
Program size complexity for
possibly infinite computations

Verónica Becher∗ Santiago Figueira∗ André Nies†

Silvana Picchi∗

Abstract

We define a program size complexity function H∞ as a variant
of the prefix-free Kolmogorov complexity, based on Turing monotone
machines performing possibly unending computations. We consider
definitions of randomness and triviality for sequences in {0, 1}ω rela-
tive to the H∞ complexity. We prove that the classes of Martin-Löf
random sequences and H∞-random sequences coincide, and that the
H∞-trivial sequences are exactly the recursive ones. We also study
some properties of H∞ and compare it with other complexity func-
tions. In particular, H∞ is different from HA, the prefix-free com-
plexity of monotone machines with oracle A.

1 Introduction

We consider monotone Turing machines (a one-way read-only input tape and
a one-way write-only output tape) performing possibly infinite computations,
and we define a program size complexity function H∞ : {0, 1}∗ → N as a
variant of the classical Kolmogorov complexity: given a universal monotone
machine U , for any string x ∈ {0, 1}∗, H∞(x) is the length of a shortest string
p ∈ {0, 1}∗ read by U , which produces x via a possibly infinite computation
(either a halting or a non halting computation), having read exactly p from
the input.

∗Department of Computer Science, FCEyN, University of Buenos Aires, Argentina
†Department of Computer Science, The University of Auckland, New Zealand

1

The classical prefix-free complexity H [2, 10] is an upper bound of the
function H∞ (up to an additive constant), since the definition of H∞ does
not require that the machine U halts. We prove that H∞ differs from H
in that it has no monotone decreasing recursive approximation and it is not
subadditive.

The complexity H∞ is closely related with the monotone complexity Hm,
independently introduced by Levin [8] and Schnorr [13] (see [15] and [11] for
historical details and differences between various monotone complexities).
Levin defines Hm(x) as the length of the shortest halting program that pro-
vided with n (0 ≤ n ≤ |x|), outputs x�n. Equivalently Hm(x) can be defined
as the least number of bits read by a monotone machine U which via a
possibly infinite computation produces any finite or infinite extension of x.

Hm is a lower bound of H∞ (up to an additive constant) since the def-
inition of H∞ imposes that the machine U reads exactly the input p and
produces exactly the output x. Every recursive A ∈ {0, 1}ω is the out-
put of some monotone machine with no input, so there is some c such
that ∀n Hm(A�n) ≤ c. Moreover, there exists n0 such that ∀n,m ≥ n0,
Hm(A�n) = Hm(A�m). We show this is not the case with H∞, since for
every infinite B = {b1, b2, . . .} ⊆ {0, 1}∗, limn→∞ H∞(bn) = ∞. This is also
a property of the classical prefix-free complexity H, and we consider it as a
decisive property that distinguishes H∞ from Hm.

The prefix-free complexity of a universal machine with oracle ∅′, the func-
tion H∅′

, is also a lower bound of H∞ (up to an additive constant). We prove
that for infinitely many strings x, the complexities H(x), H∞(x) and H∅′

(x)
separate as much as we want. This already proves that these three complex-
ities are different. In addition we show that for every oracle A, H∞ differs
from HA, the prefix-free complexity of a universal machine with oracle A.

For sequences in {0, 1}ω we consider definitions of randomness and triv-
iality based on the H∞ complexity. A sequence is H∞-random if its initial
segments have maximal H∞ complexity. Since Hm gives a lower bound of H∞

and Hm-randomness coincides with Martin-Löf randomness [9], the classes
of Martin-Löf random, H∞-random and Hm-random coincide.

We argue for a definition of H∞-trivial sequences as those whose initial
segments have minimal H∞ complexity. While every recursive A ∈ {0, 1}ω is
both H-trivial and H∞-trivial, we show that the class of H∞-trivial sequences
is strictly included in the class of H-trivial sequences. Moreover, in Theorem
5.6, the main result of the paper, we characterize the recursive sequences as
those which are H∞-trivial.

2

2 Definitions

N is the set of natural numbers, and we work with the binary alphabet {0, 1}.
As usual, a string is a finite sequence of elements of {0, 1}, λ is the empty
string and {0, 1}∗ is the set of all strings. {0, 1}ω is the set of all infinite
sequences of {0, 1}, i.e. the Cantor space, and {0, 1}≤ω = {0, 1}∗ ∪ {0, 1}ω is
the set of all finite or infinite sequences of {0, 1}.

For s ∈ {0, 1}∗, |s| denotes the length of s. If s ∈ {0, 1}∗ and A ∈ {0, 1}ω

we denote by s�n the prefix of s with length min{n, |s|} and by A�n the
length n prefix of the infinite sequence A. We consider the prefix ordering
� over {0, 1}∗, i.e, for s, t ∈ {0, 1}∗ we write s � t if s is a prefix of t. We
assume the recursive bijection string : N → {0, 1}∗ such that string(i) is the
i-th string in the length and lexicographic order over {0, 1}∗.

If f is any partial map then, as usual, we write f(p)↓ when it is defined,
and f(p)↑ otherwise.

2.1 Possibly infinite computations on monotone ma-
chines

A monotone machine is a Turing machine with a one-way read-only input
tape, some work tapes, and a one-way write-only output tape. The input
tape contains a first dummy cell (representing the empty input) and then a
one-way infinite sequence of 0’s and 1’s, and initially the input head scans
the leftmost dummy cell. The output tape is written one symbol of {0, 1} at
a time (the output grows with respect to the prefix ordering in {0, 1}∗ as the
computational time increases).

A possibly infinite computation is either a halting or a non halting com-
putation. If the machine halts, the output of the computation is the finite
string written on the output tape. Else, the output is either a finite string or
an infinite sequence written on the output tape as a result of a never ending
process. This leads us to consider {0, 1}≤ω as the output space.

In this work we restrict ourselves to possibly infinite computations on
monotone machines which read just finitely many symbols from the input
tape.

Definition 2.1. Let M be a monotone machine. M(p)[t] is the current
output of M on input p at stage t if it has not read beyond the end of p.

3

Otherwise, M(p)[t]↑. Notice that M(p)[t] does not require that the computa-
tion on input p halts.

Remark 2.2.

1. If M(p)[t]↑ then M(q)[u]↑ for all q � p and u ≥ t

2. If M(p)[t]↓ then M(q)[u]↓ for any q � p and u ≤ t. Also, if at stage
t, M reaches a halting state without having read beyond the end of p,
then M(p)[u]↓ = M(p)[t] for all u ≥ t.

3. Since M is monotone, M(p)[t] � M(p)[t + 1], in case M(p)[t + 1]↓

4. M(p)[t] has recursive domain

Definition 2.3. Let M be a monotone machine.

1. The input/output behavior of M for halting computations is the partial
recursive map M : {0, 1}∗ → {0, 1}∗ given by the usual computation of
M, i.e., M(p)↓ iff M enters into a halting state on input p without
reading beyond p. If M(p)↓ then M(p) = M(p)[t] for some stage t at
which M entered a halting state.

2. The input/output behavior of M for possibly infinite computations is
the map M∞ : {0, 1}∗ → {0, 1}≤ω given by M∞(p) = limt→∞ M(p)[t]

Proposition 2.4.

1. domain(M) is closed under extensions and its syntactical complexity is
Σ0

1

2. domain(M∞) is closed under extensions and its syntactical complexity
is Π0

1

3. M∞ extends M

Proof. 1. is trivial.

2. M∞(p)↓ iff ∀t M on input p does not read p0 and does not read p1.
Clearly, domain(M∞) is closed under extensions since if M∞(p)↓ then
M∞(q)↓ = M∞(p) for every q � p.

4

3. Since the machine M is not required to halt, M∞ extends M .

Remark 2.5. An alternative definition of the functions M and M∞ would
be to consider them with prefix-free domains (instead of closed under exten-
sions):

- M(p)↓ iff at some stage t M enters a halting state having read exactly
p. If M(p)↓ then its value is M(p)[t] for such stage t.

- M∞(p)↓ iff ∃t at which M has read exactly p and for every t′ M does
not read p0 nor p1. If M∞(p)↓ then its value is limt→∞ M(p)[t].

We fix an effective enumeration of all tables of instructions. This gives
an effective (Mi)i∈N. We also fix the usual monotone universal machine U ,
which defines the functions U(0i1p) = Mi(p) and U∞(0i1p) = M∞

i (p) for
halting and possibly infinite computations respectively. As usual, i+1 is the
coding constant of Mi. Recall that U∞ is an extension of U . We also fix U∅′

a monotone universal machine with an oracle for ∅′.
By Shoenfield’s Limit Lemma every M∞ : {0, 1}∗ → {0, 1}∗ is recursive

in ∅′. However, possibly infinite computations on monotone machines cannot
compute all ∅′-recursive functions. For instance, the characteristic function of
the halting problem cannot be computed in the limit by a monotone machine.
In contrast, the Busy Beaver function in unary notation bb : N → 1∗:

bb(n) =
the maximum number of 1’s produced by any Turing machine
with n states which halts with no input

is just ∅′-recursive and bb(n) is the output of a non halting computation
which on input n, simulates every Turing machine with n states and for each
one that halts updates, if necessary, the output with more 1’s.

2.2 Program size complexities on monotone machines

Let M be a monotone machine, and M , M∞ the respective maps for the
input/output behavior of M for halting computations and possibly infinite
computations (Definition 2.3). We denote the usual prefix-free complexity
[2, 10, 7] for M by HM : {0, 1}∗ → N

HM(x) =

{
min{|p| : M(p) = x} if x is in the range of M
∞ otherwise

5

Definition 2.6. H∞
M : {0, 1}≤ω → N is the program size complexity for

functions M∞.

H∞
M(x) =

{
min{|p| : M∞(p) = x} if x is in the range of M∞

∞ otherwise

For U we drop subindexes and we simply write H and H∞. The Invariance
Theorem holds for H∞:

∀ monotone machine M ∃c ∀s ∈ {0, 1}≤ω H∞(s) ≤ H∞
M(s) + c.

The complexity function H∞ was first introduced in [1] without a detailed
study of its properties. Notice that if we take monotone machines M accord-
ing to Remark 2.5 instead of Definition 2.3, we obtain the same complexity
functions HM and H∞

M.
In this work we only consider the H∞ complexity of finite strings, that

is, we restrict our attention to H∞ : {0, 1}∗ → N. We will compare H∞ with
these other complexity functions:

HA : {0, 1}∗ → N is the program size complexity function for UA, a monotone
universal machine with oracle A. We pay special attention to A = ∅′.

Hm : {0, 1}≤ω → N (see [8]), where HmM(x) = min{|p| : M∞(p) � x} is
the monotone complexity function for a monotone machine M and, as
usual, for U we simply write Hm.

We mention some known results that will be used later.

Proposition 2.7. (For items 1. and 2. see [2], for item 3. see [1])

1. ∀s ∈ {0, 1}∗ H(s) ≤ |s|+ H(|s|) +O(1)

2. ∀n ∃s ∈ {0, 1}∗ of length n such that:

(a) H(s) ≥ n

(b) H∅′
(s) ≥ n

3. ∀s ∈ {0, 1}∗ H∅′
(s) < H∞(s) +O(1) and H∞(s) < H(s) +O(1)

6

3 H∞ is different from H

The following properties of H∞ are in the spirit of those of H.

Proposition 3.1. For all strings s and t

1. H(s) ≤ H∞(s) + H(|s|) +O(1)

2. #{s ∈ {0, 1}∗ : H∞(s) ≤ n} < 2n+1

3. H∞(ts) ≤ H∞(s) + H(t) +O(1)

4. H∞(s) ≤ H∞(st) + H(|t|) +O(1)

5. H∞(s) ≤ H∞(st) + H∞(|s|) +O(1)

Proof. 1. Let p, q ∈ {0, 1}∗ such that U∞(p) = s and U(q) = |s|. Then
there is a machine that first simulates U(q) to obtain |s|, then starts a
simulation of U∞(p) writing its output on the output tape, until it has
written |s| symbols, and then halts.

2. There are at most 2n+1 − 1 strings of length ≤ n.

3. Let p, q ∈ {0, 1}∗ such that U∞(p) = s and U(q) = t. Then there is a
machine that first simulates U(q) until it halts and prints U(q) on the
output tape. Then, it starts a simulation of U∞(p) writing its output
on the output tape.

4. Let p, q ∈ {0, 1}∗ such that U∞(p) = st and U(q) = |t|. Then there is
a machine that first simulates U(q) until it halts to obtain |t|. Then it
starts a simulation of U∞(p) such that at each stage n of the simulation
it writes the symbols needed to leave U(p)[n]�(|U(p)[n]| − |t|) on the
output tape.

5. Consider the following monotone machine:

t := 1; v := λ; w := λ

repeat

if U(v)[t] asks for reading then append to v the next bit in the input

if U(w)[t] asks for reading then append to w the next bit in the input

7

extend the actual output to U(w)[t]�(U(v)[t])

t := t + 1

If p and q are shortest programs such that U∞(p) = |s| and U∞(q) = st
respectively, then we can interleave p and q in a way such that at
each stage t, v � p and w � q (notice that eventually v = p and
w = q). Thus, this machine will compute s and will never read more
than H∞(st)+H∞(|s|) bits.

H is recursively approximable from above, but H∞ is not.

Proposition 3.2. There is no effective decreasing approximation of H∞.

Proof. Suppose there is a recursive function h : {0, 1}∗ × N → N such that
for every string s, limt→∞ h(s, t) = H∞(s) and for all t ∈ N, h(s, t) ≥ h(s, t+
1). We write ht(s) for h(s, t). Consider the monotone machine M with
coding constant d given by the Recursion Theorem, which on input p does
the following:

t := 1; print 0
repeat forever

n := number of bits read by U(p)[t]
for each string s not yet printed, |s| ≤ t and ht(s) ≤ n + d

print s
t := t + 1

Let p be a program such that U∞(p) = k and |p| = H∞(k). Notice that, as
t → ∞, the number of bits read by U(p)[t] goes to |p| = H∞(k). Let t0 be
such that for all t ≥ t0, U(p)[t] reads no more from the input. Since there
are only finitely many strings s such that H∞(s) ≤ H∞(k) + d, there is a
t1 ≥ t0 such that for all t ≥ t1 and for all those strings s, ht(s) = H∞(s).
Hence, every string s with H∞(s) ≤ H∞(k) + d will be printed.

Let z = M∞(p). On one hand, we have H∞(z) ≤ |p| + d = H∞(k) + d.
On the other hand, by the construction of M, z cannot be the output of a
program of length ≤ H∞(k) + d (because z is different from each string s
such that H∞(s) ≤ H∞(k) + d). So it must be that H∞(z) > H∞(k) + d, a
contradiction.

8

The following lemma states a critical property that distinguishes H∞

from H. It implies that H∞ is not subadditive, i.e., it is not the case that
H∞(st) ≤ H∞(s) + H∞(t) +O(1). It also implies that H∞ is not invariant
under recursive permutations {0, 1}∗ → {0, 1}∗.
Lemma 3.3. For every total recursive function f there is a natural k such
that

H∞(0k1) > f(H∞(0k)).

Proof. Let f be any recursive function and M the following monotone ma-
chine with coding constant d given by the Recursion Theorem:

t := 1
do forever

for each p such that |p| ≤ max{f(i) : 0 ≤ i ≤ d}
if U(p)[t] = 0j1 then

print enough 0’s to leave at least 0j+1 on the output tape
t := t + 1

Let N = max{f(i) : 0 ≤ i ≤ d}. We claim there is a k such that M∞(λ) = 0k.
Since there are only finitely many programs of length less than or equal to
N which output a string of the form 0j1 for some j, then there is some stage
at which M has written 0k, with k greater than all such j’s, and then it
prints nothing else. Therefore, there is no program p with |p| ≤ N such that
U∞(p) = 0k1.

If M∞(λ) = 0k then H∞(0k) ≤ d. So, f(H∞(0k)) ≤ N . Also, for this k,
there is no program of length ≤ N that outputs 0k1 and thus H∞(0k1) > N .
Hence, H∞(0k1) > f(H∞(0k)).

Note that H(0k) = H(0k1) = H∞(0k1) up to additive constants, so the
above lemma gives an example where H∞ is much smaller that H.

Proposition 3.4.

1. H∞ is not subadditive

2. It is not the case that for every recursive one-one g : {0, 1}∗ → {0, 1}∗
∃c ∀s |H∞(g(s))−H∞(s)| ≤ c

Proof. 1. Let f be the recursive injection f(n) = n + c. By Lemma 3.3
there is k such that H∞(0k1) > H∞(0k) + c. Since the last inequality
holds for every c, it is not true that H∞(0k1) ≤ H∞(0k) +O(1).

9

2. It is immediate from Lemma 3.3.

It is known that the complexity H is smooth in the length and lexico-
graphic order over {0, 1}∗ in the sense that |H(string(n))−H(string(n + 1))| =
O(1). However, this is not the case for H∞.

Proposition 3.5.

1. H∞ is not smooth in the length and lexicographical order over {0, 1}∗

2. ∀n |H∞(string(n))−H∞(string(n + 1))| ≤ H(|string(n)|) +O(1)

Proof. 1. Notice that ∀n > 1, H∞(0n1) ≤ H∞(0n−11) + O(1), because
if U∞(p) = 0n−11 then there is a machine that first writes a 0 on the
output tape and then simulates U∞(p). By Lemma 3.3, for each c there
is a n such that H∞(0n1) > H∞(0n) + c. Joining the two inequalities,
we obtain ∀c ∃n H∞(0n−11) > H∞(0n) + c. Since string−1(0n−11) =
string−1(0n) + 1, H∞ is not smooth.

2. Consider the following monotone machine M with input pq:

obtain y = U(p)

simulate z = U∞(q) till it outputs y bits

write string(string−1(z) + 1)

Let p, q ∈ {0, 1}∗ such that U(p) = |string(n)| and U∞(q) = string(n).
Then, M∞(pq) = string(n + 1) and

H∞(string(n + 1)) ≤ H∞(string(n)) + H(|string(n)|) +O(1).

Similarly, ifM, instead of writing string(string−1(z)+1), writes string(string−1(z)−
1), we conclude

H∞(string(n)) ≤ H∞(string(n + 1)) + H(|string(n + 1)|) +O(1).

Since |H(|string(n)|)−H(|string(n + 1)|)| = O(1), it follows that

|H∞(string(n))−H∞(string(n + 1))| ≤ H(|string(n)|) +O(1).

10

4 H∞ is different from HA for every oracle A

Item 3 of Proposition 2.7 states that H∞ is between H and H∅′
. The following

result shows that H∞ is really strictly in between them.

Proposition 4.1. For every c there is a string s ∈ {0, 1}∗ such that

H∅′
(s) + c < H∞(s) < H(s)− c.

Proof. Let un = min{s ∈ {0, 1}n : H(s) ≥ n} and let A = {a0, a1, . . . } be
any infinite r.e. set and consider a machine M which on input i does the
following:

j := 0
repeat

write aj

find a program p, |p| ≤ 3i, such that U(p) = aj

j := j + 1

M∞(i) outputs the string vi = a0a1 . . . aki
, where H(aki

) > 3i and for all z,
0 ≤ z < ki we have H(az) ≤ 3i. We define wi = uivi. Let’s see that both
H∞(wi)−H∅′

(wi) and H(wi)−H∞(wi) grow arbitrarily.
On one hand, we can construct a machine which on input i and p executes

U∞(p) till it outputs i bits and then halts. Since the first i bits of wi are ui

and H(i) ≤ 2 |i|+O(1), we have i ≤ H(ui) ≤ H∞(wi)+2 |i|+O(1). But with
the help of the ∅′-oracle we can compute wi from i, so H∅′

(wi) ≤ 2 |i|+O(1).
Thus we have H∞(wi)−H∅′

(wi) ≥ i− 4 |i| − O(1).
On the other hand, given i and wi, we can effectively compute aki

. Hence,
∀i we have 3i < H(aki

) ≤ H(wi) + 2 |i| + O(1). Also, given ui, we can
compute wi in the limit using the idea of machine M, and hence H∞(wi) ≤
2 |ui|+O(1) = 2i +O(1). Then, for all i

H(wi)−H∞(wi) > i− 2 |i| − O(1).

Not only H∞ is different from H∅′
but it differs from HA (the prefix-free

complexity of a universal monotone machine with oracle A), for every A.

Theorem 4.2. There is no oracle A such that
∣∣H∞ −HA

∣∣ ≤ O(1).

11

Proof. Immediate from Lemma 3.3 and from the standard result that for all
A, HA is subadditive, so in particular, for every k, HA(0k1) ≤ HA(0k) +
O(1).

5 H∞ and the Cantor space

The advantage of H∞ over H can be seen along the initial segments of every
recursive sequence: if A ∈ {0, 1}ω is recursive then there are infinitely many
n’s such that H(A�n)−H∞(A�n) > c, for an arbitrary c.

Proposition 5.1. Let A ∈ {0, 1}ω be a recursive sequence. Then

1. lim supn→∞ H(A�n)−H∞(A�n) = ∞

2. lim supn→∞ H∞(A�n)−Hm(A�n) = ∞

Proof. 1. Let A(n) be the n-th bit of A. Let’s consider the following
monotone machine M with input p:

obtain n := U(p)

write A�(string−1(0n)− 1)

for s := 0n to 1n in lexicographic order

write A(string−1(s))

search for a program p such that |p| < n and U(p) = s

If U(p) = n, then M∞(p) outputs A�kn for some kn such that 2n ≤
kn < 2n+1, since for all n there is a string of length n with H-complexity
greater than or equal to n. Let us fix n. On one hand, H∞(A�kn) ≤
H(n) + O(1). On the other, H(A�kn) ≥ n + O(1), because we can
compute the first string in the lexicographic order with H-complexity ≥
n from a program for A�kn. Hence, for each n, H(A�kn)−H∞(A�kn) ≥
n−H(n) +O(1).

2. Trivial because for each recursive sequence A there is a constant c such
that Hm(A�n) ≤ c and limn→∞ H∞(B�n) = ∞ for every B ∈ {0, 1}ω.

12

5.1 H-triviality and H∞-triviality

There is a standard convention to use H with arguments in N. I.e., for
any n ∈ N, H(n) is written instead of H(f(n)) where f is some particular
representation of natural numbers on {0, 1}∗. This convention makes sense
because H is invariant (up to a constant) for any recursive representation of
natural numbers.

H-triviality has been defined as follows (see [5]): A ∈ {0, 1}ω is H-trivial
iff there is a constant c such that for all n, H(A�n) ≤ H(n) + c. The idea
is that H-trivial sequences are exactly those whose initial segments have
minimal H-complexity. Considering the above convention, A is H-trivial iff
∃c ∀n H(A�n) ≤ H(0n) + c.

In general H∞ is not invariant for recursive representations of N. We
propose the following definition that insures that recursive sequences are
H∞-trivial.

Definition 5.2. A ∈ {0, 1}ω is H∞-trivial iff ∃c ∀n H∞(A�n) ≤ H∞(0n)+c.

Our choice of the right hand side of the above definition is supported by
the following proposition.

Proposition 5.3. Let f : N → {0, 1}∗ be recursive and strictly increasing
with respect to the length and lexicographical order over {0, 1}∗. Then

∀n H∞(0n) ≤ H∞(f(n)) +O(1).

Proof. Notice that, since f is strictly increasing, f has recursive range. We
construct a monotone machine M with input p:

t := 0
repeat

if U(p)[t]↓ is in the range of f then n := f−1(U(p)[t])
print the needed 0’s to leave 0n on the output tape
t := t + 1

Since f is increasing in the length and lexicographic order over {0, 1}∗, if p
is a program for U such that U∞(p) = f(n), then M∞(p) = 0n.

Chaitin observed that every recursive A ∈ {0, 1}ω is H-trivial [4] and that
H-trivial sequences are ∆0

2. However, H-triviality does not characterize the
class ∆0

1 of recursive sequences: Solovay [14] constructed a ∆0
2 sequence which

13

is H-trivial but not recursive (see also [5] for the construction of a strongly
computably enumerable real with the same properties). Our next result
implies that H∞-trivial sequences are ∆0

2, and Theorem 5.6 characterizes ∆0
1

as the class of H∞-trivial sequences.

Theorem 5.4. Suppose that A is a sequence such that, for some b ∈ N,
∀n H∞(A�n) ≤ H(n) + b. Then A is H-trivial.

Proof. An r.e. set W ⊆ N× 2<ω is a Kraft-Chaitin set (KC-set) if∑
〈r,y〉∈W 2−r ≤ 1.

For any E ⊆ W , let the weight of E be wt(E) =
∑
{2−r : 〈r, n〉 ∈ E}. The

pairs enumerated into such a set W are called axioms. Chaitin proved that
from a Kraft-Chaitin set W one may obtain a prefix machine Md such that
∀〈r, y〉 ∈ W ∃w (|w| = r ∧ Md(w) = y).

The idea is to define a ∆0
2 tree T such that A ∈ [T], and a KC-set W

showing that each path of T is H-trivial. For x ∈ {0, 1}∗ and t ∈ N, let

H∞(x)[t] = min{|p| : U(p)[t] = x} and

H(x)[t] = min{|p| : U(p)[t] = x and U(p) halts in at most t steps}

be effective approximations of H∞ and H. Notice that for all x ∈ {0, 1}∗,
limt→∞ H∞(x)[t] = H∞(x) and limt→∞ H(x)[t] = H(x).

Given s, let

Ts = {γ : |γ| < s ∧ ∀m ≤ |γ| H∞(γ�m)[s] ≤ H(m)[s] + b}

then (Ts)s∈N is an effective approximation of a ∆0
2 tree T , and [T] is the class

of sequences A satisfying ∀n H∞(A�n) ≤ H(n) + b. Let r = H(|γ|)[s]. We
define a KC-set W as follows: if γ ∈ Ts and either there is u < s greatest
such that γ ∈ Tu and r < H(|γ|)[u], or γ /∈ Tu for all u < s, then put an
axiom 〈r + b + 1, γ〉 into W .

Once we show that W is indeed a KC-set, we are done: by Chaitin’s
result, there is d such that 〈k, γ〉 ∈ W implies H(γ) ≤ k + d. Thus, if
A ∈ [T], then H(γ) ≤ H(|γ|) + b + d + 1 for each initial segment γ of A.

To show that W is a KC-set, define strings Ds(γ) as follows. When we
put an axiom 〈r + b + 1, γ〉 into W at stage s,

• let Ds(γ) be a shortest p such that U(p)[s] = γ (recall from Definition
2.1 that it is not required that U halts at stage s)

14

• if β ≺ γ, we haven’t defined Ds(β) yet and Ds−1(β) is defined as a
prefix of p, then let Ds(β) be a shortest q such that U(q)[s] = β

In all other cases, if Ds−1(β) is defined then we let Ds(β) = Ds−1(β). We
claim that, for each s, all the strings Ds(β) are pairwise incompatible (i.e.,
they form a prefix-free set). For suppose that p ≺ q, where p = Ds(β) was
defined at stage u ≤ s, and q = Ds(γ) was defined at stage t ≤ s. Thus,
β = U(p)[u] and γ = U(q)[t]. By the definition of monotone machines and
the minimality of q, u < t and β ≺ γ. But then, at stage t we would redefine
Du(β), a contradiction. This shows the claim.

If we put an axiom 〈r+b+1, γ〉 into W at stage t, then for all s ≥ t, Ds(γ)
is defined and has length at most H(|γ|)[t] + b (by the definition of the trees

Ts). Thus, if W̃s is the set of axioms 〈k, γ〉 in Ws where k is minimal for γ,

then wt(W̃s) ≤
∑

γ 2−|Ds(γ)|−1 ≤ 1/2 by the claim above. Hence wt(Ws) ≤ 1
as all axioms weigh at most twice as much as the minimal ones, and Ws is a
KC-set for each s. Hence W is a KC-set.

Corollary 5.5. If A ∈ {0, 1}ω is H∞-trivial then A is H-trivial, hence in
∆0

2.

Theorem 5.6. Let A ∈ {0, 1}ω. A is H∞-trivial iff A is recursive.

Proof. From right to left, it is easy to see that if A is a recursive sequence
then A is H∞-trivial.

For the converse, let A be H∞-trivial via some constant b. By Corollary
5.5 A is ∆0

2, hence, there is a recursive approximation (As)s∈N such that
lims→∞ As = A.

Recall that H∞(x)[t] = min{|p| : U(p)[t] = x}. Consider the following
program with coding constant c given by the Recursion Theorem:

k := 1; s0 := 0; print 0
while ∃sk > sk−1 such that H∞(Ask

�k)[sk] ≤ c + b do
print 0
k := k + 1

Let us see that the above program prints out infinitely many 0’s. Suppose
it writes 0k for some k. Then, on one hand, H∞(0k) ≤ c, and on the other,
∀s > sk−1, we have H∞(As�k)[s] > c+ b. Also, H∞(As�k)[s] = H∞(A�k) for
s large enough. Hence, H∞(A�k) > H∞(0k) + b, which contradicts that A is
H∞-trivial via b.

15

So, for each k, there is some q ∈ {0, 1}∗ with |q| ≤ c + b such that
U(q)[sk] = Ask

�k. Since there are only 2c+b+1 − 1 strings of length at most
c+b, there must be at least one q such that, for infinitely many k, U(q)[sk] =
Ask

�k. Let’s call I the set of all these k’s. We will show that such a q
necessarily computes A. Suppose not. Then, there is a t such that for all
s ≥ t, U(q)[s] is not an initial segment of A. Thus, noticing that (sk)k∈N
is increasing and I is infinite, there are infinitely many sk ≥ t such that
k ∈ I and U(q)[sk] = Ask

�k 6= A�k. This contradicts that Ask
�k → A when

k →∞.

Corollary 5.7. The class of H∞-trivial sequences is strictly included in the
class of H-trivial sequences.

Proof. By Corollary 5.5, any H∞-trivial sequence is also H-trivial. Solovay
[14] built an H-trivial sequence in ∆0

2 which is not recursive. By Theorem
5.6 this sequence cannot be H∞-trivial.

5.2 H∞-randomness

Definition 5.8.

1. (Chaitin [2]) A ∈ {0, 1}ω is H-random iff ∃c ∀n H(A�n) > n− c.
Chaitin and Schnorr [2] showed that H-randomness coincides with Martin-
Löf randomness [12].

2. (Levin [9]) A ∈ {0, 1}ω is Hm-random iff ∃c ∀n Hm(A�n) > n− c.

3. A ∈ {0, 1}ω is H∞-random iff ∃c ∀n H∞(A�n) > n− c.

Using Levin’s result [9] that Hm-randomness coincides with Martin-Löf
randomness, and the fact that Hm gives a lower bound of H∞, it follows
immediately that the classes of H-random, H∞-random and Hm-random
sequences coincide. For the sake of completeness we give an alternative proof.

Proposition 5.9 (with D. Hirschfeldt). There is a b0 such that for all b ≥ b0

and z, if Hm(z) ≤ |z| − b, then there is y � z such that H(y) ≤ |y| − b/2.

Proof. Consider the following machine M with coding constant c. On input
qp, first it simulates U(q) until it halts. Let’s call b the output of this simula-
tion. Then it simulates U∞(p) till it outputs a string y of length b + l where

16

l is the length of the prefix of p read by U∞. Then it writes this string y on
the output and stop.

Let b0 be the first number such that 2 |b0| + c ≤ b0/2 and take b ≥ b0.
Suppose Hm(z) ≤ |z| − b. Let p be a shortest program such that U∞(p) � z
and let q be a shortest program such that U(q) = b. This means that
|p| = Hm(z) and |q| = H(b). On input qp, the machine M will compute b
and then it will start simulating U∞(p). Since |z| ≥ Hm(z) + b = |p|+ b, the
machine will eventually read l bits from p in a way that the simulation of
U∞(p�l) = y and |y| = l + b. When this happens, the machine M writes y
and stops. Then for p′ = p�l, we have M(qp′)↓ = y and |y| = |p′|+ b. Hence

H(y) ≤ |q|+ |p′|+ c ≤ H(b) + |y| − b + c ≤ 2 |b| − b + |y|+ c ≤ |y| − b/2.

Corollary 5.10. A ∈ {0, 1}ω is Martin-Löf random iff A is Hm-random iff
A is H∞-random.

Proof. Since Hm ≤ H+O(1) it is clear that if a sequence is Hm-random then
it is Martin-Löf random. For the opposite, suppose A is Martin-Löf random
but not Hm-random. Let b0 be as in Proposition 5.9 and let 2c ≥ b0 be such
that ∀n H(A�n) > n−c. Since A is not Hm-random, ∀d ∃n Hm(A�n) ≤ n−d.
In particular for d = 2c there is an n such that Hm(A�n) ≤ n− 2c. On one
hand, by Proposition 5.9, there is a y � A�n such that H(y) ≤ |y| − c. On
the other, since y is a prefix of A and A is Martin-Löf random, we have
H(y) > |y| − c. This is a contradiction.

Since Hm is a lower bound of H∞, the above equivalence implies A is
Martin-Löf random iff A is H∞-random.

References

[1] V. Becher, S. Daicz and G. Chaitin. A highly random number. In
C. S. Calude, M. J. Dineen, and S. Sburlan, editors, Combinatorics,
Computability and Logic: Proceedings of the Third Discrete Mathemat-
ics and Theoretical Computer Science Conference (DMTCS’01), 55–68.
Springer-Verlag London, 2001.

[2] G. J. Chaitin. A theory of program size formally identical to information
theory, J. ACM, vol.22, 329–340, 1975.

17

[3] G. J. Chaitin. Algorithmic entropy of sets, Computers & Mathematics
with Applications, vol.2, 233–245, 1976.

[4] G. J. Chaitin. Information-theoretical characterizations of recursive in-
finite strings. Theoretical Computer Science, 2:45–48,1976.

[5] R. Downey, D. Hirschfeldt, A. Nies and F. Stephan. Trivial reals, Elec-
tronic Notes in Theoretical Computer Science (ENTCS), vol. 66:1, 2002.
Also in Proceedings of the 7th and 8th Asian Logic Conferences, 103–
131. World Scientific, Singapore, 2003. Eds. R. Downey, D. Decheng,
T. Shih Ping, Q. Yu Hui, M. Yasugi.

[6] M. Ferbus-Zanda and S. Grigorieff. Church, cardinal and ordinal repre-
sentations of integers and Kolmogorov complexity. Manuscript, 2003.

[7] P. Gács. On the symmetry of algorithmic information. Soviet Math.
Dodkl., 15, pp. 1477–1480, 1974.

[8] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the
development of the concepts of information and randomness by means
of the theory of algorithms. Russ. Math. Surveys, Vol. 25, pp. 83–124,
1970.

[9] L. A. Levin. On the Concept of a Random Sequence. Doklady Akad.
Nauk SSSR, 14(5), 1413–1416, 1973.

[10] L. A. Levin. Laws of Information Conservation (Non-growth) and As-
pects of the Foundations of Probability Theory. Problems of Information
Transmission, 10:3, pp. 206–210, 1974.

[11] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and
its applications, Springer, Amsterdam, 1997 (2d edition).

[12] P. Martin-Löf. The definition of random sequences. Information and
Control, vol.9, 602–619, 1966.

[13] C. P. Schnorr. Process complexity and effective random tests. Journal
of Computer Systems Science, Vol. 7, pp. 376–388, 1973.

18

[14] R. M. Solovay. Draft of a paper (or series of papers) on Chaitin’s work
done for the most part during the period Sept. to Dec. 1974, unpub-
lished manuscript, IBM Thomas J. Watson Research Center, Yorktown
Heights, New York. 215 pp., May 1975.

[15] V. A. Uspensky and A. Kh. Shen’. Relations between varieties of Kol-
mogorov complexities. Math. Systems Theory, Vol. 29, pp. 271–292,
1996.

19

