Teoría de Modelos Primer Cuatrimestre 2012

Ejercicios

Ejercicio 1. Qué jugador tiene estrategia ganadora en cada uno de los siguientes juegos?

1. G(6,7,3),

- 3. $G(\omega, \zeta, 3)$,
- 5. $G(15, \omega + \omega^*, 4)$,

2. G(7,8,3),

- 4. $G(\omega, \omega + \omega, 3)$,
- 6. $G(\omega, \omega + \zeta, 5)$.

Ejercicio 2. La existencia de una estrategia ganadora para *Duplicator* puede usarse para *transferir* la verdad de un enunciado de un modelo a otro.

- 1. Mostrar que si Duplicator gana al juego G((A,R),(B,S),2) y R es una relación binaria simétrica, entonces S también es simétrica.
- 2. Mostrar con un ejemplo que simétrica no puede reemplzarse por densa.
- 3. Mostrar que sí puede realizarse este reemplazo si el juego es a tres pasos en lugar de a 2.
- 4. Mismas preguntas para transitivo.

Ejercicio 3. Para todo n, Duplicator gana $G(\omega, \omega + \zeta, n)$ y $G(\zeta, \zeta + \zeta, n)$

Ejercicio 4. Sea α un conjunto totalmente ordenado. Entonces

- 1. $m \ge 2^n 1 \Rightarrow Duplicator gana G(\omega + (\zeta \cdot \alpha) + \omega^*, m, n)$.
- 2. Duplicator gana $G(\omega, \omega + \zeta \cdot \alpha, n)$.
- 3. Duplicator gana $G(\zeta, \zeta + \zeta \cdot \alpha, n)$.

Deducir de 1 que la teoría de $\omega + \omega^*$ no es finitamente axiomatizable.

Ejercicio 5. Sean A y B modelos y sean $a \in A$ y $b \in B$. Probar que para una inyección finita h tal que dom $h \subseteq A$ y rg $h \subseteq B$, las dos condiciones que siguen son equivalentes:

- 1. h es un isomorfismo local entre (A, a) y (B, b)
- 2. $h \cup \{(a,b)\}$ es un isomorfismo local entre $\mathcal{A} y \mathcal{B}$

Ejercicio 6. Probar que Duplicador tiene una estrategia ganadora en el juego de k piedritas de longitud n en \mathcal{A} y \mathcal{B} sii \mathcal{A} y \mathcal{B} satisfacen las mismas sentencias de rango cuantificacional a lo sumo n que contienen a lo sumo k variables.

Ejercicio 7. Considarar $E^+(\mathcal{A}, \mathcal{B}, n)$, la siguiente modificación del juego $E(\mathcal{A}, \mathcal{B}, n)$: las reglas son las mismas, pero Duplicador gana cuando la relación construida al final es un homomorfismo local, que es una relación $\{(a_1, b_1), \ldots, (a_n, b_n)\} \subseteq A \times B$ tal que toda sentencia atómica satisfecha en $(\mathcal{A}, a_1, \ldots, a_n)$ también es satisfecha en $(\mathcal{B}, b_1, \ldots, b_n)$.

- 1. Probar que un homomorfismo local es una función pero no necesariamente inyectiva.
- 2. Una fórmula se dice *positiva* cuando solo tiene los operadores $\land, \lor, \exists, \forall$ (excluye $\neg, \rightarrow, \leftrightarrow$). Probar que Duplicador gana $E^+(\mathcal{A}, \mathcal{B}, n)$ sii \mathcal{B} satisface todas las sentencias positivas de rango cuantificacional a lo sumo n que son verdaderas en \mathcal{A} .

Ejercicio 8. Probar que las siguientes dos condiciones son equivalentes:

- 1. La sentencia φ tiene un equivalente lógico de rango cuantificacional de a lo sumo n.
- 2. para cualesquiera dos modelos \mathcal{A}, \mathcal{B} tal que $\mathcal{A} \equiv^n \mathcal{B}$: si $\mathcal{A} \models \varphi$ entonces $\mathcal{B} \models \varphi$.

Concluir que transitividad no puede ser expresado con una sentencia de rango cuanrificacional de a lo sumo 2.

Ejercicio 9. Probar que en la clase de órdenes lineales, cada sentencia es equivalente a una con a lo sumo tres variables.

Ayuda. Probar que si Γ y Σ son dos conjuntos de sentencias tal que Σ está cerrada por \neg y \wedge , entonces son equivalentes:

- 1. dos modelos cualesquiera que satisfacen las mismas sentencias de Σ son elementalmente equivalentes;
- 2. para cada sentencia φ , existe $\psi \in \Sigma$ tal que $\Gamma \models \varphi \leftrightarrow \psi$.

Ayuda para la ayuda. Para $1 \to 2$, probar que si $\Delta = \{ \rho \in \Sigma \mid \Gamma \models \varphi \to \rho \}$ entonces $\Gamma \cup \Delta \models \varphi$. Después usar compacidad.

Ejercicio 10. Probar que el orden < no es definible en (\mathbb{N}, suc) .

Problemas

Problema 11. Mostrar con un ejemplo que si $|A|, |B| \ge 2^n$, entonces *Duplicator* gana en el juego $G((\mathcal{P}(A), \subset), (\mathcal{P}(B), \subset), n)$.

Problema 12. Mostrar con un ejemplo que existen dos estructuras, cada una elementalmente embebible en la otra y que, sin embargo, no son isomorfas.

Problema 13. Mostrar que para cualquier orden total α , $\omega + (\zeta \cdot \alpha) + \omega^*$ es un orden lineal pseudo-finitos (ver Lemma 3,43 en Doets). Caracterizar estos órdenes completamente.