On the expressive power of IF-logic with
classical negation

Santiago Figueira*!:3, Daniel Gorin', and Rafael Grimson?3

! Dto. Computacién, FCEN, Universidad de Buenos Aires, Argentina

2 Dto. Matemética, FCEN, Universidad de Buenos Aires, Argentina
3 CONICET, Argentina

Abstract. It is well-known that Independence Friendly (IF) logic is
equivalent to existential second-order logic (211) and, therefore, is not
closed under classical negation. The boolean closure of IF sentences,
called Extended IF-logic, on the other hand, corresponds to a proper
fragment of A3. In this paper we consider IF-logic extended with Hodges’
flattening operator, which allows classical negation to occur also under
the scope of IF quantifiers. We show that, nevertheless, the expressive
power of this logic does not go beyond A3. As part of the proof, we give a
prenex normal form result and introduce a non-trivial syntactic fragment
of full second-order logic that we show to be contained in Aj.

1 Introduction

Independence Friendly logic [4] (IF, for short) is an extension of first-order logic
(FO) where each disjunction and each existential quantifier may be decorated
with denotations of universally-quantified variables, as in:

VY32 vy Iw|vy [y = 2 Viva,vy w = Y] (1)

The standard interpretation of IF is through a variation of the classical game-
theoretical semantics for FO: Eloise’s strategy function for a position of the form
32|y, v24 Or Y V)yy vz X, under valuation v, cannot depend on neither v(y) nor
v(z). Thus, we say that a sentence ¢ is true in model A (notation, A =1 ¢)
if Eloise has a winning strategy on the associated game; and that it is false
(notation, A =" ¢) whenever Abélard has a winning strategy.

Now, the fact that Eloise’s strategy may not take into account all the available
information turns the game into one of “imperfect information”. In fact, it is a
non-determined game, i.e, for certain instances of the game, no winning strategy
exists. As an example of non-determinacy, consider this formula:

X1 = Vry,x # Yy (2)

It is not hard to see that if A is a model with at least two elements, then A =T x4
and A £~ x1. That is, x1 is neither ¢rue nor false in A.

* S. Figueira was partially supported by CONICET Argentina (grant PIP 370).

2 Figueira, Gorin and Grimson

In game-theoretical semantics, negation is interpreted as a switch of roles, i.e.,
Abélard plays on Eloise’s former positions and vice versa. We use ~ to denote
this form of negation and we refer to it as game negation. For any IF-formula
1 and any model A, A =T ¢ iff A =~ ~4. (i.e., Eloise has a winning strategy
for ¢ on A iff Abélard has one for ~ on A). However, observe that ¢ V ~)
is not in general a valid IF-formula (e.g., take v to be x; in) This means
that game negation in IF is not equivalent to classical negation, which will be
denoted with — and is characterized by:

AET —piff ATy (3)

Since the expressive power of IF corresponds to that of existential second-
order logic (X1) [4l5] and X7 is not closed by (classical) negation, it is clear that
classical negation cannot be defined in IF.

Classical negation plays an important role in Hintikka’s original programme.
In [], he claims that “virtually all off classical mathematics can in principle be
done in extended IF first-order logic” (in a way that is ultimately “reducible”
to plain IF logic). What he calls “(truth-functionally) extended IF logic” is the
closure of the set of IF-sentences with operators =, A and V. Clearly, extended
IF logic corresponds in expressive power to the boolean closure of X}, which is
known to be a proper fragment of Al [29].

In this paper we will consider the extension of IF logic where classical nega-
tion can be combined with IF-operators without restrictions (in contrast to Ex-
tended IF, where formulas with — are obtained from boolean combination of
IF sentences). One might suspect the resulting logic to be extremely expressive:
freely combining classical negation with second order existential quantifiers leads
to full second-order logic (SO). This suspicion is true for the logic with Henkin
quantifiers when the set of available quantifiers is closed by a dualization oper-
ator [I0]. Indeed, this logic has the same expressive power as SO. We will show
that, in our context, this is not the case: IF with unrestricted classical negation
is not more expressive than Al.

We take as a basis Hodges’ treatment of classical negation [6]. He defines
an extension of IF, called slash logic (SL), in which independence restrictions
can occur in any connective (and not only 3 and V) and provide a composi-
tional semantics for it. To support classical negation, the flattening operator |
is introduced. Intuitively, this operator satisfies:

A" Lpiff A o (4)
It is easy to see that classical negation can be expressed combining ~ and J:
AET ~piff AEY ~lpiff AT o iff AET o (5)

Let SL({) denote the extension of SL with the flattening operator. We will use
the game-theoretical semantics introduced in [3] (equivalent to Hodges’ compo-
sitional semantics), which we present in From this we derive a prenex normal
form result in §3]from which a Skolem form for SL({)-formulas is obtained in
By analyzing the syntactic fragment of SO in which the Skolem form falls, we
ultimately arrive to the Al upper-bound.

On the expressive power of IF-logic with classical negation 3

2 Syntax and semantics of SL({)

We assume a fixed first-order relational language £, as well as a collection X of
first-order variables, which we will denote x, y, z, perhaps with subindices. For-
mulas of SL(]), in negation normal form, correspond to the following grammar:

o =11, 2k) | 3za,0 | Ve [e [To leVipe |l oA, e (6)

where p denotes a (possibly empty) finite set of variables and I(xq,...,x) is
any first-order literal (i.e., an atom or a negated atom). We will typically use
Jz;, Va;, V and A instead of Jz;g, Vzi9, Vg and Ajg. Since we are working
in negation normal form, (game) negation ~ will be a mapping on functions
satisfying ~Vax; 0 = Jx;,~p; ~lp = T~p, etc. Finally, —¢ will be short for
~Jp. Fv(p) denotes the set of free variables of ¢ (see [3] for a formal definition).
A sentence is a formula with no free variables.

Remark 1. For the sake of simplicity we will impose a further restriction on
formulas: there can be no nested bindings of the same variable (e.g., 3x3zp) nor
a variable that occurs both free and bound in a formula (e.g., V Jxp). This is
called the regular fragment of SL({) and it has simpler formal semantics. The
results in this paper apply to the whole language under the proviso that history-
preserving valuations are used instead of standard ones (cf. [3] for details).

We interpret a SL(|)-formulas using first-order models A with domain |.A|.
We use sets of finite valuations to account for free variables; the domains of these
valuations must be large enough to interpret them all (but they can be larger).

Definition 1. Given ¢ and A, we say that, V, a set of finite valuations over
A, is suitable for ¢ iff there is a finite set D D Fv(y) such that V C |A|P.

We define now the game G(A, ¢, V'), where A is a model and V is a set of
finite valuations over A suitable for ¢. Furthermore, let D D Fv(¢) be such that
V C |A|P. As is customary, this game is played between two opponents: Eloise
and Abélard (sometimes called Verifier and Falsifier). There is also a third agent,
called Nature, which acts either as a generator of random choices or as a referee.

The board. Game G(A, ¢, V) is played over the syntactic tree of ¢. There is,
additionally, a placeholder for a set D and a valuation v : D — |A|. Initially,
D is set to D and v is empty. In the syntactic tree of v, all the 3, vV and |-
nodes of the tree belong to Eloise; while the V, A and T-nodes belong to Abélard.
Moreover, 3, V, V and A-nodes will be (repeatedly) decorated with functions
during the game; the first two admit any function f : |A|P — |Al; the last two,
only functions f : |A|” — {L, R}. Initially, nodes have no decoration.

The turns. At any point of the game, the remaining number of turns is bounded
by the maximum number of nested occurrences of |-nodes and 1-nodes in the
game-board.

Figueira, Gorin and Grimson

— The opening turn. The first turn is different from the rest. It is composed of

two clearly distinguished phases. In the first phase, both players decorate all
their nodes with suitable functions. The order in which they tag their nodes
is not important as long as they do not get to see their opponent’s choices in
advance. For simplicity, we will assume they both play simultaneously. In the
second phase, Nature picks a valuation from V and puts it in the placeholder
v and finally evaluates the outcome of the turn, as described below.

The subsequent turns. In all but the first turn, the formula tree is of the
form % or 19 (see next). In these turns, both players get to redecorate their
nodes, one after the other; Eloise goes first when the formula tree is of the
form | and Abélard does so on T9. Finally, Nature replaces the tree with
1 and proceeds to evaluate.

The recursive evaluation procedure used by Nature is the following:

R1

R2

R3
R4

If the tree is of the form 1 V|, . . %2 or ¥1 Ay, .y, Y2, then its root
must have been with a function f : |A|” — {L, R}. Nature picks elements
aj ...ap from |A| and evaluates f(v[y; — ai,...,yx — a]) —by construc-
tion {y1,...yx} C D. That is, the values the player was not supposed to
consider are randomly replaced prior to evaluating the function provided.
The tree is then updated with 1y, if the result is L, and with 15, otherwise.
D and v remain unchanged and evaluation proceeds.

If the tree is of the form 3z, . ., ¥ or Vo, . . ¥, then it must have been
decorated with a function f : |A|P — |A|. Again, Nature picks aj ...ag,
evaluates b := f(v[y; — ai,...,yr — ai]) and records this choice by replac-
ing the placeholder with D := D U {z} and v := v U {z — b}. Finally, the
tree is updated with 1 and evaluation proceeds.

If the tree is of the form |1 or 19, the evaluation —and, thus, the turn— ends.
Finally, if the root of the tree is a literal I(z1, ..., zk), the game ends. Eloise
is declared the winner if A = (21, ..., zx)[v]; otherwise, Abélard wins.

Nodes may get redecorated during the game but only by its owner, that is

fixed. Hence it is equivalent to assume that players decorate only those nodes
that are not under nested | or 1. This way, each node gets decorated only once.

Winning strategies. We will not go into a formal description of what a strategy

for

G(A, ¢, V) is. We simply take it to be a form of oracle that tells the player

how to proceed in each turn. As usual, a strategy is said to be winning for a
player if it guarantees that the he or she will win every match of the game,
regardless the strategy of the opponent and the choices made by Nature.

We are now ready to give our game-semantic notion of truth and falsity.

Definition 2. Let V be a set of finite valuations suitable for p. We define:

A ET o|V] iff Eloise has a winning strategy for the game G(A, o, V);
A E" ¢[V] iff Abélard has a winning strategy for the game G(A, p, V).

On the expressive power of IF-logic with classical negation 5

When V' = {v} we may alternatively write A =T p[v] and A =~ ¢[v]. Also,
for a sentence ¢ we may write A =T ¢ and A =" ¢ meaning A =T ¢[2] and
A =7 ¢[@], respectively, where & is the empty valuation (i.e. dom @ = 0).
Unlike classical logics, from A =T ¢[@] we cannot infer A =T ¢[v] for every
suitable v. This is due to signaling: the value of a variable a player is supposed
not to know is available through the value of another one (cf. [7I§]).

Definition 3. We write p1 = pg whenever, for every A and every set V' suitable
for o1 and o2, AET o1[V] iff AET @a2[V] and A=~ o1 [V] iff AT @a[V].
When interested in winning strategies for, say, Eloise in G(A, ¢, {v}), it makes

no difference whether in the opening turn both players play simultaneously or if
Eloise goes first. This is not true, though, in G(A, ¢, V') for a non-singleton V.

Proposition 1. Given v, a finite valuation over A suitable for ¢, we have that
A lo] iff A =+ Lglo], and that A - olo] iff A o],

Remark 2. Whenever one is interested in whether A =T ¢[V] holds or not,
it is clearly equivalent (and sometimes convenient, too) to consider a simplified
version of G(A, Ly, V) in which Eloise plays functions and Abélard plays elements
(until the game reaches a T, where the situation gets reversed). This resembles
the perfect-information game for IF given by Védénénen in [I1].

Operator | turns a formula that may lead to a non-determined game, into
one that always leads to a determined one. This suggests the following notion.

Definition 4. We say that ¢ is determined whenever, for every model A, and
every set V suitable for o, AT o[V] iff AE" p[V].

Intuitively, determined formulas are those that have a well-defined truth-value
on every structure. Plain first-order formulas (i.e., those with no independence
restrictions) are determined, but one can give more general conditions.

Proposition 2. The following hold:

1. FEwvery literal is a determined formula.
2. W and T are determined formulas.
3. If ¢ and ¢ are determined formulas, so are o Njg ¥, © Vg ¥,)9 an Vrpp.

3 Normal forms for SL({)

Normal forms in the context of SL were initially investigated in [I]. Later,
Janssen [7] observed some anomalies which cast doubt on the correctness of
these results. However, it was shown in [3] that only the formal apparatus em-
ployed in [I] was defective, and not the results per se.

In this section we revisit the prenex normal form results of [I] and extend
them to account for | and 1. For this, bound variables will be tacitly renamed
when necessaryﬁ and the following formula manipulation tools will be employed.

4 While this assumption was considered problematic in the context of [1], it is safe
here since we are using regular formulas. Moreover, this can also be assumed for
arbitrary formulas under an adequate formalization (cf. Remark .

6 Figueira, Gorin and Grimson

Definition 5. Let x1 ...z, be variables not occurring in p; we denote with
Play..xn the formula oblained by adding x1 ...z, as restrictions to every quan-
tifier, every conjunction and every disjunction in ¢. Also, we write o€ for the
formula obtained by replacing all independence restrictions in ¢ by ().

Notice that ¢ is essentially a FO formula. As is observed in [I], independence
restrictions on boolean connectives can be removed by introducing additional
quantifications. It is not hard to extend this result to SL(}) (in what follows, we
shall use, for emphasis, V|y instead of V, Ay instead of A, etc.).

Theorem 1. For every formula o, there exists a ¢’ such that ¢ = ¢’ and every
disjunction (resp. conjunction) in ¢’ is of the form iy Vg2 (resp. 11 Ngib2).

Proof. When restricted to models with at least two elements, a simple inductive
argument gives us the desired formula. The important step is that, given a
formula ¢ := 91 V|4, . &, P2 and given y1,y2 fresh in ¢, we can define

P* = Ely1|$1~n1?k3y2‘yl,iEl‘..mn[(yl =y2 A wl‘yh?n) Vv (yl 7 Y2 ¢2|yhy2)] (7)

On models with at least two elements, we have ¥ = 1¢*. By successively applying
this truth-preserving transformation in a top-down manner, one can obtain, for
any given ¢, a formula p* that is equivalent on models with at least two elements.
Now, observe that on models with exactly one element, restrictions are mean-
ingless. Therefore, for any given ¢ we can define the equivalent formula:

@' = (VaVylz = y] A) V Fz3y[z # y] A ") (8)

Formula in the above proof was taken from [I], with the proviso that
independences on y; and ys are added to 1 and 9 in order to avoid unwanted
signaling [7I83]. This was most probably an involuntary omission in [IJ.

The prenex normal form result for SL in [I] uses a lemma that we will need.

Lemma 1 ([I]). If x does not occur in 1, then the following equivalences hold:

1. 3x,[@] Vip ¥ = 31,[0 Vip Vsl 8. YV ,[@] Vip ¥ = V.0 Vig Y]
2. 3x1,[0] Ao b = 3z),[0 N V)] - 4. Yo ,[0] Np ¥ = V5[0 Ao Y]

For SL(]), we need to show how to extract | and 1 from arbitrary formulas.
Lemma 2. The following hold:

1. If 4 is determined, then [=T = .
2. e No) =Ll Ngly and T(p AN) = T Ajp T
3. e Vi) =leVigly and T(p Vi) = T Vip T9.

Proof. We shall only discuss (¢ Ajg¢) = Lo Ajg {4; the remaining equivalences
are similar. Suppose, then, that A =7 | (¢ Ajg 1)[V]; this means that Eloise has a
way of decorating both ¢ and 1 that guarantees she wins both games. Therefore,
we have A =1 |@[V] and A =1 [9[V] which implies A =T (1o Ajg 14)[V]. The
right to left direction is analogous, and one establishes that A =" |(o Ajg ¢)[V]
iff AT (Lo Al)[V]. Since L(¢ Ajg9) and (Lo Ajg L9) are determined formulas
(Proposition , this implies A =7 L(@ A) [V] iff A =T (Lo ALY)[V].

On the expressive power of IF-logic with classical negation 7

Definition 6. A SL(])-formula is said to be in prenex normal form if it is of

the form Q§1,Q11, - Qh_13,_1Que with n > 0, where each Q is a (perhaps
empty) chain of quantifiers, T, € {1,1} and ¢ contains only literals, \jg and V|p.

Theorem 2. For every ¢, there exists a ™ in prenex normal form with p = ™.

Proof. By Theorem [I| we can obtain a ¢’ such that ¢’ = ¢ and no boolean
connective in it contains independences. We proceed now by induction on ¢’. If
¢’ is a literal, ¢* = ¢'. If ¢’ = 3z}, ,, ¥, we have p* = Iz}, 1P* and the
cases for ¢’ = V|, . 1, ¢ = |1 and ¢’ = 19 are analogous. We analyze now
the case for ¢’ =9 V x; the one for ¢’ = 1) A y is symmetrical.

We need to show that there exists a ¢* = (¢p* V x*), in prenex normal form.
We do it by induction on the sum of the lengths of the prefixes of ¢* and x*. The
base case is trivial; for the inductive case we show that one can always “extract”
the outermost operator of either ¢* or x*.

The first thing to note is that if ¥* = Qz,, , ¢' (Q € {V,3}), then using
Lemma |1| (renaming variables, if necessary) we have ¢* = Qw, . (¥'V x*)*
and the same applies to the case x* = Qxlyl...yk X’. So suppose now that neither
¥* nor x* has a quantifier as outermost operator. In that case, they start with
one of | or T, or they contain only Ajg, V|g and literals. In either case, they are
both determined and at least one of them starts with | or 1 (or we would be in
the base case). If we assume that ¢* = |1/, using Proposition [2| repeatedly, we
have (J¢' vV x*) = (¢’ Vix*) = 1@ Vix*) = L&'V x*), and we can apply the
inductive hypothesis. The remaining cases are analogous.

4 Skolem forms, dependencies and A}-expressivity

We finally turn our attention to the expressive power of SL({). We shall see that
every SL(})-formula is equivalent to both X3 and I13-formulas, and therefore,
is included in Al. We reserve letters f, g and h (probably with subindices) to
denote second-order functional variables; arities will be left implicit. We identify
first-order variables with 0-ary second-order variables; letters z, y and z (with
subindices) are to be interpreted always as O-ary functions (f, g, etc. could be
0-ary too, unless stated). We also assume that functional symbols occur always
fully-saturated (e.g., f = ¢ is not a valid formula, but Vz[f(x) = g(z)] is).

4.1 Skolem form of SL(]) sentences

Based on the game-theoretical semantics of §2] we show that every sentence of
SL(J}) can be turned into an equivalent SO formula. We will motivate this sort
of Skolem form with a short example. For this, let ¢ be quantifier-free, with
variables among {1, %2, Z3, Y1, Y2, y3} and consider:

X2 ‘= iVyNygElxl‘szElmg‘yz 3x3Vy3|x3 [30} (9)

8 Figueira, Gorin and Grimson

Assume that A =T xo, i.e., that Eloise has a winning strategy for G(A, x2, {2}).
Using the simplification of Remark [2] this is the case if and only if A |= x4, where

X = 3fVy1VyaVz1 VgIreIas T2 o | (10)

and o1 = {x1 = f(y1,21),y3 — 9(y1, 92, f(y1,21),22,22)} is a substitution of
variables by termsﬂ Notice that z; and z, represent the random choices made
by Nature during the evaluation phases; e.g., f(y1,21) expresses that Nature
replaced the value of y» by a randomly picked z; when evaluating z;. Since z;
and z do not occur in ¢ and y; and ys occur universally quantified, just as g,
we have that x4 is equivalent to x4, where

Xo := VY1 VyaVgIzoTz3[pos] (11)

and o2 = {z1 — f(y1),y3 — g(z2, f(y1))}. Of course, one could simplify further
and replace g(z2, f(y2)) by g(z2), but this will be discussed in more detail in

In order to formalize this transformation, we will use some conventions. First,
A denotes an empty sequence (of quantifiers, of variables, etc.). When describing
SL(J) prefixes we shall use patterns such as WY1 310, - YY), 3k, 3Q5 it
must be understood that not necessarily all the z; and y; are present in the
prefix, and that either $Q = X or else § € {},1} and Q is a (possibly empty)
SL(J)-prefix.

Definition 7. Given Qv in prenex normal form (Y quantifier-free), T(Qu) is
the SO-formula 7(1Q) Y], where o = 73 ({},1Q), T(A) = A, 78(0,\) = 0 and
7r(¢Vy1|nE|x1‘pl .. .VykmﬂxmpkiQ) =3f1...3fxVy1 .. .V (IQ)
(13211, YY1y - - Tk, VYR 7, JQ) = Vg1 .. Vgi Tz .. 37 (1Q)
75 (0, Y1), 3211, -+ VYR, 3T, TQ) = TEYI/ (o U{z; = fo, (o' \ pi)o},1Q)
750, 130115, VY117, - - - Ik, YUR |, Q) = TEY//(U U{yi = 9y, (B \)0}, 1Q)
Here, we assumed o := a,y1 ...y, and B’ := B, 21... 3.

The reader should verify that, modulo variable names, T'(x2) = x5. In partic-
ular, substitution application in fy, (¢ \ p;)o and g, (8’ \ p;)o account for the
introduction of nested terms like g(z2, f(y1)) in (I1).

Lemma 3. For every sentence @ in prenexr normal form and every model A,
AET ¢ iff AET(p).

Proof. First, observe that A =% ¢ iff A =" | (Proposition [I). One then can
show that, for every 4 in prenex normal form (perhaps with free variables) and
every suitable v, A =1 [¢[v] iff A = T({4)[v] by induction on the number of
turns in G(A, |, {v}) (i.e., in the number of | and 1 occurring in J4).

It follows directly from Definition [7|that T'(¢) is a SO formula in prenex nor-
mal form (i.e., all quantifiers, either first or second-order, are at the beginning).

5 As is customary, we use postfix notation for substitution application.

On the expressive power of IF-logic with classical negation 9

4.2 First-order dependencies and the A;-class

If ¢, in prenex normal form, has d occurrences of | or 1, then T'(¢) is a formula in
Z‘%d 41 But we will see that by repeatedly applying a truth-preserving quantifier-
moving transformation, one can turn any such 7'(¢) into an equivalent formula
in X1. Since SL(]) is closed by negation, this gives us the desired Al-bound. We
begin with a motivational a example. Let ¢ be quantifier-free and consider:

X3 = IVy13z113eo VY2, VY3 323)y, 4, T24VYa 5, 0y (12)
X3 i= T(x3) = 3f1Vy1Vg13223 f2Vy3V g2 3w 4 03] (13)

where o3 = {z1 — fi(y1),y2 — g1(x2), 23 — f2(ys),ys — g2(z4)}. The key
intuition to show that x4 is a Yi-formula is that the choice for f does not
actually depend on the chosen value for g; but only on that of g1 (x2), which is
the only occurrence of g; in pos. Thus, x5 is equivalent to:

X4 := 3f13foViy1 Vg1 VysIzaVgo 34 [0 4] (14)

where o4{z1 = fi(y1),92 = g1(z2), 73 = f2(y1,91(22),Y3), ya = g2(za)}. Fi-
nally, one can “exchange” g, and x5 in an analogous way, to obtain a XJ-formula.

We identify next the fragment of SO where this “weak-dependency” between
functions occurs and show that, in it, the procedure sketched above can always
be performed. In what follows we assume, without loss of generality, that if a
variable occurs free in a SO-formula, it does not also appear bound.

Definition 8. We say that a functional symbol f is strongly free in a SO-
formula ¢ whenever f is free in ¢ and, if f(...g(...)...) occurs in @, g is
strongly free in ¢ too.

As an example, g is strongly free in 3x[f(z) = g(y, g(2,y))], while f is not
(for z is not, either). Every free first-order variable is also strongly free.

Lemma 4. Let ¢ be a SO-formula and let g1 ... g be strongly free in ¢. More-
over, let v1 and vy be interpretations of functional variables in A such that (i)
v1(f) = va(f) for every f & {g1,-.., 9k}, and (ii) for every g;(t1,...,tm) occur-
ring in @, v1(gi(t1, .-, tm)) = v2(gi(t1, ..., tm)). Then, A= plv1] iff A E o[va].

Proof. Follows by a straightforward induction on ¢. In the base case, (i) and
(#4) guarantee the equivalence; for the case ¢ = If1), removing the existential
preserves the hypothesis of the lemma (needed for the inductive hypothesis).

It is well-known that Vz; ...z,3fp is equivalent to EIfVa:l ... Tpp, where @
is obtained by replacing every occurrence of a term of the form f(t1,...,tx) in ¢
by f(tl, ooy ti, @1, ..., xy,). The following result is a generalization of this idea,
with strongly free second-order variables used instead of first-order ones.

Theorem 3. Let g1 ...gy, be strongly free in ¢ and let h, free in @, be such that
forno i, gi(...h(...)...) occurs in @. Then, for every fy ... fm free in @, there
exists ¢ such that g1 ...gn are strongly free in ¢; fi...fm are free in ¢ and
Vg1 ...Vg,3h3fi ... Afxe = 3Vgy .. . Vg, 3f1 ... Ifep-

10 Figueira, Gorin and Grimson

Proof. One can obtain ¢ by replacing every occurrence of h(ty,...,#) in ¢ by
h(t1,...,tk, S1,.-.,8), where s ... s; are the terms of the form g;(...) occurring
in ¢. Since g;(...h(...)...) does not occur in ¢, no occurrence of h is left in @.

In a way, what Theorem [3]| says is that a strongly free second-order variable
corresponds, in terms of information, to a finite number of first-order terms.
This motivates the following definition.

Definition 9. We say that a SO-formula in prenex normal form has first-order
dependencies if in every subformula of the form Vg1 ...¥g,3f1...3fme (with

w#£3Ip) or g1 ... 3gnVf1.. Vfmp (0 ZVYRY), g1 ... gn are strongly free in p.

Theorem 4. The class of SO-formulas with first-order dependencies is in Aj.

Proof. We shall only see that if ¢ has first-order dependencies then ¢ is in
X3, This suffices since ¢ = ——p and - has first-order dependencies (and is
therefore in X3). To see that any such ¢ can be turned to X3-form, we will show
how quantifiers can be reordered, one at a time, in a top-down manner.

Suppose, then, that ¢ is not in 3-form; and let us consider the leftmost quan-
tifier that is misplaced. There are two cases we need to consider. First, suppose
@ =73hy...3Vg ... Vg, Fz1 ... Fxx3IA3f1 ... Ifmtp (k,l,m >0,n > 1) for an h
of non-zero arity. We can assume without loss of generality that g;(...h(...)...)
does not occur in ¢, e.g., if g;(h(x;)) occurs in 9, then ¢ is equivalent to
3hy ... 3NV .. Vgp3xe .. Fxk3R323f1 .. 3f]z = h(z;) A x] where x is like
¥ with h(z;) replaced by z. By Theoremwe can relocate the misplaced 3h and
obtain the equivalent formula 3h; ... EhlﬂfLVgl o Vgp3ry .. Fx3dfi .. Hfmz/;.

The second case is when every variable in the first block of misplaced quanti-
fiers is first-order. Here we cannot always circumvent the condition “g;(...x;...)
does not occur in ¥” so we must handle it in a different way. Therefore, suppose
@ = Jhy...3IVg1 .. . Vg3x1 ... T V1. Vi, (1> 0,k,m,n > 1) where 9
does not start with V. Using Theorem [3| (z1 ...z are strongly free in), we ob-
tain the equivalent Jhy ... 30 Vg .. .Vganl . .;Vf;nﬂa: e kaz/;. It is important
to notice that Vgy ...Vg,Vf1...Vfn3z ... Iz has first-order dependencies.

Corollary 1. T(p) has first-order dependencies, for every SL(])-formula ¢ in
prenex normal form. Therefore, SL(|) is not more expressive than AL.

5 Conclusions

We have given an upper bound for the expressive power of SL(]) and, therefore,
for IF with full-fledged classical negation. This logic contains Extended-IF, which
is known to correspond to a proper fragment of A}; hence, our Al-upper bound
for SL({) is quite tight. This result is mounted on three additional results: i) a
game-theoretical semantics for SL(J),) a prenex normal form result for SL({)
and, ii7) a characterization of a new (to the best of our knowledge) syntactic
fragment of SO (formulas with first-order dependencies) which we have shown
to be contained in A}. The last two are given in this article (for the first one,
cf. [3]); the prenex normal form uses ideas from [I]. The question of which of the
containments are strict remains open.

On the expressive power of IF-logic with classical negation 11

References

10.

11.

. Xavier Caicedo and Michal Krynicki. Quantifiers for reasoning with imperfect

information and X1-logic. Contemporary Mathematics, 235:17-31, 1999.

Herbert Enderton. Finite partially ordered quantifiers. Zeitschrift fiir Mathema-
tische Logik und Grundlagen der Mathematik, 16:393-397, 1970.

Santiago Figueira, Daniel Gorin, and Rafael Grimson. On the formal semantics of
IF-like logics. Journal of Computer and System Sciences, 76(5):333-346, 2009.
Jaako Hintikka. The Principles of Mathematics Revisited. Cambridge University
Press, 1996.

Jaako Hintikka and Gabriel Sandu. Game-theoretical semantics. In Johan van
Benthem and Alice ter Meulen, editors, Handbook of logic and language, chapter 6.
The MIT press, 1997.

Wilfrid Hodges. Compositional semantics for a language of imperfect information.
Logic Journal of the IGPL, 5(4), 1997.

Theo M. V. Janssen. Independent choices and the interpretation of IF logic. Jour-
nal of Logic, Language and Information, 11(3):367-387, 2002.

Theo M. V. Janssen and Francien Dechesne. Signalling in IF games: a tricky
business. In The age of alternative logics, chapter 15, pages 221-241. Springer,
2006.

. Marcin Mostowski. Arithmetic with the Henkin quantifier and its generalizations.

In F. Gaillard and D. Richard, editors, Séminaire du Laboratoire Logique, Algo-
rithmique et Informatique Clermontoise, volume 2, pages 1-25, 1991.

Leszek A. Kolodziejczyk. The expressive power of Henkin quantifiers with dual-
ization. Master’s thesis, Institute of Philosophy, Warsaw University, Poland, 2002.
Jouko A. Vadnédnen. On the semantics of informational independence. Logic Jour-
nal of the IGPL, 10(3):339-352, 2002.

	On the expressive power of IF-logic with classical negation

