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Abstract. Memory logics is a family of modal logics whose semantics
is specified in terms of relational models enriched with additional data
structure to represent a memory. The logical language includes a col-
lection of operations to access and modify the data structure. In this
paper we study basic model properties of memory logics, and prove re-
sults concerning characterization, definability and interpolation. While
the first two properties hold for all memory logics introduced in this
article, interpolation fails in most cases.

1 Introduction

In the last decades, modal logics have become a wide collection of formal systems
with some general aspects in common: they are usually interpreted over relational
structures, they are generally computationally well behaved, and they take a lo-
cal perspective when evaluating a formula. Nowadays, the practical influence of
modal logics is undeniable as they are used in many applications like linguis-
tics, artificial intelligence, knowledge representation, specification and software
verification, etc. (see [6] for details).

In a number of recent papers [4,3,2,1] we have investigated a family of logics
called memory logics, extending the classical modal logic.1 Intuitively, memory
logics enrich the standard relational models used by most modal logics with
a data structure. The logical language is then extended with a collection of
operations to access and modify this data structure. In this article we fix the
data structure to be a set, but other structures are analyzed in [1].

Assume as given a signature S = 〈prop,rel〉 that defines the sets of proposi-
tional and relational symbols, respectively. Let N be a standard relational model
over S, i.e., N = 〈F , V 〉, where F = 〈W, (Rr)r∈rel〉 is a suitable frame (i.e. W
is a nonempty set whose elements we will call states, and Rr ⊆ W 2 for each
r ∈ rel, which we call accessibility relations) and V : prop → 2W is the valu-
ation function. We obtain a model for memory logics, extending this structure

? F. Carreiro and S. Mera were partially supported by CONICET Argentina.
?? S. Figueira was partially supported by CONICET Argentina (grant PIP 370).
1 Due to lack of space we will assume in this article that the reader is familiar with

modal logics, see [6,5] for complete details.
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with a set S ⊆ W representing the current ‘memory’ of the model. For M an
arbitrary model, we will denote its domain by |M|, and we will usually represent
a model 〈〈W,R〉, V, S〉 simply as 〈W,R, V, S〉.

A set is a very simple data structure (e.g., compare it with a list, a tree, etc),
but even in this setting, we can define a set of operators that interacts with the
memory in different ways. One can think of different types of simple updates
that can be performed on the memory of a model: to store or delete an element,
to clean the memory, etc. If M = 〈F , V, S〉 is a model for memory logics as
defined above, we define

M[∗] = 〈F , V, ∅〉; M[w] = 〈F , V, S ∪ {w}〉; M[−w] = 〈F , V, S \ {w}〉.

Let M[w1, . . . , wn] be a shorthand for ((M[w1]) . . . )[wn]. Besides the stan-
dard Boolean and diamond operators of the basic modal logic, we define

M, w |=©rϕ iff M[w], w |= ϕ M, w |=©fϕ iff M[−w], w |= ϕ
M, w |=©eϕ iff M[∗], w |= ϕ M, w |=©k iff w ∈ S

The ‘remember’ operator©r (a unary modality) marks the current state as being
‘already visited’, by storing it in S. In contrast, the ‘forget’ operator ©f removes
the current state from the memory, while the ‘erase’ operator ©e wipes out the
memory. These are the operators we use to update the memory. On the other
hand, the zero-ary operator ©k (for ‘known’) queries S to check if the current
state is in the memory.2

Besides these basic operators, we can also impose constraints on the interplay
between memory storage and the standard modalities. There are some contexts
when we do not need©r and 〈r〉 as two separate operators: we are only interested
in the trail of memorized points we used to evaluate a formula (for details on
possible applications see [13]). In these cases the 〈〈r〉〉 operator will be handy:

M, w |= 〈〈r〉〉ϕ iff ∃w′ ∈W,wRrw′ and M[w], w′ |= ϕ

That is, 〈〈r〉〉ϕ is equivalent to ©r 〈r〉ϕ. We will denote the dual of this operator
as [[r]], with the usual interpretation. As it was showed in [1], this operator is
very useful to regain decidability for some fragments of memory logic.

A particularly interesting class of models to investigate is the class C∅ where
the memory is empty, i.e., C∅ = {M | M = 〈F , V, ∅〉}. It is natural to consider
starting to evaluate a formula in a model of C∅, as it is over C∅ that the oper-
ators ©k and ©r have the most natural interpretation. As it is shown in [1], the
restriction to this class has important effects on expressivity and decidability. It
is worth noting that a formula is initially evaluated in a model of C∅, but during
the evaluation the model can change to one with nonempty memory. This dy-
namic behavior is a distinctive feature of memory logics over the classical modal
logic: the value of S changes as the evaluation of the formula proceeds. This is
not different to what happens with an assignment during the evaluation of a
first order formula.

2 Notice that all these operators are self dual.
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It is well known that a classical modal model M = 〈F , V 〉 can be seen as
a first order model over an appropriate signature, and that there is a standard
translation STx transforming every modal formula ϕ into a first order formula
STx(ϕ) with x as its only free variable such thatM, w |= ϕ iffM, gxw |= STx(ϕ),
where gxw is an arbitrary assignment that maps x to w (on the left,M should be
considered as a first order model, and |= as the standard first order satisfiability
relation). Similarly, any memory model can be seen as a first order model, and
we can define a translation which transforms memory formulas into equivalent
first order formulas (for more details see [1]). We will use this result for some
results in this article.

In [4,1] some computational aspects of memory logics were studied, together
with results for separating different memory logics in terms of expressive power.
In [2,1] the focus was put in proof theoretical results. In this article we analyze
some important theorems of the basic model theory for memory logics. The main
tool for all our results on characterization, definability and interpolation is the
notion of bisimulation. In Section 2 we present suitable notions of bisimulation
for different memory logics. In Section 3 we state a van Benthem like characteri-
zation theorem for memory logics and we study when a class of memory models
is definable by a set of memory formulas, or by a single formula. In Section 4,
we analyze the validity of the Craig interpolation theorem for many members of
the family of memory logics. Finally, in Section 5 we discuss further work and
draw some conclusions.

Notation. As we will be discussing many different logics, we introduce here some
notational conventions. We callML the basic modal logic, and add a superscript
m to indicate the addition of a memory-set and the basic memory operators ©r
and©k . Additional operators included in the language are listed explicitly. Since
we can choose to use 〈r〉 or 〈〈r〉〉, we will also include the diamond explicitly in this
list. For example, MLm(〈r〉,©e ) is the modal logic with the standard diamond
operator extended with ©r , ©k and ©e . When we restrict initial evaluation of a
formula to models in C∅ we add ∅ as a subscript. For example,MLm∅ (〈〈r〉〉) is the
modal logic with 〈〈r〉〉 instead of 〈r〉, the operators ©r and ©k , and whose models
have an initially empty memory. For the rest of the article, L will stand for any
memory logic MLm(. . .). For the sake of simplicity we restrict ourselves to the
unimodal case. The generalization to the multimodal scenario is straightforward.

2 Bisimulations and saturated models

The concept of bisimulation has been extensively studied for many modal log-
ics [6,5]. In the context of memory logics, bisimulations link pairs (A,w) (where
A ∪ {w} is a subset of the domain) between models, as we need to keep track
not only of the current state but also of the current memory. Let M and N be
two memory models. Then a bisimulation betweenM and N is a binary relation
such that (A,w) ∼ (B, v) implies A ∪ {w} ⊆ |M| and B ∪ {v} ⊆ |N |.

Bisimulations for the different memory logics can be defined modularly. Given
a memory logic L, its bisimulation notion will be defined imposing restrictions
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to ∼ depending on the operators present in L. In Figure 1 we summarize the
restrictions associated with each operator for modelsM and N with accessibility
relations R and R′ respectively.

always (nontriv) ∼ is not empty.

always (agree) If (A,w) ∼ (B, v), then w and v make the same propositional
variables true.

©k (kagree) If (A,w) ∼ (B, v), then w ∈ A if and only if v ∈ B.

©r (remember) If (A,w) ∼ (B, v), then (A ∪ {w}, w) ∼ (B ∪ {v}, v).

©f (forget) If (A,w) ∼ (B, v), then (A \ {w}, w) ∼ (B \ {v}, v).

©e (erase) If (A,w) ∼ (B, v), then (∅, w) ∼ (∅, v).

〈r〉 (forth) If (A,w) ∼ (B, v) and wRw′, then there exists n′ ∈ |N | such
that vR′v′ and (A,w′) ∼ (B, v′).

(back) If (A,w) ∼ (B, v) and vR′v′, then there exists w′ ∈ |M| such
that wRw′ and (A,w′) ∼ (B, v′).

〈〈r〉〉 (mforth) If (A,w) ∼ (B, v) and wRw′, then there exists v′ ∈ |N | such
that vR′v′ and (A ∪ {w}, w′) ∼ (B ∪ {v}, v′).

(mback) If (A,w) ∼ (B, v) and vR′v′, then there exists w′ ∈ |M| such
that wRw′ and (A ∪ {w}, w′) ∼ (B ∪ {v}, v′).

Fig. 1. Operator restrictions for a modular memory bisimulation definition.

With these definitions, we have presented bisimulation notions for all memory
logics introduced in Section 1.

If M is a model and w ∈ |M|, we call the pair 〈M, w〉 a pointed model.
Given two pointed models 〈M, w〉 and 〈N , v〉, where M = 〈W,R, V, S〉 and
N = 〈W ′, R′, V ′, S′〉, we write M, w ↔ N , v if there is a bisimulation linking
(S,w) and (S′, v). The exact type of bisimulation involved will usually be clear
from context; we will write ↔L when we need to specify that the bisimulation
corresponds to the logic L. We write M, w ≡L N , v when both models satisfy
the same L-formulas, i.e., for all ϕ ∈ L, M, w |= ϕ iff N , v |= ϕ. We will again
drop the L subindex when no confusion arises.

The basic property expected from bisimulation is that they should preserve
the satisfiability of formulas. The following theorem states that this is the case
for the bisimulations we introduced (see [13] for details).

Theorem 1. If M, w ↔L N , v then M, w ≡L N , v.

With all preliminaries concerning bisimulation already introduced, we now
proceed to the notion of ω-saturated models and Hennessy-Milner classes, which
will lead to our first result: the class of ω-saturated models is a Hennessy-Milner
class for all memory logics we introduced, with respect to the appropriate notion
of bisimulation. This property will be fundamental for the results concerning
characterization and definability established in the next section.
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The notion of ω-saturation [8,9] is defined for first order models, but it also
applies to memory models using the correspondence between memory and first
order models discussed in Section 1. These models will prove to be a very useful
tool. We have already seen that if two states are bisimilar, then they are modally
equivalent. The converse, in general, does not hold. We say that a class C of
models has the Hennessy-Milner property with respect to L-bisimulations (or,
simply, that the class is Hennessy-Milner for L) if any two L-equivalent models
in C are L-bisimilar. As we will prove in Theorem 4, ω-saturated models are
Hennessy-Milner for all memory logics L.

But ω-saturated models have other important properties, like the ‘intra-model
compactness property’ enunciated below (the proof is a straightforward modifi-
cation of the result in [5, Theorem 2.65] for the basic modal logic).

Proposition 2. Let M = 〈W,R, V, S〉 be ω-saturated, Σ be a set of L-formulas
and w ∈W . If every finite subset ∆ ⊆ Σ satisfies M, v∆ |= ∆ for some R-
successor v∆ of w then there exists v, an R-successor of w, such thatM, v |= Σ.

It is also the case that ω-saturation is preserved under the operation of mem-
orizing a finite set of elements. The proof can be found in [13].

Proposition 3. Let M be ω-saturated. For any finite A ⊆ |M|, M[A] is ω-
saturated.

Not all models are ω-saturated but a classic theorem of first order logic [8,9]
states that every model M has an ω-saturated extension M+ with the same
first order theory and, a fortiori, the same L theory for any memory logic L.
This extension is created by taking an ultrapower of the model with a special
kind of ultrafilter.3

We now prove that, for every memory logic L, the class of ω-saturated models
has the Hennessy-Milner property with respect to L-bisimulations.

Theorem 4. Let L be a memory logic, the class of ω-saturated models has the
Hennessy-Milner property with respect to L-bisimulations.

Proof (Sketch). As we want to consider all the possible logics from the family
of memory logics, we prove that, for any two ω-saturated models 〈M, w〉 and
〈N , v〉 such that M, w ≡L N , v there is an L-bisimulation between them. We
do this by considering every possible operator and show that we can construct
a bisimulation that satisfies the constraints associated for that operator.

See the Appendix for full details. ut

The proof of the theorem above is fairly straightforward, but the result itself
is surprising in its generality and can be taken as evidence of a harmonious
match between the notion of bisimulation we introduced and the general model
theory of memory logics.4

3 In what follows we will assume that the reader is familiar with the definition of
ultraproducts, ultrapowers and ultrafilters (consult [11] if necessary).

4 Notice that a direct corollary of Theorem 4 is that the class of image-finite models
(i.e., models where each state has at most a finite number of successors) for any
memory logic has the Hennessy-Milner property with respect to L-bisimulations.
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3 Characterization and definability

While investigating the properties of a new modal logic, a fairly standard ap-
proach is to try to characterize it as a fragment of a better known logic. A
classical example of this kind of results is van Benthem’s characterization of
the basic modal logic as the bisimulation invariant fragment of first order logic.
These type of characterizations allows for the transfer of results and for a better
understanding of the logic. In the following theorem we state an analogous result
for memory logics. Due to space limitations we only give a sketch of the proof
along with citations that should suffice to complete it.

We say that a first order formula α(x) is invariant for L-bimulations if for
all models M,N and w ∈ |M|, v ∈ |N | such that M, w ↔L N , v we have
M, gxw |= α(x) iff N , gxv |= α(x).

Theorem 5 (Characterization). A first order formula α(x) (with free vari-
able x, and in the proper signature) is equivalent to the translation of an L-
formula iff α(x) is invariant for L-bisimulations.

Proof (Sketch). The left to right direction is a consequence of Theorem 1. As
observed in [7] the main ingredient for the right to left direction is that the
class of ω-saturated models have the Hennessy-Milner property. This fact was
proved true for the family of memory logics in Theorem 4. The rest of the proof
is a routine rephrase of the one found in [5, Theorem 2.68] for the basic modal
logic. ut

Notice that the result above holds for all the memory logics we introduced.

We now proceed to investigate definability. The study of definability of classes
of models – i.e., given an arbitrary logic L which are the classes of models that
can be captured as those satisfying a formula (or a set of formulas) of L – is well
developed. Results of this kind are well known, for example, in first order logics.
Traditionally, a class of models that is definable by means of a set of first order
formulas is called elementary and those that can be defined by means of a single
formula are called basic elementary classes.

Definability results for different modal logics have also been established [6,5].
Once more, the results for basic modal logic lifts to memory logics if we consider
the appropriate notion of bisimulation.

Theorem 6 (Definability by a set). A class of pointed models C is definable
by a set of L-formulas iff C is closed under L-bisimulations and under ultraprod-
ucts; and the complement of C is closed under ultrapowers.

Proof. From left to right. Suppose that C is defined by the set Γ of L-formulas
and there is a model 〈M, w〉 ∈ C such that M, w ↔ N , v for some model N , v.
As 〈M, w〉 ∈ C it must occur that M, w |= Γ . By bisimulation preservation we
have N , v |= Γ therefore 〈N , v〉 ∈ C. Hence, C is closed under L-bisimulations.

If C is definable by a set Γ of L-formulas it is also defined by the first order
translation of Γ . Therefore C is elementary which implies that it is closed under
ultraproducts and its complement is closed under ultrapowers [8,9].
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From right to left. Suppose C is closed under L-bisimulations and ultraprod-
ucts, while its complement is closed under ultrapowers. Let Γ be the set of
L-formulas true in every model of C. Trivially C |= Γ . We still have to show that
if M, w |= Γ then 〈M, w〉 ∈ C. Define the following set

Thw(x) = {STx(ϕ) : ϕ is an L-formula and M, w |= ϕ}.

We state that Thw(x) is satisfiable in C. For suppose not. By compactness, there
is a finite subset Σ0 ⊆ Thw(x) such that Σ0 = {σ1, . . . , σn} is not satisfiable in
C.5 This means that the formula ψ = ¬

∧
i σi is valid in C and therefore ψ ∈ Γ .

This is a contradiction because it is obvious that M, w 6|= ψ and by hypothesis
M, w |= Γ . Hence, there is a model 〈N , v〉 ∈ K such that N , v |= Thw(x). It is
easy to see that these models satisfy N , v ≡LM, w.

To finish, suppose that 〈M, w〉 6∈ C, we take ω-saturated extensions 〈N ∗, v∗〉 ∈
C and 〈M∗, w∗〉 6∈ C. As ω-saturated models have the Hennessy-Milner property
(by Theorem 4) this implies that N ∗, v∗ ↔LM∗, w∗. As C is closed under bisim-
ulations then 〈M, w〉 ∈ C, a contradiction. Therefore 〈M, w〉 must be in C. ut

Theorem 7 (Definability by a single formula). A class of pointed models
C is definable by a single L-formula iff C is closed under L-bisimulations and
both C and its complement are closed under ultraproducts.

Proof. From left to right. Suppose C is definable by a single L-formula ϕ. Observe
that the complement of C is defined by ¬ϕ. Using Theorem 6 on C with Γ = {ϕ}
and on its complement with Γ = {¬ϕ} we conclude what we wanted to prove.

From right to left. Suppose that C is closed under L-bisimulations and both
C and its complement are closed under ultraproducts. As the bisimulation re-
lation is symmetric it is easy to see that C is closed under bisimulations iff its
complement is. Using this fact and Theorem 6 twice we have sets of formulas Γ1

defining C and Γ2 defining its complement.
It is obvious that the union of these sets cannot be consistent. Therefore, by

compactness, there exist {α1, . . . , αn} ⊆ Γ1 and {β1, . . . , βm} ⊆ Γ2 such that∧
i αi → ¬

∧
j βj is valid. We claim that it is exactly ϕ =

∧
i αi that defines C.

If 〈M, w〉 ∈ C, it satisfies Γ1 and in particular ϕ. Suppose that M, w |= ϕ.
Hence M, w |= ¬

∧
j βj and therefore M, w 6|= Γ2; i.e., 〈M, w〉 ∈ C. ut

As further research it would be interesting to investigate if Theorems 6 and 7
can be restated using closure under ultrafilter unions, as defined in [15].

4 Interpolation

The notion of bisimulation also plays a crucial role for proving and disproving in-
terpolation properties. Given a formula ϕ, let props(ϕ) be the set of propositional
symbols occurring in ϕ. A modal logic has interpolation over propositional sym-
bols on a class C, if for all formulas ϕ,ψ such that C |= ϕ→ ψ, there is a modal

5 The compactness theorem preserves ultraproducts-closed classes (see [7]).
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formula δ (usually called the interpolant) such that C |= ϕ→ δ, C |= δ → ψ, and
props(δ) ⊆ props(ϕ)∩props(ψ). Note that there is no restriction on the modalities
occurring in δ.

We will show that most of the memory logics we are studying lack interpola-
tion (with the exception ofMLm(〈〈r〉〉) andMLm(〈〈r〉〉,©f )). We will use a classic
technique to prove this, whose general schema is the following. First, we define ϕ
and ψ such that ϕ→ ψ is a valid formula. Then, we find two models 〈M, w〉 and
〈M′, w′〉, such that w and w′ are bisimilar in the common language of ϕ and ψ,
but M, w |= ϕ while M′, w′ |= ¬ψ. This is enough to claim that interpolation
fails. For suppose that interpolation holds. Then there is an interpolant δ in the
common language of ϕ and ψ such that ϕ → δ and δ → ψ are valid. Therefore
δ holds at 〈M, w〉. Because w and w′ are bisimilar in the common language, δ
also holds at 〈M′, w′〉. This implies that ψ holds at 〈M′, w′〉 too, but this is a
contradiction, since we assumed that ¬ψ holds there.

In the context of memory logics, there is a choice to make concerning the
inclusion of ©k in the common language. We will use the term interpolation
over propositional symbols and ©k when we decide to include it in the common
language. We will just say “the common language” when no confusion between
the two notions can arise. Observe that > can always occur in the interpolant,
since otherwise the definition of interpolation can be easily trivialized. Finally,
unless we explicitly say otherwise, we prove interpolation (or the lack thereof)
for the class of all models.

We first show that interpolation over propositional symbols fails forMLm(〈r〉)
and its extension with the©e operator. This is also true for some fragments that
use 〈〈r〉〉 instead of 〈r〉, both over the class of all models and over C∅.

Theorem 8. The logicsMLm(〈r〉),MLm(〈r〉,©e ),MLm∅ (〈r〉),MLm∅ (〈〈r〉〉) and
MLm∅ (〈r〉,©e ) lack interpolation over propositional symbols.

Proof (Sketch). Full details are given in the Appendix. The key ingredient of
the proofs for each logic is the ability to find two models which are bisimilar in
the common language. These results are strongly based on bisimilar models used
in [1] to investigate relative expressive power of different memory logics. ut

We leave the analysis for ©f open, since we could not find an equivalent pair
of models for this case. See [13] for more details.

Now we show that MLm(〈〈r〉〉) has interpolation over propositional symbols
and ©k with respect to a quite general class of models. The technique we use
here is similar to the one presented in [14]. To develop the proof we will need
some tools from model theory. We introduce some definitions and preliminary
results and refer the reader to [8,9,14,12] for details.

Throughout the rest of this section, ↔ refers to MLm(〈〈r〉〉)-bisimulation.
We will use ↔ML when we want to refer to ML-bisimulations.

Definition 9. 1. A total ML frame bisimulation between frames 〈W,R〉 and
〈W ′, R′〉 is a total binary relation on W×W ′ satisfying conditions (nontriv),
(forth) and (back) from Figure 1.
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2. An ML-bisimulation product of a set of frames {Fi | i ∈ I} is a subframe B
of the cartesian product ΠiFi such that for each i ∈ I, the natural projection
function fi : B → Fi is a surjective bounded morphism.

Bisimulation producs, together with the following theorem (see [12] for the
proof), allow us to construct a new frame using a total ML frame bisimulation
between two given frames. This will be helpful later to construct a model that
will act as a witness for the interpolant.

Theorem 10. Let H be a subframe of the product F × G. Then H is an ML-
bisimulation product of F and G iff the domain of H is a total ML frame bisim-
ulation between F and G.

The last ingredient we need is to define total bisimulation in the context of
memory logics. Intuitively, it is a bisimulation in which every possible relevant
pairs are related.

Definition 11 (Total MLm(〈〈r〉〉)-bisimulation). Let M = 〈W,R, V, S〉 and
N = 〈W ′, R′, V ′, S′〉 be two models of MLm(〈〈r〉〉). We say that M, w and N , v
are totally bisimilar (M, w↔T N , v) when there is bisimulation ∼ betweenM, w
and N , v and

1. for every A = {a1, . . . , ak} ⊆ W with aiRai+1, and every a ∈ W there is a
B = {b1, . . . , bk} ⊆W ′ with biR

′bi+1 and b ∈W ′ such that (A, a) ∼ (B, b)
2. for every B = {b1, . . . , bk} ⊆W ′, and every b ∈W ′ there is A = {a1, . . . , ak}
⊆W with aiRai+1 and a ∈M such that (A, a) ∼ (B, b).

Theorem 12. Let C be any elementary frame class closed under generated sub-
frames and bisimulation products. Then MLm(〈〈r〉〉) and MLm(〈〈r〉〉,©f ) have
interpolation over propositions and ©k relative to the class of all models with
frame in C.

Proof (Sketch). Full details are provided in the Appendix. Suppose there are two
MLm(〈〈r〉〉)-formulas ϕ and ψ such that ϕ → ψ is valid, but it does not have
an interpolant in the common language. In general, the bisimulations we discuss
here between a pair of models are always established with respect to the common
language of ϕ and ψ. We first show that there are two models M and N such
thatM, w |= ϕ and N , v |= ¬ψ. We next take ω-saturated modelsM+ and N+

of M and N respectively and show M+, w ↔T N+, v. According to the tree
model property for MLm(〈〈r〉〉) (see [1]), we take equivalent tree MLm(〈〈r〉〉)-
models M+

T and N+
T such that M+, w ↔T M+

T , w and N+, v ↔T N+
T , v. We

conclude M+
T , w ↔T N+

T , v.
Then we switch to the basic modal logic ML. Let M+

TML
and N+

TML
be the

corresponding ML-models of M+
T and N+

T respectively (shifting the signature
to 〈prop ∪ {known},rel〉). Being MLm(〈〈r〉〉) an extension of ML, we have
M+

TML
↔T
ML N

+
TML

. Using Theorem 10, one can show that there is a bisimula-
tion product H ∈ C of the frames of M′ and N ′, and a valuation V such that
(H, V ), 〈w, v〉 |= (ϕ ∧ ¬ψ)[©k /known].
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Since by its definition, H is a tree, we can return toMLm(〈〈r〉〉) and conclude
that ϕ ∧ ¬ψ is satisfiable in some MLm(〈〈r〉〉)-model based on a frame in C,
contradicting our hypothesis. Graphically, the general schema is the following
(the double headed arrows represent total bisimulations):

M

N

M+

N+

M+
T

N+
T

≡

≡

M+
TML

N+
TML

(H, V )ML

ML

ML

Following this schema the result can be proved forMLm(〈〈r〉〉). Then, inter-
polation for MLm(〈〈r〉〉,©f ) is straightforward using the equivalence preserving
translations defined in [1] between MLm(〈〈r〉〉,©f ) and MLm(〈〈r〉〉). ut

5 Conclusions and further work

In this article we investigated some model theoretical properties of several mem-
ory logics. Fist we analyzed memory logics in terms of first-order characterization
and definability. These properties hold for all the logics we introduced, thanks to
a general Hennessy-Milner property for ω-saturated models. Then we studied in-
terpolation and showed that the property fails for many memory logics both over
the class of all models and over C∅. On the other hand, we stablished interpola-
tion over propositional symbols and known for MLm(〈〈r〉〉) and MLm(〈〈r〉〉,©f )
over many different classes of models. Bisimulations were a key tool to tackle
these problems. The results presented here help complete a picture of the prop-
erties of memory logics and contributes to understanding what they are, how
they behave, and which is their relation with other well-known logics.

There are some pending problems that are worth investigating. The expres-
sive power of some memory logics is still not well understood (in particular,
when the language includes the ©f operator, see [1]). This directly leads to the
still unanswered questions concerning interpolation. Also, the Beth definability
property is usually studied together with interpolation, and for many logics, a
proof of the former can be obtained once a proof of the later is at hand. Both
properties are closely connected, and the logics having one but not the other are
relatively few (see [10] for examples). Alas! the case for memory logics is not that
simple. Even though some weak results concerning Beth definability for memory
logics have been established (see [13]), a general conclusion is still missing.
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Appendix

Theorem 4. Let L be a memory logic, the class of ω-saturated models has the
Hennessy-Milner property with respect to L-bisimulations.

Proof. Given two ω-saturated modelsM = 〈W,R, V, S〉 andN = 〈W ′, R′, V ′, S′〉
we propose the binary relation ∼ defined as

(A,w) ∼ (B, v) iff M′, w ≡L N ′, v

as a candidate for a bisimulation whereM′ = 〈W,R, V,A〉, N ′ = 〈W ′, R′, V ′, B〉
and A ∪ {w} ⊆ W , B ∪ {v} ⊆ W ′. Suppose that (A,w) ∼ (B, v). ∼ satisfies
(nontriv) and (agree) by definition.

(kagree): If ©k is an operator of L, then w ∈ A iff M′, w |= ©k iff N ′, v |= ©k iff
v ∈ B. This proves that (kagree) is satisfied.

(remember): Suppose that ©r is an operator of L. Then (A,w) ∼ (B, v) implies
that for every ϕ, M′, w |= ϕ iff N ′, v |= ϕ. In particular, M′, w |= ©rψ iff
N ′, v |=©rψ which by satisfaction definition holds precisely whenM′[w], w |= ψ
iff N ′[v], v |= ψ and hence (A∪{w}, w) ∼ (B∪{v}, v). This proves that (remem-
ber) is satisfied. The conditions (forget) and (erase) are stablished similarly in
logics with the ©f and ©e operators.
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(forth) and (back): These properties are proved as for basic modal logic (see [5,
Proposition 2.54]).

(mforth) and (mback): Since (A,w) ∼ (B, v), we have already seen in the©r case
thatM′[w], w |= ψ iff N ′[v], v |= ψ.6 This implies thatM′[w], w ≡L N ′[v], v. Us-
ing Lemma 3 we also know that 〈M′[w], w〉 and 〈N ′[v], v〉 are both ω-saturated.

Suppose that w′ is a successor of w. Let Σ be the set of all the formulas true
atM′[w], w′. For every finite subset ∆ ⊆ Σ we haveM′[w], w′ |=

∧
∆ and there-

fore M′[w], w |= 〈〈r〉〉
∧
∆. By L-equivalence we have N ′[v], v |= 〈〈r〉〉

∧
∆ which

means that for every ∆ we have a v-successor which satisfies it. By Lemma 2 we
can conclude that there exists v′ a v-successor so that N ′[v], v′ |= Σ.

As M′[w], w′ and N ′[v], v′ make the same formulas true, then they are L-
equivalent and by definition they will be related by the bisimulation. This proves
that (mforth) is satisfied because (A ∪ {w}, w′) ∼ (B ∪ {v}, v′). The proof for
(mback) is similar but switching the models. ut

Theorem 8. The logicsMLm(〈r〉),MLm(〈r〉,©e ),MLm∅ (〈r〉),MLm∅ (〈〈r〉〉) and
MLm∅ (〈r〉,©e ) lack interpolation over propositional symbols.

Proof. We show each case separately.

MLm∅ (〈r〉): Let ϕ = q∧©r [r](¬©k → ϕ′). IfM, w |= ϕ then q is true at w and any
successor of w different from w satisfies ϕ′. Now, let ϕ′ = ¬q ∧ ¬©r 〈r〉(©k ∧ ¬q).
With this definition of ϕ′, if M, w |= ϕ then for all v such that wRv and v 6= w
we have ¬vRv.

Let ψ = p ∧ 〈r〉(¬p ∧ ©r 〈r〉©k ). If M, w |= ψ then there is v 6= w such that
wRv and vRv. It is clear that ϕ ∧ ψ is a contradiction, so ϕ→ ¬ψ is valid.

Let M1 = 〈N, R1, ∅, ∅〉 and M2 = 〈N, R2, ∅, ∅〉, where R1 = {(n,m) | n 6=
m} ∪ {(0, 0)} and R2 = R1 ∪ {(1, 1)}. Graphically,

0

1 2 3 4 · · ·

0

2 3 4 5 · · ·

1

M1 M2

where the accessibility relation is the transitive closure of the arrows shown
but without reflexive loops excepts those explicitly marked. In [1] it was shown
that 〈M1, 0〉 and 〈M2, 0〉 are bisimilar overMLm∅ (〈r〉). Now, define the models
M′1 and M′2 as M1 and M2 respectively but with a nonempty valuation in
the following way: M′1 = 〈N, R1, V1, ∅〉 and M′2 = 〈N, R2, V2, ∅〉, where R1 =
{(n,m) | n 6= m} ∪ {(0, 0)}, R2 = R1 ∪ {(1, 1)}, V1(q) = {0} and V2(p) = {0}.
One can verify that 〈M′1, 0〉 and 〈M′2, 0〉 are bisimilar over the common language
and that M′1, 0 |= ϕ and M′2, 0 |= ψ.

6 We can use ©r here because we required that every memory logic should have it.
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Suppose there is an interpolant χ over the common language of ϕ and ψ for
the valid formula ϕ → ¬ψ. On the one hand, since ϕ is true at 〈M′1, 0〉 then χ
also is. On the other, since ψ is true at 〈M′2, 0〉 then ¬χ also is. Then we have
thatM′1, 0 |= χ andM′2, 0 |= ¬χ, which is a contradiction because 〈M′1, 0〉 and
〈M′2, 0〉 are bisimilar over the common language.

MLm(〈r〉): Let ϕ and ψ be as in the case forMLm∅ (〈r〉). Let θ = ¬©k ∧ [r]¬©k ∧
[r][r]¬©k . Define ϕ′ = ϕ ∧ θ and ψ′ = ψ ∧ θ and repeat the proof above.

MLm∅ (〈〈r〉〉): Observe that in the proof forMLm∅ (〈r〉), instead of ψ, one could use
ψ′ = p∧©r 〈r〉(¬p∧©r 〈r〉(©k ∧¬p)). Now, in both ϕ and ψ′, all occurrences of 〈r〉
are of the form ©r 〈r〉, and all occurrences of [r] are of the form ©r [r]. Therefore
they can be translated to 〈〈r〉〉 and [[r]] preserving equivalence. SinceMLm∅ (〈〈r〉〉)
is less expressive than MLm∅ (〈r〉), both models of the proof for MLm∅ (〈r〉) are
MLm∅ (〈〈r〉〉)-bisimilar and therefore the argument is valid.

MLm∅ (〈r〉,©e ): Let θ(q) =©r 〈r〉(q ∧©k ∧ ¬〈r〉(¬q ∧©k )). Suppose M is a model
with S = {w} where M, w |= q and M, v |= ¬q. It is not difficult to see that
M, v |= θ(q) iff vRw and ¬wRv. Now, let ϕ = q ∧ ©r 〈r〉〈r〉(¬q ∧ θ(q)) and
ψ = p ∧ ©r [r][r](¬©k → (¬p ∧ ¬θ(p))) (here θ(p) is the result of replacing all
occurrences of q by p in the formula θ(q)). If ϕ is true at a point w then there
are points u and v 6= w such that wRuRv and vRw and ¬wRv. If ψ is true at
a point w then for all points u and v 6= w such that wRuRv it is not the case
that and vRw and ¬wRv. Hence |= ϕ→ ¬ψ.

Let M = 〈{s} ∪ N0 ∪ N1 ∪ . . . , R, ∅, ∅〉, where each Ni is a different copy of
N, and R = {(n,m) | n ∈ Ni,m ∈ Nj , i ≤ j} ∪ {(n, s), (s, n) | for all n 6= s}.
Graphically,

N0 N1 N2 N3
. . .

s

In [1] it was showed that 〈M, w0〉 and 〈M, w1〉 are MLm∅ (〈r〉,©e )-bisimilar,
where w0 ∈ N0 and w1 ∈ N1. Let M′ be as M but with a nonempty valuation:
V (p) = {w0}, V (q) = {w1}, and V (r) = ∅ for all r ∈ prop different from p and
q. It is straightforward to verify thatM′, w0 |= ψ andM′, w1 |= ϕ, but 〈M′, w0〉
and 〈M′, w1〉 are MLm∅ (〈r〉,©e )-bisimilar in the common language.

MLm(〈r〉,©e ): Let ϕ and ψ be as in the proof forMLm∅ (〈r〉,©e ). It is easy to see
that ©eϕ → ¬©eψ is a valid formula in the class of MLm(〈r〉,©e )-models. The
rest of the argument is similar. ut

Theorem 12. Let C be any elementary frame class closed under generated sub-
frames and bisimulation products. Then MLm(〈〈r〉〉) and MLm(〈〈r〉〉,©f ) have
interpolation over propositions and known relative to the class of all models with
frame in C.

Proof. We only give the proof of the main theorem. The proofs for the auxiliary
lemmas can be found in [13]. Let ϕ and ψ such that C |= ϕ→ ψ and let L be the
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common language of ϕ and ψ. Suppose for the sake of contradiction that there
is no interpolant of ϕ and ψ in the language L. We first state two easy lemmas:

Lemma 13. There is a model M based on a frame in C, with a state w, such
that M, w |= {χ | C |= ϕ→ χ and χ ∈ L} ∪ {¬ψ}.

Since C is closed under generated subframes we may assume that M is gen-
erated by w.

Lemma 14. There is a model N based on a frame in C, with a state v, such
that N , v |= {χ | M, w |= χ and χ ∈ L} ∪ {ϕ}.

Again we may assume that N is generated by v. Let M+ and N+ be ω-
saturated elementary extensions of M and N respectively. Let us suppose that
the first order modelsM+ and N+ have domains M and N and binary relations
R1 and R2 for the modal operator 〈r〉, respectively.

We define the relation ∼ between ℘(M)×M and ℘(N)×N in the following
way: for all finite A ⊆M and finite B ⊆ N ,

(A, a) ∼ (B, b) iff for all formulas χ in L, M+[A], a |= χ iff N+[B], b |= χ.

By construction (∅, w) ∼ (∅, v). We prove that ∼ is a bisimulation. Call STx the
translation from MLm(〈r〉) formulas to first order logic formulas defined in [1].

Lemma 15. ∼ is an MLm(〈〈r〉〉)-bisimulation between M+ and N+ with re-
spect to L.

Proof. By the definition of ∼, it is clear that the condition (agree) is satisfied,
restricted to L. Let us see (mzig). Suppose (A, a) ∼ (B, b) and aR1a

′. Let

Γ = {STx(χ) | M+[A ∪ {a}], a′ |= χ and χ ∈ L}.

Let cb be a new constant denoting the element b of N+. We next show that
Γ ∪ {R(cb, x)} is realized in N+[B ∪ {b}], where R is the first order binary rela-
tion symbol for 〈〈r〉〉. Since, by Lemma 3, the expansion of N+[B ∪{b}] with the
constant cb is 1-saturated, it suffices to show that every finite subset of Γ is real-
ized in N+[B ∪{b}] by an R2-successor of b. Let STx(χ1), . . . ,STx(χn) ∈ Γ . We
haveM+[A], a |= 〈〈r〉〉(χ1∧· · ·∧χn), and thereforeN+[B], b |= 〈〈r〉〉(χ1∧· · ·∧χn),
which implies that there is an R2-successor of b which satisfies χ1∧· · ·∧χn. I.e.,
in N+[B ∪ {b}] there is an R2-successor which realizes {STx(χ1), . . . ,STx(χn)}.
Hence, there is b′, bR2b

′ such that N+[B∪{b}], gxb′ |= Γ . Therefore for every χ of
L, ifM+[A∪{a}], a′ |= χ then N+[B∪{b}], b′ |= χ. To see the other implication,
suppose by contradiction that N+[B ∪ {b}], b′ |= χ but M+[A ∪ {a}], a′ 6|= χ
(the case M+[A ∪ {a}], a′ |= χ but N+[B ∪ {b}], b′ 6|= χ is similar). This would
imply that M+[A ∪ {a}], a′ |= ¬χ and hence N+[B ∪ {b}], b′ |= ¬χ which leads
to a contradiction. The (mzag) condition is similar.

In order to check (remember), suppose that M+[A], a |= χ iff N+[B], b |= χ
for all χ of L. Now, let χ be any formula of L. By hypothesis, M+[A], a |=©rχ
iff N+[B], b |=©rχ. Applying the definition of©r , we obtainM+[A∪{a}], a |= χ
iff N+[B ∪ {b}], b |= χ. ut
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The following lemma helps prove that ∼ is total.

Lemma 16. For every a ∈ M there is b ∈ N such that (∅, a) ∼ (∅, b); also for
every b ∈ N there is a ∈M such that (∅, a) ∼ (∅, b)
Corollary 17. The MLm(〈〈r〉〉)-bisimulation ∼ is total.

Applying the tree model property for MLm(〈〈r〉〉) (see [1]), let M+
T and N+

T be
treeMLm(〈〈r〉〉)-models such thatM+, w ↔T M+

T , w and N+, v ↔T N+
T , v. By

Corollary 17, M+, w ↔T N+, v, and by transitivity of total bisimulations, we
conclude M+

T , w ↔T N+
T , v.

Now, let M+
TML

and N+
TML

be the ML equivalent models for M+
T and N+

T .

Since MLm(〈〈r〉〉)-bisimulation implies ML-bisimulation, M+
TML

↔T
ML N

+
TML

.

Let F and G be the underlying frames of M+
TML

and N+
TML

respectively. Using
Theorem 10, we know there is a bisimulation product H ∈ C of F and G of
which the domain is ∼. By the definition of bisimulation products, the natural
projections f : H → F and g : H → G are surjective bounded morphisms. For
any proposition letter p ∈ props(ϕ), let V (p) = {u | MTML , f(u) |= p}, and
for any proposition letter p ∈ props(ψ), let V (p) = {u | N+

TML
, g(u) |= p}. The

properties of ∼ guarantee that this V is well-defined for p ∈ props(ϕ)∩props(ψ).
By a standard argument, the graph of f is a bisimulation between (H, V ) and
M+

TML
with respect to props(ϕ), and the graph of g is a bisimulation between

(H, V ) and N+
TML

with respect to props(ψ).
Now we have the appropriate model in which the contradiction is made ex-

plicit, but we have to be able to raise this result to MLm(〈〈r〉〉). Notice that
the model (H, V ) is a tree, since it is the bisimulation product of two trees, and
also that the signature of (H, V ) is 〈prop ∪ {known},rel〉. Therefore, we can
define the MLm(〈〈r〉〉)-model (H, V ′, S) over 〈prop,rel〉 where V ′ = V for all
p ∈ prop and w ∈ V (known) iff w ∈ S. It is easy to see that the equivalent
ML-model for (H, V ′, S) is (H, V ). So now we need some claim that guarantees
us that we can build two relations ∼f and ∼g from the graphs of f and g respec-
tively, such that ∼f is an MLm(〈〈r〉〉)-bisimulation between (H, V ′, S) and M+

T

and ∼g is an MLm(〈〈r〉〉)-bisimulation between (H, V ′, S) and N+
T . We will not

give the proof of this claim here (refer to [13] for more details). Assuming that
we can actually build those relations, it follows that (H, V ′, S), 〈w, v〉 |= ϕ∧¬ψ.
This contradicts our initial assumption that C |= ϕ→ ψ.

For the MLm(〈〈r〉〉,©f ) case. Let Tr be the equivalence preserving translation
defined in [1] that takes MLm(〈〈r〉〉,©f )-formulas to MLm(〈〈r〉〉)-formulas. Ob-
serve that Tr preserves propositional symbols and known, that is, given ϕ ∈
MLm(〈〈r〉〉,©f ),©k occurs in ϕ iff©k occurs in Tr(ϕ) and props(ϕ) = props(Tr(ϕ)).

Let ϕ and ψ be twoMLm(〈〈r〉〉,©f )-formulas such that ϕ→ ψ is valid. Using
Tr, we know that Tr(ϕ)→ Tr(ψ) is a validMLm(〈〈r〉〉)-formula. By Theorem 12,
we know that there is an interpolant χ for Tr(ϕ) and Tr(ψ) in the common
language. Since Tr preserves equivalence, χ is also an interpolant for ϕ and ψ.
Furthermore, given that Tr preserves propositional symbols and known, χ is in
the common language of ϕ and ψ. ut
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