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Abstract

We define a program size complexity function H∞ as a variant
of the prefix-free Kolmogorov complexity, based on Turing monotone
machines performing possibly unending computations. We consider
definitions of randomness and triviality for sequences in {0, 1}ω rela-
tive to the H∞ complexity. We prove that the classes of Martin-Löf
random sequences and H∞-random sequences coincide, and that the
H∞-trivial sequences are exactly the recursive ones. We also study
some properties of H∞ and compare it with other complexity func-
tions. In particular, H∞ is different from HA, the prefix-free com-
plexity of monotone machines with oracle A.

1 Introduction

We consider monotone Turing machines (a one-way read-only input tape and
a one-way write-only output tape) performing possibly infinite computations,
and we define a program size complexity function H∞ : {0, 1}∗ → N as a
variant of the classical Kolmogorov complexity: given a universal monotone
machine U , for any string x ∈ {0, 1}∗, H∞(x) is the length of a shortest string
p ∈ {0, 1}∗ read by U , which produces x via a possibly infinite computation
(either a halting or a non halting computation), having read exactly p from
the input.
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The classical prefix-free complexity H [2, 10] is an upper bound of the
function H∞ (up to an additive constant), since the definition of H∞ does
not require that the machine U halts. We prove that H∞ differs from H
in that it has no monotone decreasing recursive approximation and it is not
subadditive.

The complexity H∞ is closely related with the monotone complexity Hm,
independently introduced by Levin [8] and Schnorr [13] (see [15] and [11] for
historical details and differences between various monotone complexities).
Levin defines Hm(x) as the length of the shortest halting program that pro-
vided with n (0 ≤ n ≤ |x|), outputs x�n. Equivalently Hm(x) can be defined
as the least number of bits read by a monotone machine U which via a
possibly infinite computation produces any finite or infinite extension of x.

Hm is a lower bound of H∞ (up to an additive constant) since the def-
inition of H∞ imposes that the machine U reads exactly the input p and
produces exactly the output x. Every recursive A ∈ {0, 1}ω is the out-
put of some monotone machine with no input, so there is some c such
that ∀n Hm(A�n) ≤ c. Moreover, there exists n0 such that ∀n,m ≥ n0,
Hm(A�n) = Hm(A�m). We show this is not the case with H∞, since for
every infinite B = {b1, b2, . . .} ⊆ {0, 1}∗, limn→∞ H∞(bn) = ∞. This is also
a property of the classical prefix-free complexity H, and we consider it as a
decisive property that distinguishes H∞ from Hm.

The prefix-free complexity of a universal machine with oracle ∅′, the func-
tion H∅′

, is also a lower bound of H∞ (up to an additive constant). We prove
that for infinitely many strings x, the complexities H(x), H∞(x) and H∅′

(x)
separate as much as we want. This already proves that these three complex-
ities are different. In addition we show that for every oracle A, H∞ differs
from HA, the prefix-free complexity of a universal machine with oracle A.

For sequences in {0, 1}ω we consider definitions of randomness and triv-
iality based on the H∞ complexity. A sequence is H∞-random if its initial
segments have maximal H∞ complexity. Since Hm gives a lower bound of H∞

and Hm-randomness coincides with Martin-Löf randomness [9], the classes
of Martin-Löf random, H∞-random and Hm-random coincide.

We argue for a definition of H∞-trivial sequences as those whose initial
segments have minimal H∞ complexity. While every recursive A ∈ {0, 1}ω is
both H-trivial and H∞-trivial, we show that the class of H∞-trivial sequences
is strictly included in the class of H-trivial sequences. Moreover, in Theorem
5.6, the main result of the paper, we characterize the recursive sequences as
those which are H∞-trivial.

2



2 Definitions

N is the set of natural numbers, and we work with the binary alphabet {0, 1}.
As usual, a string is a finite sequence of elements of {0, 1}, λ is the empty
string and {0, 1}∗ is the set of all strings. {0, 1}ω is the set of all infinite
sequences of {0, 1}, i.e. the Cantor space, and {0, 1}≤ω = {0, 1}∗ ∪ {0, 1}ω is
the set of all finite or infinite sequences of {0, 1}.

For s ∈ {0, 1}∗, |s| denotes the length of s. If s ∈ {0, 1}∗ and A ∈ {0, 1}ω

we denote by s�n the prefix of s with length min{n, |s|} and by A�n the
length n prefix of the infinite sequence A. We consider the prefix ordering
� over {0, 1}∗, i.e, for s, t ∈ {0, 1}∗ we write s � t if s is a prefix of t. We
assume the recursive bijection string : N → {0, 1}∗ such that string(i) is the
i-th string in the length and lexicographic order over {0, 1}∗.

If f is any partial map then, as usual, we write f(p)↓ when it is defined,
and f(p)↑ otherwise.

2.1 Possibly infinite computations on monotone ma-
chines

A monotone machine is a Turing machine with a one-way read-only input
tape, some work tapes, and a one-way write-only output tape. The input
tape contains a first dummy cell (representing the empty input) and then a
one-way infinite sequence of 0’s and 1’s, and initially the input head scans
the leftmost dummy cell. The output tape is written one symbol of {0, 1} at
a time (the output grows with respect to the prefix ordering in {0, 1}∗ as the
computational time increases).

A possibly infinite computation is either a halting or a non halting com-
putation. If the machine halts, the output of the computation is the finite
string written on the output tape. Else, the output is either a finite string or
an infinite sequence written on the output tape as a result of a never ending
process. This leads us to consider {0, 1}≤ω as the output space.

In this work we restrict ourselves to possibly infinite computations on
monotone machines which read just finitely many symbols from the input
tape.

Definition 2.1. Let M be a monotone machine. M(p)[t] is the current
output of M on input p at stage t if it has not read beyond the end of p.
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Otherwise, M(p)[t]↑. Notice that M(p)[t] does not require that the computa-
tion on input p halts.

Remark 2.2.

1. If M(p)[t]↑ then M(q)[u]↑ for all q � p and u ≥ t

2. If M(p)[t]↓ then M(q)[u]↓ for any q � p and u ≤ t. Also, if at stage
t, M reaches a halting state without having read beyond the end of p,
then M(p)[u]↓ = M(p)[t] for all u ≥ t.

3. Since M is monotone, M(p)[t] � M(p)[t + 1], in case M(p)[t + 1]↓

4. M(p)[t] has recursive domain

Definition 2.3. Let M be a monotone machine.

1. The input/output behavior of M for halting computations is the partial
recursive map M : {0, 1}∗ → {0, 1}∗ given by the usual computation of
M, i.e., M(p)↓ iff M enters into a halting state on input p without
reading beyond p. If M(p)↓ then M(p) = M(p)[t] for some stage t at
which M entered a halting state.

2. The input/output behavior of M for possibly infinite computations is
the map M∞ : {0, 1}∗ → {0, 1}≤ω given by M∞(p) = limt→∞ M(p)[t]

Proposition 2.4.

1. domain(M) is closed under extensions and its syntactical complexity is
Σ0

1

2. domain(M∞) is closed under extensions and its syntactical complexity
is Π0

1

3. M∞ extends M

Proof. 1. is trivial.

2. M∞(p)↓ iff ∀t M on input p does not read p0 and does not read p1.
Clearly, domain(M∞) is closed under extensions since if M∞(p)↓ then
M∞(q)↓ = M∞(p) for every q � p.
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3. Since the machine M is not required to halt, M∞ extends M .

Remark 2.5. An alternative definition of the functions M and M∞ would
be to consider them with prefix-free domains (instead of closed under exten-
sions):

- M(p)↓ iff at some stage t M enters a halting state having read exactly
p. If M(p)↓ then its value is M(p)[t] for such stage t.

- M∞(p)↓ iff ∃t at which M has read exactly p and for every t′ M does
not read p0 nor p1. If M∞(p)↓ then its value is limt→∞ M(p)[t].

We fix an effective enumeration of all tables of instructions. This gives
an effective (Mi)i∈N. We also fix the usual monotone universal machine U ,
which defines the functions U(0i1p) = Mi(p) and U∞(0i1p) = M∞

i (p) for
halting and possibly infinite computations respectively. As usual, i+1 is the
coding constant of Mi. Recall that U∞ is an extension of U . We also fix U∅′

a monotone universal machine with an oracle for ∅′.
By Shoenfield’s Limit Lemma every M∞ : {0, 1}∗ → {0, 1}∗ is recursive

in ∅′. However, possibly infinite computations on monotone machines cannot
compute all ∅′-recursive functions. For instance, the characteristic function of
the halting problem cannot be computed in the limit by a monotone machine.
In contrast, the Busy Beaver function in unary notation bb : N → 1∗:

bb(n) =
the maximum number of 1’s produced by any Turing machine
with n states which halts with no input

is just ∅′-recursive and bb(n) is the output of a non halting computation
which on input n, simulates every Turing machine with n states and for each
one that halts updates, if necessary, the output with more 1’s.

2.2 Program size complexities on monotone machines

Let M be a monotone machine, and M , M∞ the respective maps for the
input/output behavior of M for halting computations and possibly infinite
computations (Definition 2.3). We denote the usual prefix-free complexity
[2, 10, 7] for M by HM : {0, 1}∗ → N

HM(x) =

{
min{|p| : M(p) = x} if x is in the range of M
∞ otherwise
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Definition 2.6. H∞
M : {0, 1}≤ω → N is the program size complexity for

functions M∞.

H∞
M(x) =

{
min{|p| : M∞(p) = x} if x is in the range of M∞

∞ otherwise

For U we drop subindexes and we simply write H and H∞. The Invariance
Theorem holds for H∞:

∀ monotone machine M ∃c ∀s ∈ {0, 1}≤ω H∞(s) ≤ H∞
M(s) + c.

The complexity function H∞ was first introduced in [1] without a detailed
study of its properties. Notice that if we take monotone machines M accord-
ing to Remark 2.5 instead of Definition 2.3, we obtain the same complexity
functions HM and H∞

M.
In this work we only consider the H∞ complexity of finite strings, that

is, we restrict our attention to H∞ : {0, 1}∗ → N. We will compare H∞ with
these other complexity functions:

HA : {0, 1}∗ → N is the program size complexity function for UA, a monotone
universal machine with oracle A. We pay special attention to A = ∅′.

Hm : {0, 1}≤ω → N (see [8]), where HmM(x) = min{|p| : M∞(p) � x} is
the monotone complexity function for a monotone machine M and, as
usual, for U we simply write Hm.

We mention some known results that will be used later.

Proposition 2.7. (For items 1. and 2. see [2], for item 3. see [1])

1. ∀s ∈ {0, 1}∗ H(s) ≤ |s|+ H(|s|) +O(1)

2. ∀n ∃s ∈ {0, 1}∗ of length n such that:

(a) H(s) ≥ n

(b) H∅′
(s) ≥ n

3. ∀s ∈ {0, 1}∗ H∅′
(s) < H∞(s) +O(1) and H∞(s) < H(s) +O(1)
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3 H∞ is different from H

The following properties of H∞ are in the spirit of those of H.

Proposition 3.1. For all strings s and t

1. H(s) ≤ H∞(s) + H(|s|) +O(1)

2. #{s ∈ {0, 1}∗ : H∞(s) ≤ n} < 2n+1

3. H∞(ts) ≤ H∞(s) + H(t) +O(1)

4. H∞(s) ≤ H∞(st) + H(|t|) +O(1)

5. H∞(s) ≤ H∞(st) + H∞(|s|) +O(1)

Proof. 1. Let p, q ∈ {0, 1}∗ such that U∞(p) = s and U(q) = |s|. Then
there is a machine that first simulates U(q) to obtain |s|, then starts a
simulation of U∞(p) writing its output on the output tape, until it has
written |s| symbols, and then halts.

2. There are at most 2n+1 − 1 strings of length ≤ n.

3. Let p, q ∈ {0, 1}∗ such that U∞(p) = s and U(q) = t. Then there is a
machine that first simulates U(q) until it halts and prints U(q) on the
output tape. Then, it starts a simulation of U∞(p) writing its output
on the output tape.

4. Let p, q ∈ {0, 1}∗ such that U∞(p) = st and U(q) = |t|. Then there is
a machine that first simulates U(q) until it halts to obtain |t|. Then it
starts a simulation of U∞(p) such that at each stage n of the simulation
it writes the symbols needed to leave U(p)[n]�(|U(p)[n]| − |t|) on the
output tape.

5. Consider the following monotone machine:

t := 1; v := λ; w := λ

repeat

if U(v)[t] asks for reading then append to v the next bit in the input

if U(w)[t] asks for reading then append to w the next bit in the input
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extend the actual output to U(w)[t]�(U(v)[t])

t := t + 1

If p and q are shortest programs such that U∞(p) = |s| and U∞(q) = st
respectively, then we can interleave p and q in a way such that at
each stage t, v � p and w � q (notice that eventually v = p and
w = q). Thus, this machine will compute s and will never read more
than H∞(st)+H∞(|s|) bits.

H is recursively approximable from above, but H∞ is not.

Proposition 3.2. There is no effective decreasing approximation of H∞.

Proof. Suppose there is a recursive function h : {0, 1}∗ × N → N such that
for every string s, limt→∞ h(s, t) = H∞(s) and for all t ∈ N, h(s, t) ≥ h(s, t+
1). We write ht(s) for h(s, t). Consider the monotone machine M with
coding constant d given by the Recursion Theorem, which on input p does
the following:

t := 1; print 0
repeat forever

n := number of bits read by U(p)[t]
for each string s not yet printed, |s| ≤ t and ht(s) ≤ n + d

print s
t := t + 1

Let p be a program such that U∞(p) = k and |p| = H∞(k). Notice that, as
t → ∞, the number of bits read by U(p)[t] goes to |p| = H∞(k). Let t0 be
such that for all t ≥ t0, U(p)[t] reads no more from the input. Since there
are only finitely many strings s such that H∞(s) ≤ H∞(k) + d, there is a
t1 ≥ t0 such that for all t ≥ t1 and for all those strings s, ht(s) = H∞(s).
Hence, every string s with H∞(s) ≤ H∞(k) + d will be printed.

Let z = M∞(p). On one hand, we have H∞(z) ≤ |p| + d = H∞(k) + d.
On the other hand, by the construction of M, z cannot be the output of a
program of length ≤ H∞(k) + d (because z is different from each string s
such that H∞(s) ≤ H∞(k) + d). So it must be that H∞(z) > H∞(k) + d, a
contradiction.
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The following lemma states a critical property that distinguishes H∞

from H. It implies that H∞ is not subadditive, i.e., it is not the case that
H∞(st) ≤ H∞(s) + H∞(t) +O(1). It also implies that H∞ is not invariant
under recursive permutations {0, 1}∗ → {0, 1}∗.
Lemma 3.3. For every total recursive function f there is a natural k such
that

H∞(0k1) > f(H∞(0k)).

Proof. Let f be any recursive function and M the following monotone ma-
chine with coding constant d given by the Recursion Theorem:

t := 1
do forever

for each p such that |p| ≤ max{f(i) : 0 ≤ i ≤ d}
if U(p)[t] = 0j1 then

print enough 0’s to leave at least 0j+1 on the output tape
t := t + 1

Let N = max{f(i) : 0 ≤ i ≤ d}. We claim there is a k such that M∞(λ) = 0k.
Since there are only finitely many programs of length less than or equal to
N which output a string of the form 0j1 for some j, then there is some stage
at which M has written 0k, with k greater than all such j’s, and then it
prints nothing else. Therefore, there is no program p with |p| ≤ N such that
U∞(p) = 0k1.

If M∞(λ) = 0k then H∞(0k) ≤ d. So, f(H∞(0k)) ≤ N . Also, for this k,
there is no program of length ≤ N that outputs 0k1 and thus H∞(0k1) > N .
Hence, H∞(0k1) > f(H∞(0k)).

Note that H(0k) = H(0k1) = H∞(0k1) up to additive constants, so the
above lemma gives an example where H∞ is much smaller that H.

Proposition 3.4.

1. H∞ is not subadditive

2. It is not the case that for every recursive one-one g : {0, 1}∗ → {0, 1}∗
∃c ∀s |H∞(g(s))−H∞(s)| ≤ c

Proof. 1. Let f be the recursive injection f(n) = n + c. By Lemma 3.3
there is k such that H∞(0k1) > H∞(0k) + c. Since the last inequality
holds for every c, it is not true that H∞(0k1) ≤ H∞(0k) +O(1).
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2. It is immediate from Lemma 3.3.

It is known that the complexity H is smooth in the length and lexico-
graphic order over {0, 1}∗ in the sense that |H(string(n))−H(string(n + 1))| =
O(1). However, this is not the case for H∞.

Proposition 3.5.

1. H∞ is not smooth in the length and lexicographical order over {0, 1}∗

2. ∀n |H∞(string(n))−H∞(string(n + 1))| ≤ H(|string(n)|) +O(1)

Proof. 1. Notice that ∀n > 1, H∞(0n1) ≤ H∞(0n−11) + O(1), because
if U∞(p) = 0n−11 then there is a machine that first writes a 0 on the
output tape and then simulates U∞(p). By Lemma 3.3, for each c there
is a n such that H∞(0n1) > H∞(0n) + c. Joining the two inequalities,
we obtain ∀c ∃n H∞(0n−11) > H∞(0n) + c. Since string−1(0n−11) =
string−1(0n) + 1, H∞ is not smooth.

2. Consider the following monotone machine M with input pq:

obtain y = U(p)

simulate z = U∞(q) till it outputs y bits

write string(string−1(z) + 1)

Let p, q ∈ {0, 1}∗ such that U(p) = |string(n)| and U∞(q) = string(n).
Then, M∞(pq) = string(n + 1) and

H∞(string(n + 1)) ≤ H∞(string(n)) + H(|string(n)|) +O(1).

Similarly, ifM, instead of writing string(string−1(z)+1), writes string(string−1(z)−
1), we conclude

H∞(string(n)) ≤ H∞(string(n + 1)) + H(|string(n + 1)|) +O(1).

Since |H(|string(n)|)−H(|string(n + 1)|)| = O(1), it follows that

|H∞(string(n))−H∞(string(n + 1))| ≤ H(|string(n)|) +O(1).
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4 H∞ is different from HA for every oracle A

Item 3 of Proposition 2.7 states that H∞ is between H and H∅′
. The following

result shows that H∞ is really strictly in between them.

Proposition 4.1. For every c there is a string s ∈ {0, 1}∗ such that

H∅′
(s) + c < H∞(s) < H(s)− c.

Proof. Let un = min{s ∈ {0, 1}n : H(s) ≥ n} and let A = {a0, a1, . . . } be
any infinite r.e. set and consider a machine M which on input i does the
following:

j := 0
repeat

write aj

find a program p, |p| ≤ 3i, such that U(p) = aj

j := j + 1

M∞(i) outputs the string vi = a0a1 . . . aki
, where H(aki

) > 3i and for all z,
0 ≤ z < ki we have H(az) ≤ 3i. We define wi = uivi. Let’s see that both
H∞(wi)−H∅′

(wi) and H(wi)−H∞(wi) grow arbitrarily.
On one hand, we can construct a machine which on input i and p executes

U∞(p) till it outputs i bits and then halts. Since the first i bits of wi are ui

and H(i) ≤ 2 |i|+O(1), we have i ≤ H(ui) ≤ H∞(wi)+2 |i|+O(1). But with
the help of the ∅′-oracle we can compute wi from i, so H∅′

(wi) ≤ 2 |i|+O(1).
Thus we have H∞(wi)−H∅′

(wi) ≥ i− 4 |i| − O(1).
On the other hand, given i and wi, we can effectively compute aki

. Hence,
∀i we have 3i < H(aki

) ≤ H(wi) + 2 |i| + O(1). Also, given ui, we can
compute wi in the limit using the idea of machine M, and hence H∞(wi) ≤
2 |ui|+O(1) = 2i +O(1). Then, for all i

H(wi)−H∞(wi) > i− 2 |i| − O(1).

Not only H∞ is different from H∅′
but it differs from HA (the prefix-free

complexity of a universal monotone machine with oracle A), for every A.

Theorem 4.2. There is no oracle A such that
∣∣H∞ −HA

∣∣ ≤ O(1).
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Proof. Immediate from Lemma 3.3 and from the standard result that for all
A, HA is subadditive, so in particular, for every k, HA(0k1) ≤ HA(0k) +
O(1).

5 H∞ and the Cantor space

The advantage of H∞ over H can be seen along the initial segments of every
recursive sequence: if A ∈ {0, 1}ω is recursive then there are infinitely many
n’s such that H(A�n)−H∞(A�n) > c, for an arbitrary c.

Proposition 5.1. Let A ∈ {0, 1}ω be a recursive sequence. Then

1. lim supn→∞ H(A�n)−H∞(A�n) = ∞

2. lim supn→∞ H∞(A�n)−Hm(A�n) = ∞

Proof. 1. Let A(n) be the n-th bit of A. Let’s consider the following
monotone machine M with input p:

obtain n := U(p)

write A�(string−1(0n)− 1)

for s := 0n to 1n in lexicographic order

write A(string−1(s))

search for a program p such that |p| < n and U(p) = s

If U(p) = n, then M∞(p) outputs A�kn for some kn such that 2n ≤
kn < 2n+1, since for all n there is a string of length n with H-complexity
greater than or equal to n. Let us fix n. On one hand, H∞(A�kn) ≤
H(n) + O(1). On the other, H(A�kn) ≥ n + O(1), because we can
compute the first string in the lexicographic order with H-complexity ≥
n from a program for A�kn. Hence, for each n, H(A�kn)−H∞(A�kn) ≥
n−H(n) +O(1).

2. Trivial because for each recursive sequence A there is a constant c such
that Hm(A�n) ≤ c and limn→∞ H∞(B�n) = ∞ for every B ∈ {0, 1}ω.
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5.1 H-triviality and H∞-triviality

There is a standard convention to use H with arguments in N. I.e., for
any n ∈ N, H(n) is written instead of H(f(n)) where f is some particular
representation of natural numbers on {0, 1}∗. This convention makes sense
because H is invariant (up to a constant) for any recursive representation of
natural numbers.

H-triviality has been defined as follows (see [5]): A ∈ {0, 1}ω is H-trivial
iff there is a constant c such that for all n, H(A�n) ≤ H(n) + c. The idea
is that H-trivial sequences are exactly those whose initial segments have
minimal H-complexity. Considering the above convention, A is H-trivial iff
∃c ∀n H(A�n) ≤ H(0n) + c.

In general H∞ is not invariant for recursive representations of N. We
propose the following definition that insures that recursive sequences are
H∞-trivial.

Definition 5.2. A ∈ {0, 1}ω is H∞-trivial iff ∃c ∀n H∞(A�n) ≤ H∞(0n)+c.

Our choice of the right hand side of the above definition is supported by
the following proposition.

Proposition 5.3. Let f : N → {0, 1}∗ be recursive and strictly increasing
with respect to the length and lexicographical order over {0, 1}∗. Then

∀n H∞(0n) ≤ H∞(f(n)) +O(1).

Proof. Notice that, since f is strictly increasing, f has recursive range. We
construct a monotone machine M with input p:

t := 0
repeat

if U(p)[t]↓ is in the range of f then n := f−1(U(p)[t])
print the needed 0’s to leave 0n on the output tape
t := t + 1

Since f is increasing in the length and lexicographic order over {0, 1}∗, if p
is a program for U such that U∞(p) = f(n), then M∞(p) = 0n.

Chaitin observed that every recursive A ∈ {0, 1}ω is H-trivial [4] and that
H-trivial sequences are ∆0

2. However, H-triviality does not characterize the
class ∆0

1 of recursive sequences: Solovay [14] constructed a ∆0
2 sequence which
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is H-trivial but not recursive (see also [5] for the construction of a strongly
computably enumerable real with the same properties). Our next result
implies that H∞-trivial sequences are ∆0

2, and Theorem 5.6 characterizes ∆0
1

as the class of H∞-trivial sequences.

Theorem 5.4. Suppose that A is a sequence such that, for some b ∈ N,
∀n H∞(A�n) ≤ H(n) + b. Then A is H-trivial.

Proof. An r.e. set W ⊆ N× 2<ω is a Kraft-Chaitin set (KC-set) if∑
〈r,y〉∈W 2−r ≤ 1.

For any E ⊆ W , let the weight of E be wt(E) =
∑
{2−r : 〈r, n〉 ∈ E}. The

pairs enumerated into such a set W are called axioms. Chaitin proved that
from a Kraft-Chaitin set W one may obtain a prefix machine Md such that
∀〈r, y〉 ∈ W ∃w (|w| = r ∧ Md(w) = y).

The idea is to define a ∆0
2 tree T such that A ∈ [T ], and a KC-set W

showing that each path of T is H-trivial. For x ∈ {0, 1}∗ and t ∈ N, let

H∞(x)[t] = min{|p| : U(p)[t] = x} and

H(x)[t] = min{|p| : U(p)[t] = x and U(p) halts in at most t steps}

be effective approximations of H∞ and H. Notice that for all x ∈ {0, 1}∗,
limt→∞ H∞(x)[t] = H∞(x) and limt→∞ H(x)[t] = H(x).

Given s, let

Ts = {γ : |γ| < s ∧ ∀m ≤ |γ| H∞(γ�m)[s] ≤ H(m)[s] + b}

then (Ts)s∈N is an effective approximation of a ∆0
2 tree T , and [T ] is the class

of sequences A satisfying ∀n H∞(A�n) ≤ H(n) + b. Let r = H(|γ|)[s]. We
define a KC-set W as follows: if γ ∈ Ts and either there is u < s greatest
such that γ ∈ Tu and r < H(|γ|)[u], or γ /∈ Tu for all u < s, then put an
axiom 〈r + b + 1, γ〉 into W .

Once we show that W is indeed a KC-set, we are done: by Chaitin’s
result, there is d such that 〈k, γ〉 ∈ W implies H(γ) ≤ k + d. Thus, if
A ∈ [T ], then H(γ) ≤ H(|γ|) + b + d + 1 for each initial segment γ of A.

To show that W is a KC-set, define strings Ds(γ) as follows. When we
put an axiom 〈r + b + 1, γ〉 into W at stage s,

• let Ds(γ) be a shortest p such that U(p)[s] = γ (recall from Definition
2.1 that it is not required that U halts at stage s)
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• if β ≺ γ, we haven’t defined Ds(β) yet and Ds−1(β) is defined as a
prefix of p, then let Ds(β) be a shortest q such that U(q)[s] = β

In all other cases, if Ds−1(β) is defined then we let Ds(β) = Ds−1(β). We
claim that, for each s, all the strings Ds(β) are pairwise incompatible (i.e.,
they form a prefix-free set). For suppose that p ≺ q, where p = Ds(β) was
defined at stage u ≤ s, and q = Ds(γ) was defined at stage t ≤ s. Thus,
β = U(p)[u] and γ = U(q)[t]. By the definition of monotone machines and
the minimality of q, u < t and β ≺ γ. But then, at stage t we would redefine
Du(β), a contradiction. This shows the claim.

If we put an axiom 〈r+b+1, γ〉 into W at stage t, then for all s ≥ t, Ds(γ)
is defined and has length at most H(|γ|)[t] + b (by the definition of the trees

Ts). Thus, if W̃s is the set of axioms 〈k, γ〉 in Ws where k is minimal for γ,

then wt(W̃s) ≤
∑

γ 2−|Ds(γ)|−1 ≤ 1/2 by the claim above. Hence wt(Ws) ≤ 1
as all axioms weigh at most twice as much as the minimal ones, and Ws is a
KC-set for each s. Hence W is a KC-set.

Corollary 5.5. If A ∈ {0, 1}ω is H∞-trivial then A is H-trivial, hence in
∆0

2.

Theorem 5.6. Let A ∈ {0, 1}ω. A is H∞-trivial iff A is recursive.

Proof. From right to left, it is easy to see that if A is a recursive sequence
then A is H∞-trivial.

For the converse, let A be H∞-trivial via some constant b. By Corollary
5.5 A is ∆0

2, hence, there is a recursive approximation (As)s∈N such that
lims→∞ As = A.

Recall that H∞(x)[t] = min{|p| : U(p)[t] = x}. Consider the following
program with coding constant c given by the Recursion Theorem:

k := 1; s0 := 0; print 0
while ∃sk > sk−1 such that H∞(Ask

�k)[sk] ≤ c + b do
print 0
k := k + 1

Let us see that the above program prints out infinitely many 0’s. Suppose
it writes 0k for some k. Then, on one hand, H∞(0k) ≤ c, and on the other,
∀s > sk−1, we have H∞(As�k)[s] > c+ b. Also, H∞(As�k)[s] = H∞(A�k) for
s large enough. Hence, H∞(A�k) > H∞(0k) + b, which contradicts that A is
H∞-trivial via b.
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So, for each k, there is some q ∈ {0, 1}∗ with |q| ≤ c + b such that
U(q)[sk] = Ask

�k. Since there are only 2c+b+1 − 1 strings of length at most
c+b, there must be at least one q such that, for infinitely many k, U(q)[sk] =
Ask

�k. Let’s call I the set of all these k’s. We will show that such a q
necessarily computes A. Suppose not. Then, there is a t such that for all
s ≥ t, U(q)[s] is not an initial segment of A. Thus, noticing that (sk)k∈N
is increasing and I is infinite, there are infinitely many sk ≥ t such that
k ∈ I and U(q)[sk] = Ask

�k 6= A�k. This contradicts that Ask
�k → A when

k →∞.

Corollary 5.7. The class of H∞-trivial sequences is strictly included in the
class of H-trivial sequences.

Proof. By Corollary 5.5, any H∞-trivial sequence is also H-trivial. Solovay
[14] built an H-trivial sequence in ∆0

2 which is not recursive. By Theorem
5.6 this sequence cannot be H∞-trivial.

5.2 H∞-randomness

Definition 5.8.

1. (Chaitin [2]) A ∈ {0, 1}ω is H-random iff ∃c ∀n H(A�n) > n− c.
Chaitin and Schnorr [2] showed that H-randomness coincides with Martin-
Löf randomness [12].

2. (Levin [9]) A ∈ {0, 1}ω is Hm-random iff ∃c ∀n Hm(A�n) > n− c.

3. A ∈ {0, 1}ω is H∞-random iff ∃c ∀n H∞(A�n) > n− c.

Using Levin’s result [9] that Hm-randomness coincides with Martin-Löf
randomness, and the fact that Hm gives a lower bound of H∞, it follows
immediately that the classes of H-random, H∞-random and Hm-random
sequences coincide. For the sake of completeness we give an alternative proof.

Proposition 5.9 (with D. Hirschfeldt). There is a b0 such that for all b ≥ b0

and z, if Hm(z) ≤ |z| − b, then there is y � z such that H(y) ≤ |y| − b/2.

Proof. Consider the following machine M with coding constant c. On input
qp, first it simulates U(q) until it halts. Let’s call b the output of this simula-
tion. Then it simulates U∞(p) till it outputs a string y of length b + l where
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l is the length of the prefix of p read by U∞. Then it writes this string y on
the output and stop.

Let b0 be the first number such that 2 |b0| + c ≤ b0/2 and take b ≥ b0.
Suppose Hm(z) ≤ |z| − b. Let p be a shortest program such that U∞(p) � z
and let q be a shortest program such that U(q) = b. This means that
|p| = Hm(z) and |q| = H(b). On input qp, the machine M will compute b
and then it will start simulating U∞(p). Since |z| ≥ Hm(z) + b = |p|+ b, the
machine will eventually read l bits from p in a way that the simulation of
U∞(p�l) = y and |y| = l + b. When this happens, the machine M writes y
and stops. Then for p′ = p�l, we have M(qp′)↓ = y and |y| = |p′|+ b. Hence

H(y) ≤ |q|+ |p′|+ c ≤ H(b) + |y| − b + c ≤ 2 |b| − b + |y|+ c ≤ |y| − b/2.

Corollary 5.10. A ∈ {0, 1}ω is Martin-Löf random iff A is Hm-random iff
A is H∞-random.

Proof. Since Hm ≤ H+O(1) it is clear that if a sequence is Hm-random then
it is Martin-Löf random. For the opposite, suppose A is Martin-Löf random
but not Hm-random. Let b0 be as in Proposition 5.9 and let 2c ≥ b0 be such
that ∀n H(A�n) > n−c. Since A is not Hm-random, ∀d ∃n Hm(A�n) ≤ n−d.
In particular for d = 2c there is an n such that Hm(A�n) ≤ n− 2c. On one
hand, by Proposition 5.9, there is a y � A�n such that H(y) ≤ |y| − c. On
the other, since y is a prefix of A and A is Martin-Löf random, we have
H(y) > |y| − c. This is a contradiction.

Since Hm is a lower bound of H∞, the above equivalence implies A is
Martin-Löf random iff A is H∞-random.
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