff ::= s | i | p | > | ¬φ | φ ∧ ψ | 2φ | @iφ | @sφ | ↓s.φ
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Free and bound world variables are defined in the obvious way, as are other
syntactic concepts (such as the scope of an occurrence of ↓). A formula of
H(@, ↓) that contains no free variables is called a sentence. Note that we allow
@ to make use of world variables: this gives rise to the “store and retrieve”
interplay between ↓ and @.

Now for the semantics. As with H(@), we interpret the language on Kripke
models, but we now need a mechanism for coping with free world variables. But
this is standard: we simply introduce assignments of values to world variables,
and relativise the evaluation of formulas to a variable assignment. So, given a
Kripke model M = (W,R, V ), an assignment of values to variables g on M is
a function from the set of world variables to W . Furthermore, if g and g′ are
assignments of values to variables on M, and g′ differs from g, if at all, only in
what it assigns to s, then we say that g′ is an s-variant of g, and in such a case
we write g′ s∼ g. We can now give the satisfaction definition:

M, g, w |= s iff w = g(s)
M, g, w |= i iff w ∈ V (i)
M, g, w |= p iff w ∈ V (p)
M, g, w |= > always
M, g, w |= ¬φ iff not M, g, w |= φ

M, g, w |= φ ∧ ψ iff M, g, w |= φ and M, g, w |= ψ
M, g, w |= 2φ iff for all v ∈W such that Rwv, M, g, v |= φ
M, g, w |= @iφ iff M, g, d |= φ. where d is the denotation of i under V
M, g, w |= @sφ iff M, g, d |= φ. where d is g(s)
M, g, w |= ↓s.φ iff M, g′, w |= φ,where g′ s∼ g and g(s) = w.

The language H(@, ↓) has attracted a great deal of interest in recent years,
for there are a number of results which shows that it occupies an interest-
ing niche in the logical expressivity hierarchy. We shall note some of these
results when we axiomatise the language, but one is worth mentioning right
away. As was shown in [1], the language H(@, ↓) is expressively equivalent with
the bounded fragment of first-order logic. The bounded fragment consists of
all first-order formulas built up from atomic formulas using the booleans and
bounded quantifications of the form ∃y(Rτy ∧φ) and ∀y(Rτy → φ), where τ is
a term that does not contain y, and R is interpreted as the accessibility relation.
The bounded fragment arises naturally in set theory (see [30]) and arithmetic
(see [15]). In the mid-1960s, Feferman and Kreisel [18, 17] characterised the
bounded fragment as the fragment of first-order logic invariant under gener-
ated submodels. Hybrid logicians invented ↓ because of the elegant “store and
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retrieve” interplay that ↓ and @ exhibit; it is intriguing that two such different
lines of investigation should have led to essentially the same logic.

The strong Priorean language: H(@,∀)

Let us now define the most expressive hybrid language considered in this paper,
the strong Priorean language H(@,∀). As with H(@, ↓), this language enables
us to “bind nominals”, and as before we implement this (syntactically) by
making use of world variables, and (semantically) by making use of assignments
of values to variables. So assume the set of world variables has been fixed. Then
the syntax of the strong Priorean language is:

Wff ::= s | i | p | > | ¬φ | φ ∧ ψ | 2φ | @iφ | @sφ | ∀s.φ
As with H(@, ↓), free and bound world variables are defined in the obvious way,
and a formula is called a sentence if it contains no free variables. We define
∃s.φ to be ¬∀s.¬φ.

The semantics contains no surprises either. We use assignments of values
to variables in the standard way to define

M, g, w |= ∀s.φ iff M, g′, w |= φ, for all g′ s∼ g.

It follows that

M, g, w |= ∃s.φ iff M, g′, w |= φ, for some g′ s∼ g.

That is, ∀ and ∃ are duals, just as we would expect.
Clearly H(@,∀) is an expressive language. It is at least as expressive as

H(@, ↓), as ↓s.φ is simply ∃s.(s ∧ φ). But in fact H(@,∀) is strictly more
expressive than H(@, ↓). We have already remarked that H(@, ↓) is known
to be expressively equivalent with the bounded fragment of first-order logic.
However H(@,∀) is stronger than this: any first-order expression in a language
with a binary relation R (for talking about accessibility) and unary relations P
(for talking about propositional information) can be translated into H(@,∀).
Here’s how to do it (incidentally, the following translation, which is nowadays
called the hybrid translation, was known to Arthur Prior in the late 1960s):

ht(Rst) = @s3t
ht(Ps) = @sp
ht(s = t) = @st
ht(¬φ) = ¬ht(φ)
ht(φ ∧ ψ) = ht(φ) ∧ ht(ψ)
ht(∃v.φ) = ∃v.ht(φ)
ht(∀v.φ) = ∀v.ht(φ).



Pure Extensions, Proof Rules, and Hybrid Axiomatics 11

Note the use of @ for handling the translation of atomic formulas. These
uses of @ are crucial: if we don’t have @ in the language (either as a primitive,
or defined using some stronger modality, such as the universal modality) then
it is not possible to translate all first-order formulas. To put it another way, in
the absence of @, the ability to bind nominals with ∃ and ∀ does not give rise
to full first-order expressive power! This (at first glance counterintuitive) result
is proved in [9]. Roughly speaking, in the strong hybrid language, classical
quantification is factored into a “binding” step (the task of ∃ and ∀) and a
“carry out the evaluation step there” step (which is based on @). These two
functions, which are conflated in first-order logic, are teased apart in hybrid
logic.

Indeed, this teasing apart of variable binding and evaluation can be carried
even further, for it turns out that H(A, ↓) (that is, H(@, ↓) enriched with the
universal modality) is expressively equivalent to H(@,∀). To see this, note that
∀s.φ is equivalent to

↓t.A↓s.@tφ, where t does not occur in φ.

Thus H(A, ↓) can define the Priorean binders, and we have already noted that
A enables us to define @.

Finally, note that H(@,∀) and H(A,∀) are expressively equivalent. That
H(A,∀) is at least as expressive as H(@,∀) is clear. But H(@,∀) is strong
enough to define the universal modality, for Aφ can be viewed as shorthand for
∀s.@sφ, where s does not occur in φ.

3. An axiomatisation of H(@)

We begin by presenting an axiomatisation of the weakest language, the ba-
sic hybrid language H(@). Recall that this language contains no binders, and
that over the class of all frames its satisfiability problem is decidable, indeed
PSpace-complete. Although expressively weak compared with H(@, ↓) or the
strong Priorean language H(@,∀), we shall now show that H(@) is deductively
strong. In particular, axioms and rules that make it possible to carry out a
Henkin-style model construction are already stateable in this modest exten-
sion of orthodox modal logic. Moreover, lifting this axiomatisation to stronger
hybrid languages is straightforward.

The axiomatisation in Figure 1 is a simplification of the one given in [7]
(which was in turn based on the axiomatization in [12]). A remark on the
substitution rule: here, σ is any substitution that uniformly replaces nominals
by nominals and atomic propositions by arbitrary formulas. In hybrid logic,
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KH(@)

Axioms:
CT All classical tautologies
K2 ` 2(p→ q) → (2p→ 2q)
K@ ` @i(p→ q) → (@ip→ @iq)
Selfdual@ ` @ip↔ ¬@i¬p
Ref@ ` @ii
Agree ` @i@jp↔ @jp
Intro ` i→ (p↔ @ip)
Back ` 3@iφ→ @iφ
Rules:
MP If ` φ and ` φ→ ψ then ` ψ
Subst If ` φ then ` φσ

Gen@ If ` φ then ` @iφ
Gen2 If ` φ then ` 2φ
Name If ` @iφ and i does not occur in φ, then ` φ
BG If ` @i3j → @jφ and j 6= i does not occur in φ,

then ` @i2φ

Figure 1. The H(@) axiomatisation.

the atomic symbols of our languages are sorted, and the substitution rule must
respect this.

The axiomatization is sound and complete with respect to the class of all
frames, and moreover completeness is guaranteed for arbitrary extensions with
pure axioms. Recall that a formula is pure if it contains no ordinary propo-
sitional variables; for H(@) this means that the only atomic symbols a pure
formula can contain are nominals. For any set of pure H(@) formulas Λ, let
KH(@) + Λ denote the above axiomatization extended with the axioms in Λ.
Then we have:

Theorem 2 (Completeness). Let Λ be any set of pure H(@) axioms. A set of
H(@) formulas Σ is KH(@) + Λ consistent iff Σ is satisfiable in a model based
on a frame satisfying the frame properties defined by Λ.

Let’s consider some concrete examples of what this theorem tells us. First,
if we choose Λ to be empty set (that is, if we add no additional axioms) then
it says that KH(@) is complete with respect to the class of all frames. On the
other hand, if we choose Λ to be {@i3j ∧ @j3k → @i3k}, then we have an
axiomatic system that is complete with respect to the class of transitive frames.
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And if we choose

Λ = {@i¬3i,@i3j ∧@j3k → @i3},

then we have an axiomatisation that is complete with respect to strict partial
orders, for the first axiom defines irreflexivity, and the second transitivity. In
short, the theorem is reminiscent of the completeness result for first-order logic.
In first-order logic we have a basic axiom system, and when this axiom system
is extended with additional first-order axioms Λ, the resulting axiomatisation is
complete with respect to the class of models for Λ. Now, the theorem for KH(@)

is not as general as this (completeness is only guaranteed for pure axiomatic ex-
tensions, not arbitrary extensions). Nonetheless its simplicity contrasts strongly
with the situation in orthodox modal logic. General completeness results are
known for orthodox modal languages; Sahlqvist’s Completeness Theorem [34]
is probably the best known. But such results typically place relatively complex
syntactic constraints on the permissible forms of axioms; in hybrid logic we
need merely demand purity.

Theorem 2 is essentially the result proved in [12, 7], though the axiom system
used here is simpler. Our first goal is to prove a generalisation of this theorem
that covers more frame classes. We will do so this by introducing additional
rules, rules which allow us to cope with frame classes for which there is no
pure axiom. And this brings us to one of the main themes of the paper: the
status of non-orthodox proof rules in hybrid logic. So, before going further and
introducing even more rules, let us discuss the non-orthodox proof rules already
present in our axiomatisation for H(@), namely the Name and BG rules. What
do these rules say, and what do they do for us?

Let’s start with the BG rule. This stands for Bounded Generalisation, and
as the name is meant to suggest, it is a modal analog of the UG (Universal
Generalisation) rule of first-order logic. Let’s look carefully at what it says:

If ` @i3j → @jφ and j 6= i does not occur in φ, then ` @i2φ.

Because j is a nominal distinct from i that does not occur in φ, we can read
@i3j as asserting the existence of an world (arbitrarily labelled j) accessible
from the world labelled i. Accordingly, the rule can be read as follows: suppose
we can prove that for an arbitrary world j accessible from i, that φ holds at j.
Then, since j is arbitrary, φ must hold at all worlds accessible from i (that is,
@i2φ). The analogy with the first-order rule of universal generalisation should
be clear. The only real difference is that whereas the first-order quantifiers
are global in their reach, the 3 and 2 operators only control what happens at
accessible worlds, hence the quantificational force of the BG rule is ‘bounded’.
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It’s also worth noting that our informal explanation of the BG rule has a natural
deduction flavour, and in fact the 2-introduction rule in the natural deduction
system for hybrid logic given in [13] is closely related to BG.

What of the Name rule? This tells us that if it is provable that φ holds at an
arbitrary world i (the world is arbitrary because i does not occur in φ) then we
can prove φ. This rule plays a simple, but crucial, role in the completeness proof
given below. Moreover, it has a clear motivation in terms of hybrid tableaux. In
what are called ‘internalised’ hybrid tableaux systems (for example, the systems
in [5]), to prove φ we attempt to falsify φ at some arbitrary world i. That is, to
prove φ we actually apply the tableaux rules to ¬@iφ (where i is some nominal
not occurring in φ) rather than to φ itself. The Name rule can be thought of as
an the axiomatic equivalent of this procedure. Indeed, there is an interesting
formal similarity. Just as the labelling with an arbitrary world i takes place
only once in a tableaux proof (namely, at the very first step) we can show that
the Name rule is only ever needed once in an axiomatic proof, namely at the
very last step. The proof is given in Figure 2. The entries in the table show
how to systematically permute applications of the Name rule downwards with
respect to other rule applications, and how to ‘cancel’ adjacent applications of
Name, so that we end up with a single application of Name at the root of the
proof tree.

We shall discuss the role of Name and BG in more depth in the following
section (indeed, we shall show that the use of non-orthodox rules is indispens-
able to the proof of Theorem 2). But for now, let’s simply accept them, and
turn to the task of generalising Theorem 2. As we have already remarked,
Theorem 2 is a simple and general result, rather in the style of the complete-
ness theorem for first-order logic. Moreover it covers frame conditions that
are undefinable in orthodox modal logic; irreflexivity is an example of such a
condition. Nonetheless, there are also many interesting frame classes that are
not definable using pure H(@) axioms. One example is the class of frames in
which every world has a predecessor, that is, the class of frames satisfying the
H(@,∀) sentence ∀s∃t@t3s. Another, perhaps more appealing example is the
class of Church-Rosser frames, that is, frames satisfying the H(@,∀) sentence

∀stu∃v(@s3t ∧@s3u→ @t3v ∧@u3v).

For proofs that these conditions are not definable in H(@), see [36, 3].
But the fact that both conditions have straightforward (namely, ∀∃-prenex)

formulations in H(@,∀) should give us pause for thought. It is true that we
can’t use them as axioms (they don’t belong H(@)) but can’t we make use of
them in some other way? It turns out that we can. As we shall now show,
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Figure 2. The Name rule is needed only once, at the very end of the proof.

∀∃-prenex sentences of H(@,∀) give rise to what we call existential saturation
rules.

Let ξ be an H(@,∀) sentence ∀s1 . . . sn∃t1 . . . tm.φ(s1, . . . , sn, t1, . . . , tm),
where φ is quantifier-free, pure, and nominal free. That is, the only atomic
symbols in ξ are bound world variables. Then ξ gives rise to the following proof
rule:

If ` φ(i1, . . . , in, j1, . . . , jm) → ψ then ` ψ, where i1, . . . , in, j1, . . . , jm
are distinct, and j1, . . . , jm do not occur in ψ.

For example, the rule corresponding to ∀stu∃v(@s3t∧@s3u→ @t3v∧@u3v)
(the H(@,∀) sentence expressing the Church-Rosser property) is:
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If ` (@i3j ∧@i3k → @j3l ∧@k3l) → ψ then ` ψ,
where l does not occur in ψ and is distinct from i, j, k.

In short, we make an existential saturation rule out of a ∀∃-prenex H(@,∀)
formula by using nominals to skolemise the bound world variables away (which
yields a H(@) formula). We are then free to use the resulting skolem form in
proofs in the manner the rule states. Before going any further, let’s check that
such rules are sound. We say that a frame F admits an existential saturation
rule if whenever F |= φ(i1, . . . , in, j1, . . . , jm) → ψ then F |= ψ too. Then we
have:

Lemma 1. Let ρ be an existential saturation rule for some H(@,∀) sentence
of the form ∀s1 . . . sn∃t1 . . . tn.φ, where φ is quantifier-free, pure, and nominal
free. Then every frame satisfying ξ admits ρ as a rule of proof.

Proof. Suppose F |= ∀s1 . . . sn∃t1 . . . tn.φ, and suppose that the antecedent of
ρ is valid on F. That is, suppose F |= φ(i1, . . . , in, j1, . . . , jm) → ψ(i1, . . . , in),
where i1, . . . , in, j1, . . . , jm are distinct, and j1, . . . , jm do not occur in ψ. We
want to show that F |= ψ(i1, . . . , in). But this is straightforward. Pick any
world w and any valuation V . Since F |= ∀s1 . . . sn∃t1 . . . , tn.φ, there is a
valuation V ′ which agrees with V on the values it assigns to i1, . . . , in, and
which assigns worlds to j1, . . . , jm in such a way that φ is satisfied at w under
V ′. But then ψ is also satisfied at w under V ′. But as ψ contains no occurrences
of j1, . . . , jm, it follows that ψ is satisfied at w under V too. As V and w were
arbitrary, F |= ψ(i1, . . . , in) as required.

In short, if we want to axiomatize frame classes involving properties such as
the Church-Rosser property, we can add the relevant existential saturation rules
to the axiomatization without losing soundness. Indeed, as we shall soon see,
the addition of such rules guarantees completeness with respect to the relevant
frame class.

It’s also worth remarking that existential saturation rules generalise the
idea underlying the use of pure axioms. The H(@) axiom for irreflexiv-
ity is @i¬3i. But this can be viewed as arising by skolemisation from the
∀s.@s¬3s, a ∀-prenex H(@,∀) formula. And because the quantification here is
purely universal, we don’t need a rule to capture its effect when we skolemise:
we simply use @i¬3i as an axiom. But this is the only difference. The
conditional involved in the statement of the existential saturation rules (“If
` φ(i1, . . . , in, j1, . . . , jm) → ψ then ` ψ”) is merely the obvious way of ex-
tending to ∀∃-prenex formulas the idea underlying the use of pure formulas.
It would be interesting to further generalise the basic idea, that is, to try and
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capture the effect of H(@,∀) formulas with more complex prenex forms, but we
won’t pursue that line of enquiry here.

One other remark is worth making. Existential saturation rules are natural
in the setting of tableaux proof systems; there they are rules which license the
creation of new tableaux nodes. Indeed it was our work on tableaux system
for frame classes not definable by pure formulas that first led us to investigate
them. For further details, see [10].

We shall now state and prove a generalisation of Theorem 2. First two
remarks. There is a clear correspondence between existential saturation rules
and ∀∃-prenex H(@∀) sentences, so in what follows we sometimes talk as if they
were interchangeable; in particular, when we talk about the frame class defined
by an existential saturation rule (as we do in the statement of the following
theorem) we simply mean the class of frames defined by the corresponding
H(@,∀) sentence. Secondly, note that in countable languages, there are only
countably many existential saturation rules.

Given a set of pure axioms Λ and a set of existential saturation rules P , we
will use KH(@) + Λ +P to denote the KH(@) axiomatization extended with the
axioms in Λ and the rules in P . Here is the theorem we shall prove:

Theorem 3 (Completeness with existential saturation rules). Let Λ be a set
of pure H(@) axioms and let P be a set of existential saturation rules. A set
of H(@) formulas Σ is KH(@) + Λ +P consistent iff Σ is satisfiable in a model
satisfying the frame properties defined by Λ and P .

The remainder of this section is dedicated to the proof of Theorem 3. Its
structure closely resembles that of a Henkin-style completeness proof for first-
order logic, with nominals playing the role of first-order constants. We begin
by showing the derivability of a number of useful validities and rules.

Lemma 2. The following are derivable

K−1
@ ` (@iφ→ @iψ) → @i(φ→ ψ)

Nom ` @ij → (@iφ↔ @jφ)
Sym ` @ij → @ji
Bridge ` @i3j ∧@jφ→ @i3φ
Name′ If ` i→ φ then ` φ where i does not occur in φ
Paste3 If ` @i3j ∧@jφ→ ψ and j 6= i does not occur in φ or ψ

then ` @i3φ→ ψ

Proof. Here are derivations for some of these results.
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@i¬(φ→ ψ) → @iφ
(CT,Gen@,K@)

@i¬(φ→ ψ) → @i¬ψ
(CT,Gen@,K@)

@i¬(φ→ ψ) → @iφ ∧@i¬ψ
¬@i(φ→ ψ) → @iφ ∧ ¬@iψ

(Selfdual@)

(@iφ→ @iψ) → @i(φ→ ψ)

K−1
@

j → (φ↔ @jφ)
(Intro)

@ij → (@iφ↔ @i@jφ)
(Gen@,K@)

@i@jφ↔ @jφ
(Agree)

@ij → (@iφ↔ @jφ)

Nom

j → (i↔ @ji)
(Intro)

@ij → (@ii↔ @i@ji)
(Gen@,K@)

@i@ji↔ @ji
(Agree)

@ij → (@ii↔ @ji) @ii
(Ref@)

@ij → @ji

Sym

i→ φ

@iφ
(Gen@,K@, Ref@)

φ
(Name) Name′

With these syntactic preliminaries out of the way, we are ready to start the
model construction.

Definition 1. Let Σ be a set of H(@) formulas.

• Σ is named if one of its elements is a nominal.

• Σ is 3-saturated if for all @i3φ ∈ Σ, there is a nominal j such that @i3j ∈
Σ and @jφ ∈ Σ.

• Let ρ be the existential saturation rule corresponding to the strong Pri-
orean formula ∀s1 · · · sn∃t1 · · · tk.θ(s1, . . . , sn, t1, . . . , tm). Then Σ is ρ-
saturated, if for all nominals i1 . . . in there are nominals j1 . . . jm such that
θ(i1, . . . , im, j1, . . . , jm) ∈ Σ.

Lemma 3 (Lindenbaum Lemma). Every KH(@) + Λ + P consistent set of for-
mulas can be extended to a named, 3-saturated KH(@) +Λ+P MCS, by adding
countably many new nominals to the language.

Proof. Suppose Σ is KH(@)+Λ+P consistent. Let (in)n∈N be an enumeration
of a countably infinite set of new nominals, and let (φn)n∈N be an enumeration
of the formulas of the extended language. Let Σ0 denote Σ∪ {i0}. The Name′
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rule guarantees that Σ0 is consistent. For all n ∈ N, Σn+1 is defined as follows.
If Σn ∪ {φn} is KH(@) + Λ + P inconsistent, then Σn+1 = Σn. Otherwise:

1. Σn+1 = Σn ∪ {φn} if φn is not of the form @i3ψ.

2. Σn+1 = Σn ∪ {φn} ∪ {@i3im,@imψ} if φn is of the form @i3ψ,
where im is the first new nominal that does not occur in Σn or φn.

Let Σω =
⋃

n≥0 Σn. Then Σ ⊆ Σω and Σω is named, 3-saturated, maximal and
consistent. The only non-trivial step is in 2, and consistency here is guaranteed
by the Paste3 rule.

Lemma 4 (Rule Saturation Lemma). Every KH(@) + Λ + P consistent set of
formulas can be extended to a named, 3-saturated, P -saturated KH(@) + Λ +P
MCS, by adding countably many new nominals to the language.

Proof. The proof proceeds in two steps. First, we show that every KH(@) +
Λ + P consistent set of formulas Σ can be extended to a set of formulas Σ+,
which is still KH(@) + Λ +P consistent, such that Σ+ provides witnesses for Σ,
in the following sense: for each existential saturation rule ρ ∈ P corresponding
to a strong Priorean formula ∀s1 · · · sk∃t1 · · · tm.θ, and for all nominals i1, . . . , ik
occurring in Σ, there are nominals j1, . . . , jk such that θ(i1, . . . , ik, j1, . . . , jm) ∈
Σ+. Such Σ+ can be constructed as follows.

Let (in)n∈N be an enumeration of a countably infinite set of new nomi-
nals, and let (ρn,~in)n∈N be an enumeration of all pairs (ρn, in1 . . . ink) where
ρn ∈ P is an existential saturation rule for a strong Priorean formula
∀s1 · · · sk∃t1 · · · tm.θ(s1, . . . , sk, t1, . . . , tm), and in1 . . . ink are nominals occur-
ring in Σ (note that there are at most countably many such pairs). Let Σ0 = Σ,
and for each n ∈ N, let Σn+1 = Σ∪{θ(in1, . . . , ink, j1, . . . , jm)}, where ρn is the
existential saturation rule for the strong Priorean formula ∀s1 · · · sk∃t1 · · · tm.θ
and j1, . . . , jm are the first m distinct nominals in the enumeration not occur-
ring in Σn. Let Σ+ =

⋃
n Σn. Then Σ ⊆ Σ+, Σ+ is KH(@) + Λ + P consistent

and Σ+ provides witnesses for Σ in the sense described above.
The main argument now runs as follows. Consider any KH(@) + Λ + P

consistent set of formulas Γ. Let Γ0 = Γ and for all n ∈ N, let Γn+1 be a 3-
saturated named MCS extending (Γn)+ (the Lindenbaum Lemma guarantees
there is one). This gives rise to the following chain of consistent sets of formulas:

Γ = Γ0 ⊆ (Γ0)+ ⊆ Γ1 ⊆ (Γ1)+ ⊆ · · ·

Let Γω =
⋃

n Γn. Then Γω is a 3-saturated, named P -saturated MCS. Inciden-
tally, during the entire process we expanded the language with only countably
many new nominals, and therefore Γω is a countable set.
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Definition 2 (Henkin model obtained from an MCS). Let Γ be a maximal
consistent set of H(@) formulas. For all nominals i, let |i| be {j | @ij ∈ Γ}.
Then MΓ = (W,R, V ) is given by

W = {|i| | i is a nominal}
|i|R|j| iff @i3j ∈ Γ
V (p) = {|i| ∈W | @ip ∈ Γ}
V (i) = {|i|}

That MΓ is well-defined follows from Ref, Sym and Nom (note that transi-
tivity is just a special case of Nom).

Lemma 5 (Truth Lemma). For all 3-saturated MCS’s Γ, nominals i and for-
mulas φ, MΓ, |i| |= φ iff @iφ ∈ Γ

Proof. By induction on the length of φ. If φ is a proposition letter or nominal,
the claim holds by definition. If φ is of the form ψ1 → ψ2, apply K@ and K−1

@ .
If φ is of the form ¬ψ1, apply Selfdual@. If φ is of the form @iψ, apply Agree.
Finally, if φ is of the form 3ψ, we reason as follows.

Suppose MΓ, |i| |= 3ψ. Then there is a world |j| such that |i|R|j| and
MΓ, |j| |= ψ. By definition, @i3j ∈ Γ and by the induction hypothesis @jψ ∈
Γ. From this and the derived formula Bridge, it follows that @i3ψ ∈ Γ.
Conversely, suppose @i3ψ ∈ Γ. Then by 3-saturation, @i3j ∈ Γ and @jψ ∈ Γ
for some nominal j. By definition, |i|R|j| and by the induction hypothesis,
MΓ, |j| |= ψ. Therefore, MΓ, |i| |= 3ψ.

Lemma 6 (Frame Lemma). If Γ is a 3-saturated, P -saturated KH(@) + Λ + P
MCS, then the underlying frame of MΓ satisfies the frame properties defined by
Λ and P .

Proof. Since MΓ is a named model and Γ contains all instances of elements
of Λ, it follows that the underlying frame of MΓ validates Λ. Since MΓ is a
named model and Γ is P -saturated, it follows that the underlying frame of MΓ

satisfies (the strong Priorean formulas corresponding to) P .

At this point, we have all the required apparatus in place, and we can finish
off the proof by the usual kind of argument.

Proof of Theorem 3. Suppose Σ is KH(@)+Λ+P consistent. By Lemma 4,
Σ can be extended to a named, 3-saturated, P -saturated MCS Γ. Let i ∈ Σ.
By Lemma 5, MΓ, |i| |= Σ. By Lemma 6, MΓ satisfies all required frame
properties.
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4. A closer look at KH(@)

Although the basic hybrid language is the weakest language we shall axioma-
tise, the axiomatic system KH(@) we have provided for it and its associated
Henkin proof are arguably the most deductively significant. Why? Because the
key ideas we require are already present here, and indeed, present in their most
novel form. In particular, Theorem 3 and its proof show that hybridisation
makes it possible to exploit the classical Henkin completeness technique in a
novel way, namely by using nominals in place of first-order constants, and by
using rules instead of classical quantifiers, both to provide witnesses and to cap-
ture the logic of frame classes beyond the reach of pure axioms. Indeed, as we
shall see, although the languages we examine become progressively richer, the
axiomatizations required become progressively simpler: we can built straight-
forwardly on the basis provided by KH(@), and indeed simplify some of the
underlying machinery.

Given its centrality, it is important to understand KH(@) as fully as possible,
and in this section we examine it more closely. We first point out two possible
variants in the choice of rules. We then show that KH(@) enables us to deal
with richer modal base languages; in particular, we show hows its ideas can be
extended to cover the universal modality and Prior-style tense logic. We then
dig deeper. Our use of the Henkin strategy depends on our ability to build
named models, and our ability to do this ultimately depends on Name and
BG: the linchpin of our approach is Lemma 3, for it is here that we witness
3-prefixed formulas. Now, we have already noted that Name and BG are
proof-theoretically natural. But are they essential? That is, can we prove
analogs Theorems 2 and 3 without their help, or without the help of other non-
orthodox rules such as Paste3? As we shall show, if we want to prove results
like Theorems 3 (and indeed, even results like the weaker Theorems 2) for the
basic hybrid language, the use of non-orthodox rules is essential.

Alternative choices of axioms and rules

Perhaps surprisingly, the Name and BG rules, together with Gen@, are strong
enough to derive the Gen2 rule:

φ

@jφ
Gen@

@i3j → @jφ

@i2φ
BG

2φ
Name

Gen2
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This means that in fact, we didn’t have to introduce Gen2 separately in
the axiomatization in order to obtain completeness. The reason we’ve included
it is, firstly, to emphasise the fact that we are dealing with a normal modal
logic, and secondly, to make life slightly easier in the next section, where we
will eliminate the BG rule.

A second point worth mentioning is that the Back axiom and the BG rule
can be made eliminated at the cost of introducing the Paste3 rule.

@i@jφ↔ @u@jφ
(Agree, 2x)

@u3i ∧@i@jφ→ @u@jφ

@u3@jφ→ @u@jψ
(Paste3)

3@jφ→ @jφ
(K−1

@ , Name)

Back

@i3j → @jφ

@i3j ∧@j¬φ→ ⊥ (Selfdual@)

@i3¬φ→ ⊥ (Paste3)

@i2φ
(S@)

BG

If we replace Back and BG with the Paste3 rule, then the latter can be
seen as performing two tasks at the same time: (1) making sure that every
accessible world can be consistently named by a nominal, and (2) regulating
the interaction between @ and the modalities. Since the elimination of the
Name and BG rules will be a theme of this paper, we have decided to keep
things simple and put less burden on the rules at this point, which is why we
adopt the axiomatization as it is given above. Incidentally, the Paste3 rule is
also proof-theoretically natural; as is discussed in [2], it is essentially a lightly-
disguised sequent rule.

Stronger modal base languages

While we presented the axiomatization of H(@) only for the case of uni-modal
languages, it naturally generalises to multi-modal ones. Of course, in the case
of multi-modal languages, the axioms and rules apply to each of the modalities.
Given this, extending the completeness proof is a simple exercise.

Axiomatising the universal modality is also straightforward: all we need
to do is add the axiom Ei. Completeness follows immediately from the fact
that Ei is pure. In a similar fashion, we can axiomatize the difference modality
(see [16]). The difference modality is a special modalityD such thatM,w |= Dφ
iff there is some world v 6= w such that M,v |= φ. Like the universal modality,
this modality can be axiomatized using a pure axiom: Di↔ ¬i suffices.
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Next, let us consider hybrid tense logic, which uses a basic hybrid language
with two diamonds (F and P , whose duals are denoted by G and H respec-
tively), such that F and P are interpreted as each others converse semantically.
The simplest way to capture the interaction between F and P is by means of
the pure axiom @iFj ↔ @jPi. However, if we choose our axioms more care-
fully, it turns out that the BG rule (both for F and for P ) becomes derivable.
For this purpose, we need the axioms @iGPi and @iHFi:

@iGPi
(TL)

@iFj → @jφ

@jHFj
(TL)

HFj → (Pi→ P (i ∧ Fj))
(K,Gen)

HFj → (Pi→ @iFj)
(Intro,Back)

@jHFj → (@jPi→ @iFj)
@jPi→ @iFj

@jPi→ @jφ

Pi→ φ
(K−1

@ , Name)

@iGPi→ @iGφ
(GG,KG, Gen@,K@)

@iGφ

BGF

The derivation for BGP is similar. This shows that, in the case of tense
languages (that is, languages containing for each modality also the converse
modality), one can eliminate BG altogether without losing completeness.

Finally, certain extensions of the language of H(@) are particularly natural,
in that the newly introduced operator can be locally defined (that is, definable
at named worlds) in terms of the old language. Goranko [21] shows that the
Until operator is locally definable in terms of the tense operators: its local
definition is @i(φUψ ↔ F (ψ ∧H(Pi → φ))). As one can easily see this gives
a complete axiomatization for the Until operator. Another example is the
topological closure operator on the reals with <, which is locally definable in
terms of the tense operators: @i(3φ ↔ PG(Fi → φ) ∨ FH(Pi → φ)). We’ll
make use of the idea of locally definability when we axiomatise the ↓ binder.

Non-eliminability of the non-orthodox rules

Theorem 2 covers all pure extensions, but it is based on an axiomatisation that
makes use of unorthodox rules (namely Name and BG). Is this necessary, or is
the use of such rules avoidable? As we have just noted, we can eliminate the
BG if the underlying modal base is tense logic; can an analogous elimination
be carried out for a uni-modal modal base language? We shall now show that
the answer is no. The use of unorthodox rules can only be avoided at the cost
of introducing infinitely many rules.
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By an orthodox modal rule we mean a rule of the form

` φ1(α1, . . . , αn) & · · · & ` φk(α1, . . . , αn)
` ψ(α1, . . . , αn)

Here, α1, . . . , αn range over arbitrary formulas, and are implicitly universally
quantified. In the presence of a modus ponens rule (together with enough
propositional axioms), we can assume without loss of generality that there is
only a single antecedent (a big conjunction), hence all orthodox rules can be
assumed to be of the form

` φ(α1, . . . , αn)
` ψ(α1, . . . , αn)

The rank of such a rule will be the number of proposition letters occurring in φ
and ψ (not considering α1, . . . , αn), plus n. For example, the rank of the Gen2

rule is 1. A rule preserves validity on a class of frames F, if for all formulas
α1, . . . , αn, F |= φ(α1, . . . , αn) implies F |= ψ(α1, . . . , αn). We can now prove
the desired result: no finite collection of orthodox rules can be complete for all
pure extensions, even if we take as axioms all validities of H(@).

Theorem 4. Let Kh be the set of all formulas in the basic hybrid language that
are valid on all frames, let P be a finite set of orthodox rules, and let L be the
axiomatic system formed by taking as axioms Kh, and taking as rules modus
ponens, substitution, and all the rules in P . Then there is a pure extension
L+Λ that is not sound and complete with respect to the class of frames defined
by Λ.

Proof. Let n be the maximal rank of the rules in P — this information is all
we need to construct a pure extension that is incomplete with respect to the
frame class it defines. Define Λ be the set containing only the following pure
formula: ∧

1≤l≤2n+2

3il →
∨

1≤k<l≤2n+2

3(ik ∧ il).

L + Λ is the axiomatic system L enriched by this single pure axiom (closed
under modus ponens, substitution and the rules in P ). Let F be the class of
frames defined by Λ, that is, the class of all frames in which each world has at
most 2n + 1 successors. Either the rules in P preserve validity on F or they do
not. If they do not, soundness is lost and there is nothing to prove, so assume
that the rules P do preserve validity on F. We shall now show that L + Λ is
not complete for F.

Let M be the class of models that are based on frames in F, and
let F = (W,R) be the frame such that W = {1, . . . , 2n + 2} and
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R = W 2; clearly, F 6∈ F. Finally, let M′ be M ∪ {(F , V ) |
V is a valuation for F such that V (i) = V (j) for all nominals i, j}. Now for
the heart of the proof: we shall show that L + Λ is sound for the class of
models M′.

Claim 1.

• All formulas in Kh are valid on M′.

• Validity on M′ is closed under uniform substitution of formulas for propo-
sitional variables and nominals for nominals.

• Validity on M′ is closed under modus ponens

The proof of Claim 1 is straightforward and is left to the reader.

Claim 2. All formulas valid on F with at most n propositional variables are
valid on M′. Hence M′ |= Λ.

Let φ be a formula with at most n propositional variables, and suppose for
the sake of contradiction that F |= φ and M′ 6|= φ. Then there is a valuation
V and a world w such that F , V, w  ¬φ, and such that V assigns the same
world to each nominal. Since only n propositional variables occur in φ, and all
nominals are true at the same world, it follows that the bisimulation contraction
of M (over this restricted vocabulary) has at most 2n + 1 worlds; hence, this
bisimulation contraction is in F. It follows that F 6|= φ, which contradicts our
initial assumption.

Claim 3. All rules in P preserve validity on M′.

Let ρ ∈ P be a rule
` φ(α1, . . . , αm)
` ψ(α1, . . . , αn)

with m ≤ n, and suppose that M′ |= φ(α1, . . . , αm) for particular formulas
α1, . . . , αm. Uniformly substitute > for each of the propositional variables
occurring in α1, . . . , αm. We then obtain pure formulas β1, . . . , βm, and by
Claim 1 it follows that M′ |= φ(β1, . . . , βm). Let p1, . . . , pm be new, distinct
propositional variables. Then it follows that

M′ |= φ((p1 � 2φ(p1, . . . , pm) � β1), . . . , (pm � 2φ(p1, . . . , pm) � βm))

where (φ� ψ � χ) is shorthand for (ψ ∧ φ) ∨ (¬ψ ∧ χ). Hence

F |= φ((p1 � 2φ(p1, . . . , pm) � β1), . . . , (pm � 2φ(p1, . . . , pm) � βm))
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Since F is a purely definable frame class, ρ preserves validity. Hence, it follows
that

F |= ψ((p1 � 2φ(p1, . . . , pm) � β1), . . . , (pm � 2φ(p1, . . . , pm) � βm))

Since this formula contains at most n propositional variables, it follows by
Claim 2 that

M′ |= ψ((p1 � 2φ(p1, . . . , pm) � β1), . . . , (pm � 2φ(p1, . . . , pm) � βm))

By closure under uniform substitution (Claim 1), it follows that

M′ |= ψ((α1 � 2φ(α1, . . . , αm) � β1), . . . , (αm � 2φ(α1, . . . , αm) � βm))

Recall that M′ |= φ(α1, . . . , αm). It follows that M′ |= (αi � 2φ(α1, . . . , αm) �

βi) ↔ αi. Hence,
M′ |= ψ(α1, . . . , αm)

This completes the proof of the third claim, and hence we have shown that
L+ Λ is sound with respect to M′

But now the incompleteness result follows. Consider the following formula

η =
∧

1≤i≤2n+2

3pi →
∨

1≤i<j≤2n+2

3(pi ∧ pj)

Notice that M′ 6|= η. By Claim 1–3, it follows that η 6∈ L. However F |= η, so it
follows that L+ Λ is not complete for F.

Topological perspective on the non-orthodox rules

The relational semantics for modal logic in terms of Kripke frames is not the
only possible semantics. A well known alternative is the topological semantics
(in fact, historically, it predates Kripke semantics). If we interpret 3 as the
closure operator, then every class of topological spaces gives rise to a normal
modal logic, in fact to an extension of the modal logic S4. In [40], the axioms
and rules of hybrid logic are considered from the viewpoint of topological se-
mantics. While all axioms of hybrid logic, as well as the Name rule, are still
sound under this more general semantics, BG is not. Indeed, even on the most
well known topological space, the real line, the BG rule derives invalid conclu-
sions from valid premises. This is in line with the general intuition that the BG
rule, with its use of an accessibility assertion, captures the essence of Kripke
semantics. Indeed, this intuition can be made precise: as proved in [40], among
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all topological spaces, BG characterises precisely those that can be represented
as a Kripke frame (topologists call such spaces Alexandroff spaces).

Incidentally, BG is topologically not only unsound, it is also not needed.
In [40], a general topological completeness result is presented for hybrid logics
extending S4 with pure axioms and without the BG rule (but with the universal
modality). Similar results can be proved for neighbourhood frames. For a
comprehensive treatment of topological definability in hybrid logic, see [39].

5. Axiomatizations for H(@, ↓)

In this section we turn from H(@) and its cousins to the richer H(@, ↓). This
language, which allows us to bind a world variable to the world of evaluation
using the ↓ binder, has been one of the most extensively explored in contem-
porary hybrid logic. And quite deservedly, for it turns out to be a key system:
it corresponds exactly to the generated submodel invariant fragment of first-
order logic [1], and to the intersection of first-order logic and second order
propositional modal logic [38]. It is capable of defining any elementary class of
frames that is closed under generated subframes and reflects finitely generated
subframes [36, 3]. Moreover, having ↓ in our language, it becomes possible to
prove very general interpolation results [1, 8]. Indeed, H(@, ↓) is the smallest
possible extension of H(@) which has interpolation [37].

The language H(@, ↓) was first axiomatized in [12]; here we improve on this
earlier work in two ways. First, we will show how to axiomatize H(@, ↓) by
adding a single axiom schema to our axiomatization to H(@). Second, we shall
show that it is possible to eliminate the Name and BG rules.

Let’s turn to our first axiomatization. We remark that since we’re now
dealing with a language with variables and binding, we need to adjust the
substitution rule to allow variables and nominals to be substituted for each
other, and we need to take the standard precautions to prevent accidental
binding of variables. Bearing this in mind, consider our first axiomatization,
KH(@,↓)-I, which is shown in Figure 3.

As promised, our first axiomatization extends KH(@) with a single axiom
schema. Note the form that this schema takes. In the previous section, when
we axiomatized the basic hybrid logic of the Until operator, we did so in the
way proposed by Goranko: via a local operator definition. The DA schema
just given uses essentially the same idea: the schema states the semantics of
the ↓ operator at some arbitrary world named i (the notation φ[s := i] means
substitute the nominal i for all occurrences of the variable s). A more direct
axiomatization is hard to imagine, so let’s now show that KH(@,↓)-I really is
complete.
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KH(@,↓)-I
Axioms:
All axioms of KH(@)

DA ` @i(↓s.φ↔ φ[s := i])
Rules:
All rules of KH(@)

Figure 3. The KH(@,↓)-I axiomatisation.

We shall state and prove our completeness result for arbitrary sets of sen-
tences. It’s easy to adapt the proof to cover arbitrary sets of formulas instead,
but the sentential proof is rather elegant.

Theorem 5 (Completeness). Let Λ be a set of pure H(@, ↓) axioms and let
P be a set of existential saturation rules. A set of H(@, ↓) sentences Σ is
KH(@,↓)-I + Λ +P consistent iff Σ is satisfiable in a model satisfying the frame
properties defined by Λ and P .

Proof. Almost no changes to our completeness proof for KH(@) are required.
Once again we build the model out of (equivalence classes of) nominals, and
the Lindenbaum Lemma and the Rule Saturation Lemma are unchanged. In
fact all we need to do is add an extra clause to our proof of the Truth Lemma
for formulas of the form ↓s.ψ. The extra clause we need is as follows (and this
is where we use DA):

MΓ, |i| |= ↓s.ψ ⇐⇒ MΓ, |i| |= ψ[s := i]
⇐⇒ind.hyp. @iψ[s := i] ∈ Γ
⇐⇒DA @i↓s.ψ ∈ Γ

Note that the formulas used in this inductive step are all sentences. Instead
of driving the induction directly through the subformula ψ (which may contain
the free variable s) we use its sentential variant ψ[s := i]. This strategy works
because we are evaluating ↓s.ψ in a named model and i names the world of
evaluation.

With the Truth Lemma established, completeness follows.

Before going further, two remarks on existential saturation rules in H(@, ↓).
First note that for some frame conditions they are no longer needed. For
example, the Church-Rosser property, which could not be defined by any pure
H(@) formula, is defined by the pure H(@, ↓) formula, namely:

3i ∧3j → @i(3↓s.@j3s).
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In fact any elementary class of frames that it definable in ordinary modal logic
is definable by pure H(@, ↓)-sentences: pure sentences of H(@, ↓) can define all
elementary frame classes that are closed under and reflect generated subframes,
and all modally definable frame classes have this closure property. However the
class of frames in which every world has a predecessor is not definable by means
of any pure H(@, ↓) axiom (since it is not closed under generated subframes) so
to axiomatize this frame class we would still have to make use of an existential
saturation rule.

Secondly, note that in H(@, ↓) we have more such rules at our disposal than
in H(@). Recall that existential saturation rules have the form:

If ` φ(i1, . . . , in, j1, . . . , jm) → ψ then ` ψ, where i1, . . . , in, j1, . . . , jm
are distinct, and j1, . . . , jm do not occur in ψ.

The only requirement on ψ is that it belong to H(@, ↓), thus we can use rules
where ψ contains occurrences of ↓ and this gives us a wider repertoire, allowing
us to define frame properties such as for each world there is a different world
with the same successors.

Let’s turn to our second axiomatisation. While KH(@,↓)-I is a particularly
simple extension of KH(@), it inherits from KH(@) the use of the Name and BG
rules. However, in the richer setting of H(@, ↓) there is no analog of Theorem 4:
as we shall now see, we can indeed replace the Name and BG rules by axiom
schemas (thus answering a question posed in [11]). A second axiomatization,
called KH(@,↓)-II, which works this way, is shown in Figure 4.

KH(@,↓)-II
Axioms:
All axioms of KH(@)

DA ` @i(↓s.φ↔ φ[s := i])
Name↓ ` ↓s.(s→ φ) → φ provided that s does not occur in φ
BG↓ ` @i2↓s.@i3s
Rules:
MP If ` φ and ` φ→ ψ then ` ψ
Subst If ` φ then ` φσ

Gen@ If ` φ then ` @iφ
Gen↓ If ` φ then ` ↓s.φ
Gen2 If ` φ then ` 2φ

Figure 4. The KH(@,↓)-II axiomatisation.
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Theorem 6 (Completeness). Let Λ be a set of pure axioms and let P be a
set of existential saturation rules. A set of sentences Σ is KH(@,↓)-II + Λ + P
consistent iff Σ is satisfiable in a model satisfying the frame properties defined
by Λ and P .

Proof. By Theorem 5, it suffices to show that the Name and BG rules are
KH(@,∀)-II derivable.

@iφ i→ (@iφ→ φ)
(Intro)

i→ φ

↓s.(s→ φ)
Subst,G↓

φ
Name↓

Name

@i2↓s.@i3s
BG↓

@i3j → @jφ

@j(@i3j → φ)
Gen@,K@, S@

↓s.@i3s→ φ
DA,Name

@i2(↓s.@i3s→ φ)
Gen2, Gen@

@i2φ
K2, Gen@,K@

BG

Thus KH(@,↓)-II can derive all axioms and rules of KH(@,↓)-I, and hence its
completeness follows by Theorem 5.

A further remark on the eliminability of the Name and BG rules is worth
making. They have been eliminated at the expense of introducing two axiom
schemes, and one of them, Name↓, imposes a non-occurrence requirement. Such
restrictions are widely used in axiomatizations of first-order logic, but from an
algebraic point of view they are less preferable than normal axiom schemes, or,
as algebraic logicians call them, Monk schemes. This gives rise to an interesting
technical question: can the DA and Name↓ schemes be replaced by a finite
number of Monk schemes? We conjecture the answer is no.

Finally, as we saw in the previous section, if we add the universal modality
to the basic hybrid language H(@), we can axiomatize it simply by adding the
single pure formula Ei. Now, it is also possible to add the universal modality
to H(@, ↓), which in effect yields the language H(A, ↓), since @ is definable in
terms of A. It has long been known (see [9]) thatH(A, ↓) is strong enough to de-
fine the strong Priorean binders ∃ and ∀ — so axiomatising this logic is in effect
a disguised way of axiomatising H(@,∀). The results of this section allow us to
do so in two ways: by adding the axiom Ei to either KH(@,↓)-I or KH(@,↓)-II.
Other axiomatizations for H(A, ↓) are known (notably Goranko’s [21] axioma-
tization, in the paper which introduced ↓).
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KH(@,∀)-I
Axioms:
All axioms of KH(@)

Q1 ` ∀s.(φ→ ψ) → (φ→ ∀s.ψ) where s not free in φ
Q2 ` ∀s.φ→ φ[s := τ ] where τ (a world variable or nominal)

is substitutable for s in φ
Barcan@ ` ∀s.@iφ↔ @i∀s.φ
Rules:
All rules of KH(@)

Gen∀ If ` φ then ` ∀s.φ

Figure 5. The KH(@,∀)-I axiomatisation.

6. Axiomatizations for H(@,∀)

As we have just remarked, H(A, ↓) is as strong as H(@,∀), and we have seen
that it is straightforward to provide a complete axiomatization for it. But it
is interesting to explore the more direct route to full first-order expressivity
provided by the Strong Priorean language H(@,∀) and close relatives such as
H(A,∀). It is true that from a technical perspective, Strong Priorean lan-
guages are somewhat less interesting than the weaker hybrid languages we have
explored: because they offer quantification over worlds, classical techniques can
be applied more straightforwardly. Indeed, as early as 1970, in the first techni-
cal paper written on hybrid logic, Bull [14] gave an axiomatisation of H(A,∀)
that made use of Henkin models. Nonetheless, H(@,∀) plays an important
role in motivating existential saturation rules, and has considerable historical
and philosophical interest (see [6] for a detailed discussion) so let’s see how the
approach of the present paper deals with it.

We begin by extending our axiomatization forH(@) to an axiomatization for
H(@,∀) in the most direct way we know of. We remark that (as with H(@, ↓))
we need to adjust the substitution rule so that variables can be substituted
for nominals and vice versa, and that we need to observe all the standard
precautions to avoid performing illegal substitutions. This done, we define the
axiom system shown in Figure 5, which we call KH(@,∀)-I.

Conceptually, KH(@,∀)-I is very simple system. In essence we have bolted a
classic axiomatization for first-order logic (namely Q1, Q2 and Gen∀), together
with a hybrid analog of the famous Barcan formula (and its converse) familiar
from first-order modal logic, onto our axiomatization of the basic hybrid lan-
guage. Both of these components have a clearly defined role to play when it
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comes to proving completeness, as we shall now see.

Theorem 7 (Completeness). A set of sentences is KH(@,∀)-I consistent iff it
is satisfiable.

Proof. The proof involves only modest adjustments to our completeness proof
for KH(@); indeed in certain respects it is simpler. Once again we build the
model out of (equivalence classes of) nominals. The key change is to reformulate
the Lindenbaum Lemma (Lemma 3) so that new nominals are introduced to
witness the existential quantifiers over worlds. That is, we add the following
clause to our inductive Lindenbaum definition:

Σn+1 = Σn ∪ {φn} ∪ {ψ[s := im]} if φn is of the form ∃s.ψ,
where im is the first new nominal that does not occur in Σn or φn.

The consistency of this step is guaranteed by Q1 and Gen∀, for with their help
it is easy to show that if ` φ[s/i] → ψ then ` ∃s.φ → ψ (where i does not
occur in φ or ψ). The analogy between this part of the construction, and the
way first-order constants are used in Henkin completeness proofs for first-order
logic to witness existential quantifiers, is clear.

The Barcan (and converse Barcan) analog comes into play when proving
the Truth Lemma. As in Lemma 5 we want to show that for all nominals i and
sentences φ, MΓ, |i|Γ |= φ iff @iφ ∈ Γ. Again we do this by induction, and the
only new case is for formulas φ of the form ∀s.ψ. Now — with one exception
— the following equivalences are easy to establish:

1. @i∀s.φ ∈ Γ

2. ∀s.@iφ ∈ Γ

3. @iφ[s := j] ∈ Γ for all nominals j

4. MΓ, |i| |= φ[s := j] for all nominals j

5. MΓ, |i| |= ∀s.φ

The exception is the equivalence of (1) and (2). This is where we need the
Barcan analog, which legitimises the required permutations of @ and ∀.

With the Lindenbaum Lemma and the Truth Lemma established, the com-
pleteness proof goes through in the expected way.

Note that this basic completeness result is all we need: there is no need to
talk about pure extensions, or existential saturation rules. Because we have
full first-order expressive power at our disposal, any frame class that can be
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KH(@,∀)-II
Axioms:
All axioms of KH(@)

Q1 ` ∀s.(φ→ ψ) → (φ→ ∀s.ψ) where s not free in φ
Q2 ` ∀s.φ→ φ[s := i] where i is substitutable for s in φ
Barcan@ ` ∀s.@iφ↔ @i∀s.φ
Ref∃ ` ∃s.s
Barcan2 ` ∀s2φ↔ 2∀sφ
Rules:
MP If ` φ and ` φ→ ψ then ` ψ
Subst If ` φ then ` φσ

Gen@ If ` φ then ` @iφ
Gen∀ If ` φ then ` ∀s.φ
Gen2 If ` φ then ` 2φ

Figure 6. The KH(@,∀)-II axiomatisation.

axiomatized using pure axioms or existential saturation rules (indeed, any first-
order definable frame-class whatsoever) can be described by a H(@,∀) sentence
(this was first observed by Bull [14] in his pioneering paper). So extended
completeness for all elementary frame classes is an immediate corollary of the
basic completeness result just given.

The KH(@,∀)-I axiomatization is direct, and makes the link with our work
on H(@) clear. Nonetheless it makes use of the Name and BG rules, and with
the expressive power at our disposal it is possible to eliminate these rules in an
elegant way: we add the following axiom ∃s.s (which says, in essence, that it
is always possible to name the current world) and the schema ∀s2φ ↔ 2∀sφ,
another Barcan and converse Barcan analog, this time one which permits ∀
and 2 to be permuted. We explicitly list the axioms and rules of the second
axiomatization (which we shall call KH(@,∀)-II) in Figure 6.

Theorem 8 (Completeness). A set of formulas is KH(@,∀)-II consistent iff it
is satisfiable.

Proof. We prove this by showing that the Name and BG rules are KH(@,∀)-II
derivable. As a first step, we show that all instances of a formula called Name∀
are KH(@,∀)-II derivable:
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∃s.s (Ref∃)
∀s.(¬φ→ ¬s) → (¬φ→ ∀s.¬s)

(Q1)

∀s.(s→ φ) → (∃s.s→ φ)
∀s.(s→ φ) → φ (where s does not occur freely in φ)

Name∀

Now we can show that the Name rule is KH(@,∀)-II derivable:

@iφ

i→ φ
(Intro)

s→ φ
(Subst)

∀s.(s→ φ)
(G∀) ∀s.(s→ φ) → φ

(Name∀)

φ

Name

Finally, we can show that the BG rule is KH(@,∀)-II derivable. The proof
makes the fundamental role of the two Barcan analogs clear:

@i3j → @jφ

@i3j → j → φ
(Intro)

@i3j → 2j → φ
(Back, S@)

@i(3j → @i2(j → φ))
(Nec@,K@, Agree)

@i(3j → 2(j → φ))
(K−1

@ )

@i2(j → φ)
(K2,K@, Gen@)

@i2(s→ φ)
(Subst)

∀s.@i2(s→ φ)
(G∀)

@i∀s.2(s→ φ
(Barcan@)

@i2∀s.(s→ φ)
(Barcan2)

∀s.(s→ φ) → φ
(Name∀)

2∀s.(s→ φ) → 2φ
(Gen2,K2)

@i2∀s.(s→ φ) → @i2φ
(Gen@,K@)

@i2φ

BG

Thus KH(@,∀)-II can prove everything that KH(@,∀)-I can, hence its com-
pleteness follows by Theorem 7.

As far as we are aware, KH(@,∀)-I and KH(@,∀)-II are the first axiom systems
to be given for the language H(@,∀). However H(@,∀) is very similar to the
language H(A,∀), and as we have already mentioned, in a 1970 paper Bull
provided a complete axiomatization for this language (actually, Bull’s work
is in the somewhat richer setting of hybrid tense logic, but this makes little
difference to the proof details). Bull’s axiomatization is similar to KH(@,∀)-II.
In particular, Bull makes use of the axiom ∃s.s and the Barcan analog ∀s.Aφ↔
A∀s.φ (which permits the universal modality and the ∀ binder to be permuted).
Moreover, Bull’s completeness proof is also a Henkin-style completeness proof.
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7. An axiomatization of QHL(@)

Till now we have worked solely with propositional hybrid logics. But the meth-
ods we have discussed are robust, and to demonstrate this we now apply them
to the hybrid analogue of quantified modal logic. Recent work (see [2]) has
shown that quantified hybrid logic is well behaved with respect to the interpo-
lation property (far better behaved than orthodox quantified modal logic). Our
goal here is to show that the same holds true of its axiomatics. As we shall see,
the Henkin-style model construction used for H(@) can be straightforwardly
adapted to the richer setting. Moreover, the general completeness results for
extensions with pure axioms and existential saturation rules become even more
useful, since they can be used not only to express frame properties but also a
wide range of domain conditions.

The language of quantified hybrid logic we shall work with is calledQHL(@)
and it is built on top ofH(@). Let us assume that we have fixed a set of constant
symbols (c, d, . . .) and a set of relation symbols (R, P , . . . ). In what follows
we assume that these sets are at most countably infinite and that the arity of
each relation symbol is known. We keep all the ordinary proposition letters
from H(@), but from now on we regard these as zero-ary relation symbols. In
addition to these non-logical symbols we shall need a countably infinite set VAR
of first-order variables (x, y, z, . . .), the equality symbol =, and the quantifier
symbol ∀. Please note: in this section ∀ will be used in the traditional first-
order way (that is, as a quantifier over ordinary individuals) not as a Prior-style
hybrid quantifier over worlds!

There are three kinds of terms in QHL(@): first-order variables (x, y, z and
so on), constants (c, d, e and so on), and rigidified constants (@ic,@jd, and so
on). Intuitively, @ic rigidly refers to the denotation of the non-rigid constant c
in the world named by i, and the semantics given below will make this precise.
Note that we are (deliberately) overloading the @ symbol. Till now @ was
used as an operator on formulas, whereas now we are using it as an operator
on first-order constants. From the perspective of hybrid logic this is a natural
notational choice: the idea of hybrid logic rests on the idea of using propositions
as terms, and our overloading of @ is much in the same spirit. Readers who
dislike this should introduce a different rigidification symbol (say δ) and adjust
the axiomatic system given below accordingly. In what follows we write σ, τ, κ,
and so on, for terms (variables, constants or rigidified constants). A term is
called rigid if it is either a variable of a rigidified constant.

The formulas of QHL are defined as follows

φ ::= R~τ | τ = κ | i | ¬φ | φ ∧ ψ | 3φ | ∀x.φ | @iφ
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In what follows, we make free use the usual defined symbols (such as ∃, 2 and
→). In addition we use exists(τ) as a shorthand for ∃y.y = τ , where y is
distinct from τ . As usual, a sentence is a formula without free variables.

Now for the semantics. Skeletons are the first-order generalisation of frames:
a skeleton provides the interpretation of the modalities and furthermore, it
assigns to each world a domain of entities.

Definition 3 (Skeleton). A skeleton is a structure S = (W,Dom,D,R), where
W is a set of worlds, Dom is a set of entities, D : W → ℘(Dom) assigns to
every world a non-empty subset of Dom and R ⊆W 2.

Definition 4 (Models). A model is a structure M = (S, I), where S =
(W,Dom,D,R) is a skeleton and I interprets the nominals, constants and
predicates. More precisely, I(i) ∈ W for all nominals i, Iw(c) ∈ Dom for
all constants c, and Iw(P ) ⊆ Domn for all predicates P of arity n. Note that
I supplies the interpretation of the propositional letters p, q, r, and so on, as
these are now regarded as zero-ary predicates.

Definition 5 (Semantics). Let M = (W,Dom,D,R, I) be any model. A func-
tion g : V AR −→ Dom is called an assignment on M. Given a model M and
an assignment g on M we interpret the terms of QHL(@) as follows:

[τ ]M,w,g =


g(x) if τ is the variable x
Iw(c) if τ is of the form c

Iv(c) if τ is of the form @ic and I(i) = v

The satisfaction definition for arbitrary formulas is then defined as follows:

M, w, g |= τ1 = τ2 iff [τ1]M,w,g = [τ2]M,w,g

M, w, g |= Pτ1 . . . τn iff ([τ1]M,w,g, . . . , [τn]M,w,g) ∈ Iw(P )
M, w, g |= i iff I(i) = w
M, w, g |= ¬φ iff M, w, g 6|= φ
M, w, g |= φ ∧ ψ iff M, w, g |= φ and M, w, g |= ψ
M, w, g |= 3φ iff there is a v ∈W such that wRv and M, v, g |= φ
M, w, g |= ∀x.φ iff M, w, g[x 7→ d] |= φ for all d ∈ Dw

M, w, g |= @iφ iff M, v, g |= φ where I(i) = {v}

Note that the interpretation of constants and predicates in a world w is
not restricted to the local domain Dw. Thus, even non-existent entities can
have various properties and stand in various relationships with each other. The
quantifiers, on the other hand, receive an actualist interpretation: they quantify
over elements of the local domain. Equality is rigid: it is the same relation in
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every world. Just as we defined validity of H(@) formulas on frames, we say
that a formula φ of QHL(@) is valid on a skeleton S if (S, I), w, g |= φ for all
choices of I, w, and g.

Now for the axiomatization. First of all, recall the substitution rule in
the axiomatization of H(@), which allows us to replace proposition letters by
arbitrary formulas and nominals by nominals. In the case of QHL(@), the
proposition letters are now regarded as zero-ary predicates. Therefore, the
substitution rule now allows us to uniformly replace zero-ary predicates by ar-
bitrary formulas and nominals by nominals. Furthermore, the rule is extended
in such a way that rigidified constants can be uniformly substituted for vari-
ables and vice versa. Having made these changes to the substitution rule, the
axiomatization for QHL(@) is as shown in Figure 7.

KQHL(@)

Axioms:
All axioms of KH(@)

Q1 ` ∀x.(φ→ ψ) → (φ→ ∀x.ψ) where x not in φ
Q2 ` ∀x.φ→ (exists(τ) → φ[x := τ ]) where τ is rigid.
Q3 ` ∀x.exists(x)
Ref= ` τ = τ
Repl= ` σ = τ → (φ(σ) → φ(τ)) where σ, τ are rigid
Rigidify ` @i(c = @ic)
NED ` ∃x.>
Rules:
All rules of KH(@)

Gen∀ If ` φ then ` ∀x.φ

Figure 7. The KQHL(@) axiomatisation.

The completeness result for KQHL(@) that we will prove is a natural gen-
eralisation of Theorem 3 for KH(@). In the setting of quantified hybrid logic,
we call a formula pure if it contains no relation symbols (of any arity, not just
the zero-ary relation symbols) and no non-rigidified constants. That is, rigidi-
fied constants, variables, nominals and the equality symbol are allowed in pure
formulas. As in the propositional case, existential saturation rules have the
form:

If ` φ(i1, . . . , in, j1, . . . , jm) → ψ then ` ψ, where i1, . . . , in, j1, . . . , jm
are distinct, and j1, . . . , jm do not occur in ψ.

where ψ is a pure formula.
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Incidentally, the prohibition on non-rigidified constants appearing in pure
formulas (which also prevents them from appearing in existential saturation
rules) is crucial to this theorem. Since constants are interpreted semantically as
functions from worlds to individuals, axioms containing non-rigidified constants
are essentially second-order in nature: they express universal quantification over
functions. Therefore, we cannot expect general completeness results for axioms
involving such constants. Hence our insistence that pure formulas only contain
rigidified constants.

Theorem 9 (Completeness). If Σ is a KQHL(@) + Λ + P consistent set of
sentences, where Λ is a set of pure axioms and P is a set of existential saturation
rules, then Σ is satisfiable in a model satisfying the skeleton properties defined
by Λ and P .

Before we proceed with the proof of Theorem 9, note that it can be applied
to domain conditions, and not merely frame conditions. For example, pure
axioms can be used to characterise a number of standard (and not so standard)
domain conditions:

Increasing domains: exists(@kc) → 2exists(@kc)
Decreasing domains: 3exists(@kc) → exists(@kc)
Constant domains: @iexists(@kc) → @jexists(@kc)
Full domains: exists(@kc)
Disjoint domains: @iexists(@kc) ∧@jexists(@kc) → @ij
Convex domains: exists(@kc) → 2(3exists(@kc) → exists(@kc))

To give a more elaborate example, suppose our modality models the flow
of time, and our individuals are humans. Then it would be natural to consider
structures in which the accessibility relation is a strict total order that extends
infinitely to the past and future, and for every individual e there are two time-
points w and v (birth and death) such that e exists in all and only the worlds
in between w and v. Notice that all these requirements can be naturally for-
mulated using pure axioms (provided that we work with a language containing
the Priorean past tense operator P ).

Let us turn to the completeness proof. First some syntactic preliminaries:

Lemma 7. The following schemas are all derivable in KQHL(@):
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Sym= ` σ = τ → τ = σ
Trans= ` σ = κ→ κ = τ → σ = τ
Nomc ` @ij → (@ic = @jc)
Agree= ` @i(σ = τ) ↔ σ = τ ,

where σ, τ are variables or rigidified constants
Paste∀ If ` @iexists(c) ∧@iφ[x := @ic] → ψ then ` @i∃x.φ→ ψ

where c does not occur in ψ

Proof. c = d→ c = c→ d = c
(Eq, Subst)

c = c (Ref=)
c = d→ d = c

Sym=

d = e→ c = d→ c = e
(Eq, Subst)

c = d→ d = e→ c = e
Trans=

@ic = @ic
(Ref=)

@ij → (@ic = @ic) → (@ic = @jc)
(Nom,Subst)

@ij → (@ic = @jc)
Nomc

@i(τ = τ)
Ref=, Gen@

τ = κ→ @i(τ = κ)
Repl =

@j(τ = τ)
Ref=, Gen@

τ = κ→ @j(τ = κ)
Repl=

@i(τ = κ→ @j(τ = κ))
Gen@

@i(τ = κ) → @j(τ = κ
K@, Agree

@j(@i(τ = κ) → τ = κ)
K−1

@

@i(τ = κ) → τ = κ
Name

@i(τ = κ) ↔ τ = κ

Agree=

@iexists(c) ∧@iφ[x := @ic] → ψ

@iexists(c) ∧@iφ[x := @ic] → @jψ
(Gen@,K@, Agree)

i ∧ exists(c) ∧ φ→ @jψ
(Intro)

∀x.(i ∧ exists(x) ∧ φ→ @jψ)
(G∀, Subst)

i ∧ ∃x.(exists(x) ∧ φ) → @jψ
(Q1)

i ∧ ∃x.φ→ @jψ
(Q3, Q1)

@i∃x.φ→ @jψ
(Intro,Ref@, Agree)

@j(@i∃x.φ→ ψ)
(K−1

@ , Agree)

@i∃x.φ→ ψ
(Name)

Paste∀

We are now ready for the model construction. As promised, all we have to
do is adapt the Henkin construction used in the completeness proof for H(@).
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Definition 6 (∃-Saturation). A set of sentences Σ is ∃-saturated if whenever
@i∃x.φ ∈ Σ, there is a constant c such that we have both @iexists(c) ∈ Σ and
@iφ[x := @ic] ∈ Σ.

Lemma 8 (Extended Lindenbaum Lemma). Every Kqhl(@)+Λ+P consistent set
of sentences can be extended to a named, 3-saturated, ∃-saturated, KQHL(@) +
Λ + P MCS.

Proof. Suppose Σ is consistent. Let (in)n∈N be an enumeration of a countably
infinite set of new nominals, let (cn)n∈N be an enumeration of a countably
infinite set of new nominals, and let (φn)n∈N be an enumeration of the formulas
of the extended language. Let Σ0 denote Σ∪ {i0}. The Name’ rule guarantees
that Σ0 is consistent. For all n ∈ N, Σn+1 is defined as follows. If Σn ∪ {φn} is
inconsistent, then Σn+1 = Σn. Otherwise:

1. Σn+1 = Σn ∪ {φn} if φn is not of the form @i3ψ or ∃x.ψ.

2. Σn+1 = Σn ∪ {φn} ∪ {@i3im,@imψ} if φn is of the form @i3ψ,
where im is the first new nominal that does not occur in Σn or φn.

3. Σn+1 = Σn ∪ {φn} ∪ {@iexists(cm),@iψ[x := @icm]} if φn is of the form
@i∃xψ,

where cm is the first new constant that does not occur in Σn or φn.

Let Σ+ =
⋃

n≥0 Σn. Then Σ ⊆ Σ+ and Σ+ is named, 3-saturated, ∃-saturated,
maximal and consistent. The only non-trivial steps are in 2. and 3., and the
consistency of these step is guaranteed by the Paste3 rule and the Paste∀ rule,
respectively.

Lemma 9 (Extended Rule Saturation Lemma). Every KQHL(@) + Λ + P con-
sistent set of sentences can be extended to a named, 3-saturated, ∃-saturated,
P -saturated KQHL(@) + Λ + P MCS.

Proof. As in the proof of Lemma 4.

Definition 7 (Henkin model obtained from an MCS). Let Γ be a KQHL(@)

MCS. For all nominals i, let |i| = {j | @ij ∈ Γ}. For all rigidified constants
τ , let |τ | = {κ | κ is a rigidified constant and (τ = κ) ∈ Γ}. The model
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MΓ = (W,Dom,D,R, I) is defined as follows.

W = {|i| | i is a nominal}
Dom = {|τ | | τ is a rigidified constant}
D|i| = {|τ | ∈ Dom | @iexists(τ) ∈ Γ}

|i|R|j| iff @i3j ∈ Γ
I(i) = {|i|}

I|i|(c)(|i|) = |@ic|

I|i|(R) = {(|τ1|, . . . , |τn|) ∈ Darity(R)
|i| | @iRτ1 . . . τn ∈ Γ}

That R is well-defined follows from Ref, Sym and Nom (as before). That D
is well defined follows from Ref=, Sym= and Trans= together with Repl=. That
the extension assigned to constants by I is well-defined follows from Nomc.
That the extension assigned to predicates by I is well-defined is guaranteed by
Nom and Repl=.

Lemma 10 (Truth Lemma). For all 3-saturated, ∃-saturated MCS’s Γ, nomi-
nals i and sentences φ, MΓ, |i| |= φ iff @iφ ∈ Γ

Proof. As before, by induction on the length of φ. We will only discuss the
inductive step for atomic formulas and for the formulas of the form ∀x.ψ.

If φ is an atomic formula, then it must be of the form τ = κ, R~τ or i. In
either case, the claim follows immediately from the definition of MΓ (via the
Rigidify axiom in case of non-rigidified constants).

If φ is of the form ∀x.ψ, we reason as follows. Suppose MΓ, |i| |= ∀x.ψ. Then
by a simple inductive argument, one can show that for all rigidified constants
τ , if |τ | ∈ D|i| then MΓ, |i| |= ψ[x := τ ]. By our induction hypothesis, it follows
that for all rigidified constants τ , if @iexists(τ) ∈ Γ then @iψ[x := τ ] ∈ Γ.
Since Γ is ∃-saturated, it follows that @i∃x.¬ψ 6∈ Γ and therefore @i∀x.ψ ∈
Γ. Conversely, suppose @i∀x.ψ ∈ Γ. Then for all rigidified constants τ , if
@iexists(τ) ∈ Γ then @iψ[x := τ ] ∈ Γ (by axiom Q2). Since every element
of D|i| is named by a constant, it follows (using the induction hypothesis) that
MΓ, |i| |= ∀x.ψ.

Finally, all the apparatus is in place, and we can finish off the main com-
pleteness argument as follows.

Proof of Theorem 9. Let Σ be any KQHL(@) + Λ + P consistent set of
sentences. By Lemma 9, Σ can be extended to a named, 3-saturated, ∃-
saturated, P -saturated MCS Γ, and let i ∈ Γ. By the Lemma 10, MΓ, |i| |= Σ.
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Since MΓ is a named model and Γ contains all instances of elements of Λ, it
follows that the underlying frame of MΓ validates Λ. Since MΓ is a named
model and Γ is P -saturated, it follows that the underlying frame of MΓ admits
P .

To conclude, two remarks. We have here axiomatized the basic quantified
hybrid logicQHL(@), that is, the quantified hybrid logic built overH(@). How-
ever we could have built quantified hybrid logic over H(@, ↓) or even H(@,∀),
thus obtaining QHL(@, ↓) and QHL(@,∀) respectively. Although we won’t
prove this, it will be clear to readers who have worked through the details of
the completeness proofs that we can combine the completeness result just given
with the completeness results for H(@, ↓) or even H(@,∀).

There are many ways to define a semantics for quantified modal/hybrid
logic, and there is no consensus concerning the nicest semantics. It is worth
mentioning that both our results and our methods are fairly robust. For exam-
ple, it would have been just as easy to start with a system of constant domains
and add a separate existence predicate. There is however one particular in-
teresting point. Melvin Fitting has defined a varying domain semantics for
quantified modal logic in which it is required that every object is in the domain
of some world. Unlike the domain conditions discussed so far, this particular
condition cannot be captured by means of a pure axiom. It is not hard to
see that the basic quantified modal logic of the class of all frames is complete
with respect to this alternative semantics as well. However, for axiomatic ex-
tensions this need no longer be the case. Existential saturation rules provide
the solution to this problem: the class of frames in which every object is in
the domain of some world is characterised by the existential saturation rule
If ` @iexists(@jc) → φ then ` φ, where i is a nominal distinct from j not
occurring in φ. Completeness follows directly from Theorem 9.

8. Conclusion

Kripke semantics showed the utility of viewing modal operators as expressing
classical quantification over accessible worlds. Our goal in this paper has been
to present hybrid logic as a natural continuation of the Kripkean strategy, a
continuation that pays technical dividends with regards to axiomatisation.

The primary point we have made is that hybridisation permits us to use the
standard Henkin-style model construction to prove simple and general com-
pleteness results, even in very weak logics; in particular, we showed that the
Henkin strategy can be used with the basic hybrid language H(@). To make the
Henkin strategy work in such a weak language, non-orthodox rules are needed,
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and indeed they are needed for two distinct purposes. Firstly, we need the
Name and BG rules (or variants such as the Paste3 rule) to enable us to prove
a Lindenbaum Lemma strong enough to support a Henkin-style construction
in which worlds are built out of (equivalence classes of) nominals. Secondly,
to capture the logics of frame classes that cannot be axiomatised by pure ax-
ioms, we need existential saturation rules. We argued that both styles of rule,
though unorthodox, are natural. Rules such as Name, BG, and Paste3 directly
reflect proof-theoretical ideas encountered in tableaux, natural deduction, or
sequent systems for hybrid logic. Existential saturation rules directly reflect
the meaning of (pure, nominal free) ∀∃-prenex sentences of H(@,∀).

The ease with which the basic axiomatisation for H(@) extends to richer
logics is further testimony to its naturalness. As we saw, it is straightforward
to enrich the modal base language (among other things, extremely simple ax-
iomatizations of tense logical systems and the universal modality are possible).
Furthermore, we can work our way up the hybrid expressivity hierarchy, first
to H(@, ↓), and then to H(@,∀). As we move upwards, simple axiomatizations
that build directly on the base provided by KH(@) can be given, or (at the
cost of a few extra axiom schema) we can eliminate the use of Name and BG.
We can also make use of existential saturation rules in these richer systems,
though they have less work to do in H(@, ↓) and become completely redundant
in H(@,∀). Hybrid logic has long been regarded as providing a fine-grained
semantic perspective on various fragments of first-order logic. In our view,
the results proved here show that it also provides a fine-grained deductive per-
spective too. Moreover, this deductive perspective is robust: it remains useful
even when we move from propositional hybrid logics to quantified hybrid logic.
Among other things, our approach permits completeness results for novel con-
ditions on domains to be proved with ease.

But we wish to close this paper on another note. Recently, two other general
approaches to hybrid axiomatisation have been developed. First, it is possible
to take a different perspective on the basic hybrid language, a perspective under
which our first axiomatisation, namely KH(@) (with no additional axioms) can
be viewed as a Sahlqvist axiomatisation; see [41]. Under this approach, instead
of adding pure axioms to the base logic, we add further Sahlqvist axioms to deal
with additional frame conditions. Now, the intriguing thing about the Sahlqvist
approach is that the completeness proof method used is not the Henkin method,
it is the traditional modal method of canonical models. And this difference
reflects a real divergence: the two methods of axiomatising richer logics are not
additive. Adding a Sahlqvist axiom and a pure axiom to the base logic need
not result in a logic complete with respect to the frame class that these two
formulas jointly define!
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The other line of axiomatic work concerns results for frame conditions that
are not first-order (Sahlqvist axioms and pure axioms always define elementary
conditions on frames). Now, there are important non-elementary conditions on
frames, and many richer modal languages (Propositional Dynamic Logic is a
good example) make use of concepts (such as transitive closures of relations)
which are not first-order definable. Results in [4, 36] show that, under certain
conditions, completeness (as well as other properties such as complexity and
interpolation) transfer automatically from such modal logics to the correspond-
ing hybrid logics. This technique can be applied to obtain easy completeness
results for a wide range of non-elementary hybrid logics. Once again though,
it is far from clear when such approaches can be combined with the approach
presented here.

Summing up, there are currently three approaches to hybrid axiomatization:
the classic approach (which dates back to Bull’s pioneering work) which we
have explored and refined in this paper, an approach based on modal Sahlqvist
theory, and an approach by transfer from the basic modal language. So we have
three different (and, at least from our present state of knowledge) seemingly
incompatible routes to hybrid completeness. A natural next step would be to
try and determine the extent to which they can be integrated.
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