
Basic Model Theory of XPath on Data Trees∗

Diego Figueira
University of Edinburgh

UK

Santiago Figueira
Universidad de Buenos Aires

Argentina

Carlos Areces
Universidad Nacional de Córdoba

Argentina

ABSTRACT
We investigate model theoretic properties of XPath with data
(in)equality tests over the class of data trees, i.e., the class of
trees where each node contains a label from a finite alphabet
and a data value from an infinite domain.

We provide notions of (bi)simulations for XPath logics
containing the child, descendant, parent and ancestor

axes to navigate the tree. We show that these notions pre-
cisely characterize the equivalence relation associated with
each logic. We study formula complexity measures consist-
ing of the number of nested axes and nested subformulas in
a formula; these notions are akin to the notion of quantifier
rank in first-order logic. We show characterization results
for fine grained notions of equivalence and (bi)simulation
that take into account these complexity measures. We also
prove that positive fragments of these logics correspond to
the formulas preserved under (non-symmetric) simulations.
We show that the logic including the child axis is equiva-
lent to the fragment of first-order logic invariant under the
corresponding notion of bisimulation. If upward navigation
is allowed the characterization fails but a weaker result can
still be established. These results hold over the class of pos-
sibly infinite data trees and over the class of finite data trees.

Besides their intrinsic theoretical value, we argue that bi-
simulations are useful tools to prove (non)expressivity re-
sults for the logics studied here, and we substantiate this
claim with examples.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Model theory; H.2.3 [Lan-
guages]: Query Languages; I.7.2 [Document Prepa-
ration]: Markup Languages

General Terms
Theory, Languages

∗This work was partially supported by grant ANPCyT-
PICT-2010-688, the FP7-PEOPLE-2011-IRSES Project
“Mobility between Europe and Argentina applying Logics to
Systems” (MEALS) and the Laboratoire International Asso-
cié “INFINIS”.

1. INTRODUCTION
We study the expressive power and model theory of

XPath—arguably the most widely used XML query lan-
guage. Indeed, XPath is implemented in XSLT and
XQuery and it is used as a constituent part of many
specification and update languages. XPath is, funda-
mentally, a general purpose language for addressing,
searching, and matching pieces of an XML document.
It is an open standard and constitutes a World Wide
Web Consortium (W3C) Recommendation [6].

Core-XPath (term coined in [13]) is the fragment of
XPath 1.0 containing the navigational behavior of XPath.
It can express properties of the underlying tree struc-
ture of the XML document, such as the label (tag name)
of a node, but it cannot express conditions on the ac-
tual data contained in the attributes. In other words, it
only allows to reason about trees over a finite alphabet.
Core-XPath has been well studied and its satisfiability
problem is known to be decidable even in the presence
of DTDs [17, 1]. Moreover, it is known that it is equiva-
lent to FO2 (first-order logic with two variables over an
appropriate signature on trees) in terms of expressive
power [18], and that it is strictly less expressive than
PDL with converse over trees [2]. From a database per-
spective, however, Core-XPath fails to include the sin-
gle most important construct in a query language: the
join. Without the ability to relate nodes based on the
actual data values of the attributes, the logic’s expres-
sive power is inappropriate for many applications.

The extension of Core-XPath with (in)equality tests
between attributes of elements in an XML document is
named Core-Data-XPath in [4]. Here, we will call this
logic XPath=. Models of XPath= are data trees which
can be seen as XML documents. A data tree is a tree
whose nodes contains a label from a finite alphabet and
a data value from an infinite domain (see Figure 1 for
an example). We will relax the condition on finiteness
and consider also infinite data trees, although all our
results hold also on finite structures.

The main characteristic of XPath= is to allow formu-
las of the form 〈α = β〉, where α, β are path expressions,
that navigate the tree using axes: descendant, child,

1

ancestor, next-sibling, etc. and can make tests in
intermediate nodes. The formula is true at a node x of
a data tree if there are nodes y, z that can be reached
by the relations denoted by α, β, respectively, and such
that the data value of y is equal to the data value of z.

Recent articles investigate several algorithmic prob-
lems of logics evaluated over data trees. For example,
satisfiability and evaluation are discussed in [8, 5]. In
particular, all the logics studied in this article have a de-
cidable satisfiability problem [10, 9]; but tools to inves-
tigate their expressive power are still lacking. There are
good reasons for this: in the presence of joins and data
values, classical notions such as Ehrenfeucht-Fräıssé games
or structural bisimulations are difficult to handle. In
this article we take the first steps towards understand-
ing the expressive power and model theory of XPath=

on data trees.

Contribution: XPath= can navigate the data tree by
means of its axes: child (that we will note ↓), descen-
dant (↓∗), parent (↑), ancestor (↑∗), etc. XPath= can
also navigate the data tree horizontally, by going to a
next or previous sibling of the current node. However,
we focus on the vertical axes that allow downward and
upward exploration. In particular, we will discuss the
following languages: XPath↓= (XPath= with ↓); XPathl=
(XPath= with ↓ and ↑); XPath↓↓∗= (XPath= with ↓ and

↓∗); XPathll
∗

= (XPath= with ↓, ↑, ↓∗ and ↑∗); and its
positive fragments. Our main contributions can be sum-
marized as follows:

• In §3 and §5 we introduce bisimulation notions for
XPath↓=, XPath↓↓∗= , XPathl=, and XPathll

∗

= and show
that they precisely characterize the logical equivalence
relation of the respective logic. We also consider fine
grained versions of these bisimulations that take into
account the number of nested axes and subformulas.
The notion of bisimulation for XPathl= relies on a strong
normal form which we also introduce.

• In §4 we show that the simulations associated to the
defined bisimulations characterize the positive fragments
of the logics: a formula is equivalent to a positive for-
mula if and only if it is invariant under simulations.

• In §6 we characterize XPath↓= as the fragment of first-
order logic over data trees (over a signature that in-
cludes the child relation and an equivalence relation)
that is invariant under bisimulations. If we consider
XPathl= instead the characterization fails, but a weaker
result can still be established.

• Using bisimulations we show (non)expressivity results
about XPath= in §7. We characterize, for example, in
which cases increasing the nesting depth increases the
expressive power of XPath↓=.

• All results are proved both over the class of arbitrary
(possibly infinite) data trees, and over the class of finite
data trees.

Related work: The notion of bisimulation was intro-
duced independently by Van Benthem [26] in the con-
text of modal correspondence theory, Milner [19] and
Park [23] in concurrency theory, and Forti and Hon-
sell [11] in non-wellfounded set theory (see [25] for a
historical outlook). This classical work defines a stan-
dard notion of bisimulation but this notion has to be
suitably adapted for a particular, given logic. The no-
tion of bisimulation for a given logic L defines when two
models are indistinguishable for L, that is, when there
is no formula of L that is true in one model but false
in the other. Bisimulations can also be used to obtain
model theoretic characterizations that identifies the ex-
pressive power of a logic L1 in terms of the bisimulation
invariant fragment of a logic L2 which, hopefully, is bet-
ter understood. The challenge, here, is to pinpoint both
the appropriate notion of bisimulation required and the
adequate ‘framework’ logic L2. The classical example of
a result of this kind is Van Benthem’s characterization
for the basic modal logic as the bisimulation (with the
standard notion of bisimulation) invariant fragment of
first-order logic [26]. Van Benthem’s original result over
arbitrary structures was proved to hold for finite struc-
tures by Rosen [24]. The proof was then simplified and
unified by Otto [20, 22], and later expanded by Dawar
and Otto [7] to other classes of structures.

Logics for semi-structured databases can often be seen
as modal logics. In fact, structural characterizations for
XPath without equality test were studied in [14], and
XPath is known to be captured by PDL [15], whose
bisimulation is well-understood [3]. It is then natural to
look for an intuitive bisimulation definition for XPath=.

2. PRELIMINARIES

2.1 Notation
Let N = {1, 2, 3, . . . } and let [n] := {1, . . . , n} for

n ∈ N. We use the symbol A to denote a finite alphabet,
and D to denote an infinite domain (e.g., N) of data
values. In our examples we will consider D = N. We
write X∼Y to say that X is the result of replacing every
data value d ∈ D from Y by f(d) where f : D → D is
some arbitrary bijection, for any objects X, Y . We
write λ for the empty string.

2.2 Data trees
Let Trees(A) be the set of ordered and unranked trees

over an arbitrary alphabet A. We say that T is a data
tree if it is a tree from Trees(A×D) where A is a finite
set of labels and D is an infinite set of data values.
Figure 1 shows an example of a (finite) data tree. A data
tree is finitely branching if every node has finitely
many children. For any given data tree T , we denote
by T its set of nodes. We use letters x, y, z, v, w as
variables for nodes. Given a node x ∈ T of T , we write

2

[[↓]]T = {(x, y) | x→y}

[[↑]]T = {(x, y) | y→x}

[[ε]]T = {(x, x) | x ∈ T}

[[[ϕ]]]T = {(x, x) | x ∈ [[ϕ]]T }

[[¬ϕ]]T = T \ [[ϕ]]T

[[α ∪ β]]T = [[α]]T ∪ [[β]]T

[[ϕ ∧ ψ]]T = [[ϕ]]T ∩ [[ψ]]T

[[↓∗]]T = reflexive transitive closure of [[↓]]T

[[↑∗]]T = reflexive transitive closure of [[↑]]T

[[a]]T = {x ∈ T | label(x) = a}

[[αβ]]T = {(x, z) | (∃y ∈ T) (x, y) ∈ [[α]]T , (y, z) ∈ [[β]]T }

[[〈α〉]]T = {x ∈ T | (∃y ∈ T) (x, y) ∈ [[α]]T }

[[〈α = β〉]]T = {x ∈ T | (∃y,z ∈ T)(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) = data(z)}

[[〈α 6= β〉]]T = {x ∈ T | (∃y,z ∈ T)(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) 6= data(z)}

Table 1: Semantics of XPath= for a data tree T .

x

y

z

a, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

Figure 1: A data tree of Trees(A×D) with A =
{a, b} and D = N.

label(x) ∈ A to denote the node’s label, and data(x) ∈ D
to denote the node’s data value.

Given two nodes x, y ∈ T we write x→y if y is a child
of x, and x

n→y if y is a descendant of x at distance n. In

particular,
1→ is the same as →, and

0→ is the identity
relation. (x

n→) denotes the set of all descendants of x

at distance n, and (
n→y) denotes the sole ancestor of y

at distance n (assuming it has one).
For any binary relation R over elements of data trees,

we say that a property P is R-invariant whenever the
following condition holds: for every data tree T and
u ∈ T , if (T , u) satisfies P and (T , u) is R-related to
(T ′, u′) then (T ′, u′) satisfies P .

2.3 XPath
We introduce the query language XPath adapted to

data trees as abstractions of XML documents. We work
with a simplification of XPath, stripped of its syntac-
tic sugar. We consider fragments of XPath that corre-
spond to the navigational part of XPath 1.0 with data
equality and inequality. XPath= is a two-sorted lan-
guage, with path expressions (that we write α, β, γ)
and node expressions (that we write ϕ,ψ, η). The
fragment XPath=(O), with O ⊆ {↓, ↓∗, ↑, ↑∗}, is defined
by mutual recursion as follows:

α, β ::= o | [ϕ] | αβ | α ∪ β o ∈ O ∪ {ε}
ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 |

〈α = β〉 | 〈α 6= β〉 a ∈ A

A formula of XPath=(O) is either a node expression
or a path expression. To save space, we use XPath↓=
for XPath=(↓); XPathl= for XPath=(↓, ↑); XPath↓↓∗= for

XPath=(↓, ↓∗); and XPathll
∗

= for XPath=(↓, ↑, ↓∗, ↑∗).
We formally define the semantics of XPath= in Ta-

ble 1. As an example, if T is the data tree shown in
Figure 1, then [[〈↓∗[b ∧ 〈↓[b] 6= ↓[b]〉]〉]]T = {x, y, z},
where the formula reads: “there is a descendant node
labeled b, with two children labeled b with different data
values.” For a data tree T and u ∈ T , we write T , u |= ϕ
to denote u ∈ [[ϕ]]T , and we say that T , u satisfies ϕ.
We say that the formulas ϕ,ψ of XPath= are equiv-
alent (notation: ϕ ≡ ψ) iff [[ϕ]]T = [[ψ]]T for all data
trees T . Similarly, path expressions α, β of XPath= are
equivalent (notation: α ≡ β) iff [[α]]T = [[β]]T for all
data trees T .

We call downward XPath to XPath↓= and vertical

XPath to XPathl=.
In terms of expressive power, it is easy to see that ∪

is unessential: every XPath= node expression ϕ has an
equivalent ϕ′ with no ∪ in its path expressions. ϕ′ can
be computed in exponential time without incrementing
the number of nested axes or the number of nested sub-
formulas. It is enough to use the following equivalences
to eliminate occurrences of ∪

〈α� β〉 ≡ 〈β � α〉
〈β(α ∪ α′)β′〉 ≡ 〈βαβ′〉 ∨ 〈βα′β′〉

〈γ � β(α ∪ α′)β′〉 ≡ 〈γ � βαβ′〉 ∨ 〈γ � βα′β′〉

where � ∈ {=, 6=}. We will henceforth assume that
formulas do not contain union of path expressions.

3. BISIMULATION

3.1 Downward XPath
We write dd(ϕ) to denote the downward depth

of ϕ, defined in Table 2. Let `-XPath↓= be the fragment
of XPath↓= consisting of all formulas ϕ with dd(ϕ) ≤ `.

Let T and T ′ be data trees, and let u ∈ T , u′ ∈
T ′. We say that T , u and T ′, u′ are equivalent for
XPath↓= (notation: T , u ≡↓ T ′, u′) iff for all formulas
ϕ ∈ XPath↓=, we have T , u |= ϕ iff T ′, u′ |= ϕ. We
say that T , u and T ′, u′ are `-equivalent for XPath↓=
(notation: T , u ≡↓` T ′, u′) iff for all ϕ ∈ `-XPath↓=, we
have T , u |= ϕ iff T ′, u′ |= ϕ.

3

dd(a) = 0

dd(ϕ ∧ ψ) = max{dd(ϕ), dd(ψ)}
dd(¬ϕ) = dd(ϕ)

dd(〈α〉) = dd(α)

dd(〈α� β〉) = max{dd(α),dd(β)}
dd(λ) = 0

dd(εα) = dd(α)

dd([ϕ]α) = max{dd(ϕ), dd(α)}
dd(↓α) = 1 + dd(α)

Downward depth

vd(a) = (0, 0)

vd(ϕ ∧ ψ) = max{vd(ϕ), vd(ψ)}
vd(¬ϕ) = vd(ϕ)

vd(〈α〉) = vd(α)

vd(〈α� β〉) = max{vd(α), vd(β)}
vd(λ) = (0, 0)

vd(εα) = vd(α)

vd([ϕ]α) = max{vd(ϕ), vd(α)}
vd(↓α) = max{(0, 0), vd(α) + (1,−1)}
vd(↑α) = max{(0, 0), vd(α) + (−1, 1)}

Vertical depth

nd(a) = 0

nd(ϕ ∧ ψ) = max{nd(ϕ), nd(ψ)}
nd(¬ϕ) = nd(ϕ)

nd(〈α〉) = nd(α)

nd(〈α� β〉) = max{nd(α),nd(β)}
nd(αβ) = max{nd(α),nd(β)}

nd(ε) = 0

nd([ϕ]) = 1 + nd(ϕ)

nd(↓) = 0

nd(↑) = 0

Nesting depth

Table 2: Definitions of downward depth, vertical depth and nesting depth. (a ∈ A, � ∈ {=, 6=}, ‘+’ and
‘max’ are performed component-wise, α is any path expression or the empty string λ.)

For every `, there are finitely many different formulas
ϕ of dd(ϕ) ≤ ` up to logical equivalence.

Proposition 3.1. ≡↓` has finite index.

Corollary 3.2. {T ′, u′ | T , u ≡↓` T ′, u′} is defin-

able by an `-XPath↓=-formula χ`,T ,u.

3.1.1 Bisimulation and `-bisimulation
Let T and T ′ be two data-trees. We say that u ∈

T and u′ ∈ T ′ are bisimilar for XPath↓= (notation:
T , u↔↓ T ′, u′) iff there is a relation Z ⊆ T × T ′ such
that uZu′ and for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig (Figure 2): If xZx′, x
n→v and x

m→w then

there are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i→v)Z (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Z (

i→w′) for all 0 ≤ i < m.

• Zag: If xZx′, x′
n→v′ and x′

m→w′ then there are
v, w ∈ T such that x

n→v, x
m→w and items 1, 2

and 3 above are verified.

For a data tree T and u ∈ T , let T |u denote the sub-

tree of T induced by {v ∈ T | (∃n) u
n→v}. Observe that

the root of T |u is u. The following results are straight-
forward consequences of the definition of bisimulation:

Proposition 3.3. T , u↔↓ (T |u), u.

Proposition 3.4. If T is a subtree of T ′ and u ∈ T
then T , u↔↓ T ′, u.

We say that u ∈ T and u′ ∈ T ′ are `-bisimilar for
XPath↓= (notation: T , u↔↓` T ′, u′) if there is a family
of relations (Zj)j≤` in T × T ′ such that uZ`u

′ and for
all j ≤ `, x ∈ T and x′ ∈ T ′ we have

=
(6=

)

8v 9v0

8w 9w0

T T 0

n

m

x x0

Z

=
(6=

)

Figure 2: Zig clause of bisimulation for XPath↓=.

• Harmony: If xZjx
′ then label(x) = label(x′).

• Zig: If xZjx
′, x

n→v and x
m→w with n,m ≤ j then

there are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i→v)Zj−n+i (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Zj−m+i (

i→w′) for all 0 ≤ i < m.

• Zag: If xZjx
′, x′

n→v′ and x′
m→w′ with n,m ≤ j

then there are v, w ∈ T such that x
n→v, x

m→w and
items 1, 2 and 3 above are verified.

Clearly if T , u↔↓ T ′, u′ then T , u↔↓` T ′, u′ for all `.

Proposition 3.5. Suppose T and T ′ have height at
most `, u ∈ T , and u′ ∈ T ′. Then T , u↔↓` T ′, u′ iff
T , u↔↓ T ′, u′.

For a data tree T and u ∈ T , let T |`u denote the subtree

of T induced by {v ∈ T | (∃n ≤ `) u n→v}.

Proposition 3.6. T , u↔↓` (T |`u), u.

4

3.1.2 Equivalence and bisimulation
We now show that↔↓ coincides with ≡↓ on finitely

branching data trees, and that↔↓` coincides with ≡↓` .
Theorem 3.7.

1. T , u↔↓ T ′, u′ implies T , u ≡↓ T ′, u′. The converse
also holds when T and T ′ are finitely branching.

2. T , u↔↓` T ′, u′ iff T , u ≡↓` T ′, u′.
The Theorem above (see Appendix for details) is a con-
sequence of the next two propositions:

Proposition 3.8. T , u ↔↓` T ′, u′ implies T , u ≡↓`
T ′, u′.
Proof. We actually show that if T , u↔↓` T ′, u′ via

(Zi)i≤` then for all 0 ≤ n ≤ j ≤ `, for all ϕ with
dd(ϕ) ≤ j, and for all α with dd(α) ≤ j:

1. If xZjx
′ then T , x |= ϕ iff T ′, x′ |= ϕ;

2. If x
n→v, x′

n→v′ and (
i→v)Z(j−n)+i (

i→v′) for all 0 ≤
i ≤ n, then (x, v) ∈ [[α]]T iff (x′, v′) ∈ [[α]]T

′
.

We show 1 and 2 by induction on |ϕ|+ |α|.
Let us see item 1. The base case is ϕ = a for some

a ∈ A. By Harmony, label(x) = label(x′) and then
T , x |= ϕ iff T ′, x′ |= ϕ. The Boolean cases for ϕ are
straightforward.

Suppose ϕ = 〈α = β〉. We show T , x |= ϕ⇒ T ′, x′ |=
ϕ, so assume T , x |= ϕ. Suppose there are v, w ∈ T and

n,m ≤ j such that x
n→v, x

m→w, (x, v) ∈ [[α]]T , (x,w) ∈
[[β]]T and data(v) = data(w). By Zig, there are v′, w′ ∈
T ′ such that x′

n→v′, x′m→w′, (
i→v)Zj−n+i (

i→v′) for all

0 ≤ i ≤ n, (
i→w)Zj−m+i (

i→w′) for all 0 ≤ i ≤ m, and
data(v′) = data(w′). By inductive hypothesis 2 (twice),
(x′, v′) ∈ [[α]]T

′
and (x′, w′) ∈ [[β]]T

′
. Hence T ′, x′ |= ϕ.

The implication T ′, x′ |= ϕ ⇒ T , x |= ϕ is analogous.
The case ϕ = 〈α 6= β〉 is shown similarly. The case
ϕ = 〈α〉 is similar (and simpler) to the previous case.

Let us now analyze item 2. We only show the ‘only
if’ direction. The base case is when α ∈ {ε, ↓}. If α = ε
then v = x and so n = 0. Since v′ = x′, we conclude
(x′, v′) ∈ [[α]]T

′
. If α =↓ then x→v in T , and so n = 1.

Since x′→v′, we have (x′, v′) ∈ [[α]]T
′
.

For the inductive step, let

x0, . . . , xn ∈ T and x′0, . . . , x
′
n ∈ T ′

be such that

x = x0→x1→x2→· · ·→xn = v in T ,
x′ = x′0→x′1→x′2→· · ·→x′n = v′ in T ′,

and xiZj−ix′i for all 0 ≤ i ≤ n. Assume, for contra-

diction, that (x′, v′) /∈ [[α]]T
′
. Then, there is a subfor-

mula ϕ of α and k ∈ {0, . . . , n} such that T , xk |= ϕ
and T ′, x′k 6|= ϕ(this is shown in Lemma A.1 in the
Appendix). This contradicts the inductive hypothe-
sis 1.

Proposition 3.9. T , u ≡↓` T ′, u′ implies T , u ↔↓`
T ′, u′.

Proof. Fix u ∈ T and u′ ∈ T ′ such that T , u ≡↓`
T ′, u′. Define (Zi)i≤` by

xZix
′ iff T , x ≡↓i T ′, x′.

We show that Z is an `-bisimulation between T , u and
T ′, u′. By hypothesis, uZ`u

′. Fix h ≤ `, by construc-
tion, Zh satisfies Harmony. Let us see that Zh satisfies
Zig (the case for Zag is analogous). Suppose xZhx

′,

x = v0→v1→· · ·→vn = v in T ,
x = w0→w1→· · ·→wm = w in T ,

and data(v) = data(w) (the case data(v) 6= data(w) is
shown in a similar way), where m,n ≤ h. Let P ⊆ T ′2

be defined by

P = {(v′, w′) | x′ n→v′ ∧ x′m→w′ ∧ data(v′) = data(w′)}.
Since T , x ≡↓h T ′, x′, dd(〈↓n=↓m〉) ≤ h and T , x |=
〈↓n=↓m〉, we conclude that P 6= ∅. We next show that
there exists (v′, w′) ∈ P such that

i. x′ = v′0→v′1→· · ·→v′n = v′ in T ′,
ii. x′ = w′0→w′1→· · ·→w′m = w′ in T ′,

iii. (∀i ∈ {0, . . . , n}) T , vi ≡↓h−i T ′, v′i, and

iv. (∀j ∈ {0, . . . ,m}) T , wj ≡↓h−j T ′, w′j ,
and hence Zig is satisfied by Zh. By way of contradic-
tion, assume that for all (v′, w′) ∈ P satisfying i and ii
we have either

(a) (∃i ∈ {0, . . . , n}) T , vi 6≡↓h−i T ′, v′i, or

(b) (∃j ∈ {0, . . . ,m}) T , wj 6≡↓h−j T ′, w′j .

Fix > as any tautology such that dd(>) = 0. For
each (v′, w′) ∈ P we define two families of formulas,

ϕ0
v′,w′ , . . . , ϕ

n
v′,w′ and ψ0

v′,w′ , . . . , ψ
m
v′,w′ ,

satisfying that dd(ϕiv′,w′) ≤ h − i for all i ∈ {0, . . . , n}
and dd(ψjv′,w′) ≤ h− j for all j ∈ {0, . . . ,m} as follows:

• Suppose that (a) holds and that i is the smallest

number such that T , vi 6≡↓h−i T ′, v′i. Let ϕiv′,w′ be

such that dd(ϕiv′,w′) ≤ h − i and T , vi |= ϕiv′,w′

but T ′, v′i 6|= ϕiv′,w′ . For k ∈ {0, . . . , n} \ {i}, let

ϕkv′,w′ = >, and for k ∈ {0, . . . ,m}, let ψkv′,w′ = >.

• Suppose that (a) does not hold. Then (b) holds.

Let j be the smallest number such that T , wj 6≡↓h−j
T ′, w′j . Let ψjv′,w′ be such that dd(ψjv′,w′) ≤ h −
j and T , wj |= ψjv′,w′ but T ′, w′j 6|= ψjv′,w′ . For

k ∈ {0, . . . ,m} \ {j}, let ψkv′,w′ = >, and for k ∈
{0, . . . , n}, let ϕkv′,w′ = >.

5

For each i ∈ {0, . . . , n} and j ∈ {0, . . . ,m}, let

Φi =
∧

(v′,w′)∈P
ϕiv′,w′ and Ψj =

∧

(v′,w′)∈P
ψjv′,w′ . (1)

Since dd(ϕiv′,w′) ≤ h−i, by Proposition 3.1, there are

finitely many non-equivalent formulas ϕiv′,w′ ; the same

applies to ψjv′,w′ . Hence, both infinite conjunctions in
(1) are equivalent to finite ones, and we may assume
that Φi and Ψj are well-formed formulas. Finally, let

α = [Φ0]↓[Φ1]↓ · · · ↓[Φn] and β = [Ψ0]↓[Ψ1]↓ · · · ↓[Ψm].

By construction, dd(α),dd(β) ≤ h and so dd(〈α =
β〉) ≤ h. Furthermore, T , x |= 〈α = β〉 and T ′, x′ 6|=
〈α = β〉. This contradicts T , x ≡↓h T ′, x′.

3.2 Vertical XPath
We now study bisimulation for XPathl=. Interest-

ingly, the notion we give is simpler than the one for
XPath↓= due to a normal form enjoyed by the logic.

In the downward fragment of XPath= we used dd(ϕ)
to measure the maximum depth from the current point
of evaluation that the formula can access. For the ver-
tical fragment of XPath=, we need to define both the
maximum distance r going downward and the maximum
distance s going upward that the formula can reach. We
call the pair (r, s) the vertical depth of a formula. For-
mally, the vertical depth of a formula ϕ (notation:
vd(ϕ)) is the pair vd(ϕ) ∈ Z2

≥0 defined in Table 2.
The nesting depth of a formula ϕ (notation: nd(ϕ))

is the maximum number of nested [] appearing in ϕ.
See Table 2 for the formal definition.

Let (r, s, k)-XPathl= be the set of all formulas ϕ in

XPathl= with vd(ϕ) ≤ (r, s) and nd(ϕ) ≤ k.
Let T and T ′ be data trees, let u ∈ T and u′ ∈ T ′. We

say that T , u and T ′, u′ are equivalent for XPathl=
(notation: T , u ≡l T ′, u′) iff for all ϕ ∈ XPathl=, we
have T , u |= ϕ iff T ′, u′ |= ϕ. T , x and T ′, x′ are (r, s)-

equivalent [resp. (r, s, k)-equivalent] for XPathl=,

and we note it T , x ≡lr,s T ′, x′ [resp. T , x ≡lr,s,k T ′, x′]
if they satisfy the same XPathl= formulas ϕ so that
vd(ϕ) ≤ (r, s) [resp. vd(ϕ) ≤ (r, s) and nd(ϕ) ≤ k].

3.2.1 Normal form
We define a useful normal form for XPathl= that will

be implicitly used in the definition of bisimulation in
the section. For n ≥ 0, let ↓n denote the concatenation
of n symbols ↓. I.e., ↓0 is the empty string λ, ↓1 = ↓,
and ↓n+1 = ↓↓n (similarly for ↑n).

A path expression α of XPathl= is downward [resp.
upward] if it is of the form ↓n[ϕ] [resp. [ϕ]↑n] for some

n ≥ 0 with ϕ ∈ XPathl=. For example, ↓[〈↑〉] is a down-
ward expression whereas ↓[〈↓〉]↓ is not. An up-down
expression is any expression of the form ε, α↑, α↓ or

α↑α↓ where α↑ is upward and α↓ is downward. Hence-
forth we will use α↑, β↑, γ↑ to denote upward expres-
sions and α↓, β↓, γ↓ to denote downward expressions
and α↑↓, β↑↓, γ↑↓ to denote up-down expressions. Note
that in particular any downward or upward expression
is an up-down expression. An XPathl= formula or ex-
pression is in up-down normal form if every path
expression contained in it is up-down and every data
test is of the form 〈ε� α↑↓〉 with � ∈ {=, 6=}.

Proposition 3.10. Let ϕ ∈ (r, s, k)-XPathl=. There

is ϕ↑↓ ∈ XPathl= in up-down normal form such that

1. ϕ↑↓ ≡ ϕ;

2. vd(ϕ↑↓) = (r, s); and

3. nd(ϕ↑↓) ≤ k · (r + s+ 2).

3.2.2 Finite index
Contrary to the case of XPath↓= (cf., Proposition 3.1),

the logical equivalence relation restricted to XPathl=-
formulas of bounded vertical depth has infinitely many
equivalence classes.

Proposition 3.11. If r+s ≥ 2 then ≡lr,s has infinite
index.

In the proof of the above proposition (see Appendix)we
need to use formulas with unbounded nesting depth. In
fact, when restricted to bounded nesting depth there are
only finitely many formulas up to logical equivalence, as
stated next.

Proposition 3.12. ≡lr,s,k has finite index.

Corollary 3.13. {T ′, u′ | T , u ≡lr,s,k T ′, u′} is de-

finable by an (r, s, k)-XPathl=-formula.

3.2.3 Bisimulation and (r, s, k)-bisimulation
The advantage of the normal form presented in Sec-

tion 3.2.1, is that it makes it possible to use a very sim-
ple notion of bisimulation. The disadvantage is that,

since it does not preserve nesting depth,↔lr,s,k does not

correspond precisely to ≡lr,s,k, although↔l corresponds

precisely to ≡l. Nonetheless, we obtain, for all r, s, k,

↔r,s,k ⊆ ≡lr,s,k ⊆ ↔
l
r,s,k·(r+s+2).

Let T and T ′ be two data-trees. We say that u ∈
T and u′ ∈ T ′ are bisimilar for XPathl= (notation:
T , u↔l T ′, u′) iff there is a relation Z ⊆ T × T ′ such
that uZu′ and for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′),

• Zig (Figure 3): If xZx′, y
n→x and y

m→z then

there are y′, z′ ∈ T ′ such that y′
n→x′, y′m→z′, data(z)

= data(x)⇔ data(z′) = data(x′), and zZz′.

6

x x0

8y

8z 9z0

9y0

T T 0

n

m

Z

=
(6=

)=
(6=

)

Figure 3: Zig clause of bisimulation for XPathl=

• Zag: If xZx′, y′
n→x′ and y′

m→z′ then there are
y, z ∈ T such that y

n→x, y
m→z, data(z) = data(x)⇔

data(z′) = data(x′), and zZz′.

Observe that contrary to the definition of↔↓, the
conditions above do not require intermediate nodes to
be related by Z. This is a direct consequence of the
up-down normal form (Proposition 3.10).

We say that u ∈ T and u′ ∈ T ′ are (r, s, k)-bisimilar

for XPathl= (notation: T , u↔lr,s,k T ′, u′) if there is

a family of relations (Z k̂r̂,ŝ)r̂+ŝ≤r+s,k̂≤k in T × T ′ such

that uZkr,su
′ and for all r̂ + ŝ ≤ r + s, k̂ ≤ k, x ∈ T and

x′ ∈ T ′ we have that the following conditions hold.

• Harmony: If xZ k̂r̂,ŝx
′ then label(x) = label(x′).

• Zig: If xZ k̂r̂,ŝx
′, y

n→x and y
m→z with n ≤ ŝ and

m ≤ r̂ + n then there are y′, z′ ∈ T ′ such that
y′

n→x′, y′m→z′, and the following hold

(1) data(z) = data(x)⇔ data(z′) = data(x′),

(2) if k̂ > 0, zZ k̂−1
r̂′,ŝ′z

′ for r̂′ = r̂ + n − m, ŝ′ =
ŝ− n+m.

• Zag: If xZ k̂r̂,ŝx
′, y′

n→x′ and y′
m→z′ with n ≤ ŝ and

m ≤ r̂+ n then there are y, z ∈ T such that y
n→x,

y
m→z, and items (1) and (2) above are verified.

Observation 3.14. If xZ k̂r̂,ŝx
′, y

n→x and y′
n→x′ then

it follows that yZ k̂−1
r̂′,ŝ′y

′, for r̂′ = r̂ + n, ŝ′ = ŝ − n.

The same occurs with Z instead of Z k̂r̂,ŝ for the case of
bisimilarity.

For a data tree T and u ∈ T , let T |sru denote the
subtree of T induced by

{v ∈ T | (∃m ≤ s) (∃n ≤ r+m) (∃w ∈ T) w
m→u∧ w n→v}.

Proposition 3.15. T , u↔lr,s,k (T |sru), u.

3.2.4 Equivalence and bisimulation
The next result says that↔l coincides with ≡l on

finitely branching data trees, and states precisely in

what way↔lr,s,k is related to ≡lr,s,k.

Theorem 3.16.

1. T , u↔l T ′, u′ implies T , u ≡l T ′, u′. The converse
also holds when T and T ′ are finitely branching.

2. T , u↔lr,s,k·(r+s+2) T ′, u′ implies T , u ≡lr,s,k T ′, u′.

3. T , u ≡lr,s,k T ′, u′ implies T , u↔lr,s,k T ′, u′.

Corollary 3.17.↔lr,s,k has finite index.

4. SIMULATION
In this section we define notions of directed (non-

symmetric) simulations for XPath↓= and XPathl=, as it
is done, e.g., in [16] for some modal logics. We obtain
results similar to Theorems 3.7 and 3.16 but relating
each simulation notion with the corresponding logical
implication.

We say that an XPath= formula is positive if it
contains no negation ¬ and no inequality data tests
〈α 6= β〉. For L one of XPath↓=, XPathl=, XPath↓↓∗= , or

XPathll
∗

= , we write L+ for the positive fragment of L.

A simulation for XPath↓= [resp. for XPathl=] is sim-
ply a bisimulation from which the Zag clause and half of
the first condition in the Zig clause have been omitted.
Observe that simulations need not be symmetric.

Formally, we say that u ∈ T is similar to u′ ∈ T ′

for XPath↓= (notation: T , u →↓ T ′, u′) iff there is a
relation Z ⊆ T × T ′ such that uZu′ and for all x ∈ T
and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig: If xZx′, x
n→v and x

m→w then there are v′, w′ ∈
T ′ such that x′

n→v′, x′m→w′ and

1. data(v) = data(w)⇒ data(v′) = data(w′),

2. (
i→v)Z (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Z (

i→w′) for all 0 ≤ i < m.

u ∈ T is similar to u′ ∈ T ′ for XPathl= (notation:
T , u→l T ′, u′) iff there is a relation Z ⊆ T × T ′ such
that uZu′ and for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig: If xZx′, y
n→x and y

m→z then there are y′, z′ ∈
T ′ such that y′

n→x′, y′m→z′, zZz′, and if data(z) =
data(x) then data(z′) = data(x′).

7

Relations→↓` and→lr,s,k are defined accordingly. We
define one-way (non-symmetric) logical implication be-
tween models as follows. We write T , uV↓ T ′, u′ for

(∀ϕ ∈ XPath↓+=) [T , u |= ϕ⇒ T ′, u′ |= ϕ].

Define V↓` , V
l, and Vlr,s,k in an analogous way for `-

XPath↓+= , XPathl+= , (r, s, k)-XPathl+= , respectively. As
for bisimulation, we have that→ coincides with V.

Theorem 4.1.

1. Let † ∈ {↓, l}. T , u→† T ′, u′ implies T , uV† T ′, u′.
The converse holds when T ′ is finitely branching.

2. T , u→↓` T ′, u′ iff T , uV↓` T ′, u′.

3. T , u→lr,s,k·(r+s+2) T ′, u′ implies T , uVlr,s,k T ′, u′.

4. T , uVlr,s,k T ′, u′ implies T , u→lr,s,k T ′, u′.

We say that T ′ is a substructure of T if T ′ is a data
tree which results from removing some nodes of T , i.e.,
T ′ ⊆ T and for all u, v ∈ T ′ we have: 1) u→v on T iff
u→v on T ′; 2) label(u) on T ′ equals label(u) on T ; and
3) data(u) on T ′ equals data(u) on T . Equivalently,
seen as σ-structures, T ′ is the σ-substructure of T in-
duced by T ′ ⊆ T . One can verify that the identity on
T ′ is a simulation for XPathl= from T ′ to T .

Lemma 4.2. If T ′ is a substructure of T and u′ ∈ T ′
then T ′, u′→l T , u′.

We obtain that the formulas of XPath= invariant un-
der simulations are, precisely, the positive ones.

Theorem 4.3.

1. ϕ ∈ XPath↓= is→↓-invariant [resp.→↓`] iff it is equiv-

alent to a formula of XPath↓+= [resp. `-XPath↓+=].

2. ϕ ∈ XPathl= is →l-invariant iff it is equivalent to a

formula of XPathl+= .

3. If ϕ ∈ XPathl= is →lr,s,k-invariant then it is equiva-

lent to a formula of (r, s, k)-XPathl+= .

4. If ϕ ∈ XPathl= is equivalent to a formula of (r, s, k)-

XPathl+= then ϕ is→lr,s,k′-invariant, for k′ = k · (r+
s+ 2).

5. ADDING TRANSITIVITY
As it happens, for example, with the basic modal logic

and propositional dynamic logic, the same notion of
bisimulation [resp. simulation] of each logic captures the
logical equivalence [resp. logical implication] for the cor-
responding fragments including the reflexive-transitive
closure of the axes which are present. Intuitively, this

occurs because ↓∗ is an infinite union of compositions
of ↓, and similarly for ↑.

Let ≡↓↓∗ and ≡ll∗ be the logical equivalence relation
for XPath↓↓∗= and XPathll

∗

= respectively, and let V↓↓
∗

and Vll
∗

be the logical implication for XPath↓↓∗+= and

XPathll
∗+

= respectively.

Theorem 5.1. Let † ∈ {↓↓∗, ll∗}.

1. T , u ↔† T ′, u′ implies T , u ≡† T ′, u′. The con-
verse also holds when T ′ is finitely branching.

2. T , u →† T ′, u′ implies T , u V† T ′, u′. The con-
verse also holds when T ′ is finitely branching.

6. CHARACTERIZATION
In §6.1 we show that there is a truth-preserving trans-

lation from XPathl= to first-order logic over an appro-
priate signature. In §6.2 we characterize XPath↓= as
the fragment of first-order logic↔↓-invariant over data
trees. In §6.3 we show that this result fails for XPathl=
in general, but a weaker result can still be proved.

6.1 Translating to first-order logic
We say that an XPathl=-path expression α is in sim-

ple normal form if it is of the form

[ϕ0]o1[ϕ1]o2 · · · on[ϕn],

for n ≥ 0, ϕi ∈ XPathl=, and oi ∈ {↓, ↑}.

Proposition 6.1. For any XPathl=- [resp. XPath↓=-]

path expression α there is an equivalent XPathl=- [resp.
XPath↓=-] path expression α′ in simple normal form.
Further, α′ can be computed in polynomial time from α.1

We say that an XPathl=-formula ϕ is in simple normal
form if each path expression α occurring in ϕ is in
simple normal form.

Fix the signature σ with binary relations and ≈,
and a unary predicate Pa for each a ∈ A. Any data tree
T can be seen as a first-order σ-structure such that

 T = {(x, y) ∈ T 2 | y is a child of x};
≈T = {(x, y) ∈ T 2 | data(x) = data(y)};
P Ta = {x ∈ T | label(x) = a}.

We define the following translation Tr mapping XPathl=
formulas in simple normal form to first-order σ-formulas:

Trx(a) = Pa(x) (a ∈ A)

Trx(ϕ † ψ) = Trx(ϕ) † Trx(ψ) († ∈ {∧,∨})
Trx(¬ϕ) = ¬Trx(ϕ)

Trx(〈α〉) = (∃ȳ)
(
x = y0 ∧ Trȳ(α)

)

Trx(〈α = β〉) = (∃ȳ)(∃z̄)
(
x = y0 ∧ x = z0 ∧ yn ≈ zm∧

1Note that this proposition holds only for paths expressions
without union.

8

Trȳ(α) ∧ Trz̄(β)
)

Trx(〈α 6= β〉) = (∃ȳ)(∃z̄)
(
x = y0 ∧ x = z0 ∧ yn 6≈ zm∧

Trȳ(α) ∧ Trz̄(β)
)

Trȳ(α) =

n−1∧

i=0

oi+1(yi, yi+1) ∧
n∧

i=0

Tryi(ϕi),

where ȳ = y0, . . . , yn and z̄ = z0, . . . , zm, and are fresh
when quantified in the fourth and fifth definition;

α = [ϕ0]o1[ϕ1]o2[ϕ2]o3 · · · on[ϕn];

β = [ψ0]o′1[ψ1]o′2[ψ2]o′3 · · · o′m[ψm];

oi, o
′
i ∈ {↓, ↑}; oj(u, v) represents u v if oj = ↓, and

v u otherwise.

Proposition 6.2. For ϕ ∈ XPathl= we have T , u |=
ϕ iff T |= Trx(ϕ)(u).

6.2 Downward XPath
Let FO(σ) be the set of first-order formulas over a

given signature σ, and let C be a class of σ-models. An
FO(σ)-formula ϕ(x) is `-local if for all data trees T
and u ∈ T , we have T |= ϕ(u)⇔ T |`u |= ϕ(u). Finally,
for ϕ ∈ FO(σ) let qr(ϕ) be its quantifier rank, i.e., the
depth of nesting of its quantifiers.

Observe that the following result has two readings:
one classical, and one restricted to finite models.

Theorem 6.3 (Characterization). Let ϕ(x) ∈
FO(σ). The following are equivalent:

(i) ϕ is↔↓-invariant over [finite] data-trees;

(ii) ϕ is logically equivalent over [finite] data-trees to
an `-XPath↓=-formula, where ` = 2qr(ϕ) − 1.

Proof. The implication (ii) ⇒ (i) follows straight-
forwardly from Theorem 3.7. The proof of (i) ⇒ (ii)
goes as follows: First, we show that any↔↓-invariant
ϕ(x) ∈ FO(σ) is `-local for ` = 2qr(ϕ) − 1 (Proposi-
tion 6.4). Then, we prove that any↔↓-invariant ϕ(x) ∈
FO(σ) that is `-local is↔↓` -invariant(Proposition B.2
in the Appendix). Finally, we show that any FO(σ)-

definable property which is↔↓` -invariant is definable in

`-XPath↓=(Proposition B.3 in the Appendix).

Proposition 6.4. Any↔↓-invariant ϕ(x) ∈ FO(σ)
over [finite] data-trees is `-local for ` = 2qr(ϕ) − 1.

Proof. We follow Otto’s proof [20]. Assume that
ϕ(x) ∈ FO(σ) is↔↓-invariant, let q = qr(ϕ), and put
` = 2q − 1. Given a data tree T and u ∈ T it suffices
to show the existence of data trees T ′ and T ′′, with
corresponding elements u′ ∈ T ′ and u′′ ∈ T ′′ such that

(a) T ′, u′↔↓ T , u,

(b) T ′′, u′′↔↓ (T |`u), u, and

| {z }
q copies

⌘q

u0 u00

| {z }
q copies

| {z }
q copies

| {z }
q copies

Figure 4: Definition of T ′, u′ and T ′′, u′′.

(c) T ′, u′ ≡q T ′′, u′′.
Indeed, from the above conditions it follows that

T |= ϕ(u) iff T ′ |= ϕ(u′) ((a) and↔↓-inv. of ϕ)

iff T ′′ |= ϕ(u′′) (c)

iff (T |`u) |= ϕ(u), ((b) and↔↓-inv. of ϕ)

and hence ϕ is `-local. By Proposition 3.3 one may
assume that u ∈ T is the root of T .

We define T ′ and T ′′, as structures that are disjoint
copies of sufficiently many isomorphic copies of T and
T |`u, respectively, all tied together by some common
root. Both structures have q isomorphic copies of both
T and T |`u, and only distinguish themselves by the
nature of the one extra subtree, in which u′ and u′′ live,
respectively: u′ is the root of one of the copies of T
and u′′ is the root of one of the copies of T |`u. We
indicate the two structures in the diagram of Figure 4,
with distinguished elements u′ and u′′ marked by •; the
open cones stand for copies of T , the closed cones for
copies of T |`u. The new isomorphic copies have the
same data values as the original one. The new root has
an arbitrary, fixed, data value and label.

By Proposition 3.4, it is straightforward that condi-
tions (a) and (b) are satisfied. Condition (c) is true
because one can exhibit a strategy for player II in the
q-round Ehrenfeucht-Fräıssé game on structures T ′ and
T ′′. The strategy is exactly the same used in [20].

6.3 Vertical XPath
The analog of Theorem 6.3 fails for XPathl=:

Lemma 6.5. The FO(σ)-formula

(∃x) Pa(x)

is↔l-invariant though not logically equivalent over [fi-

nite] data-trees to any XPathl=-formula.

Hence XPathl= is not the fragment of FO(σ) which is
↔l-invariant over [finite] data-trees. However, the fol-
lowing analog of Proposition B.3 (needed for the proof

of Theorem 6.3) still holds for the case of XPathl=:

Proposition 6.6. Let k′ = k · (r+ s+ 2). If ϕ(x) ∈
FO(σ) is↔lr,s,k′-invariant over [finite] data-trees, then

9

there is ψ ∈ (r, s, k)-XPathl= such that Trx(ψ) is logi-
cally equivalent to ϕ over [finite] data-trees.

Notice that the counterexample in Lemma 6.5 is an
unrestricted, existential formula. One may wonder if
it might be possible to extend the expressive power of
XPathl= to accout for unrestricted quantification. The
natural candidate would be the modal operator E (usu-
ally known as the existential modality) which, intu-
itively, let us express that there is some node in the
model where a formula holds. But even with the ad-
ditional expressive power provided by E the analog of
Theorem 6.3 fails. Formally, consider the logic XPathlE= ,

which results from adding the operator E to XPathl=
with the following semantics: [[Eϕ]]T = T if [[ϕ]]T 6= ∅,
and [[Eϕ]]T = ∅ otherwise.

The following lemma shows a counterexample to the
analog of Theorem 6.3, showing that XPathlE= is not the
fragment of FO(σ)↔l-invariant over [finite] data-trees.

Lemma 6.7. The FO(σ)-formula

(∃y, z) [y ≈ z ∧ Pa(y) ∧ Pb(z)]
is↔l-invariant though not logically equivalent over [fi-

nite] data-trees to any XPathlE= -formula.

7. APPLICATIONS
We devote this section to exemplify how the model

theoretic tools we developed can be used to show ex-
pressiveness results for XPath=. We do not intend to
be comprehensive; rather we will exhibit a number of
different results that show possible uses of the notions
of bisimulation we introduced.

7.1 Expressiveness hierarchies
Define ≡↓`,k as the equivalence ≡↓` restricted to formu-

las of nesting depth at most k, that is, T , u ≡↓`,k T ′, u′ iff
for all ϕ ∈ XPath↓= such that dd(ϕ) ≤ ` and nd(ϕ) ≤ k
we have T , u |= ϕ iff T ′, u′ |= ϕ. Define a more fine-
grained notion of bisimulation in a similar way. We
say that u ∈ T and u′ ∈ T ′ are (`, k)-bisimilar for

XPath↓= (notation: T , u↔↓`,k T ′, u′) if there is a fam-
ily of relations (Zj,t)j≤`,t≤k in T ×T ′ such that uZ`,ku

′

and for all j ≤ `, t ≤ k, x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZj,tx
′ then label(x) = label(x′).

• Zig: If xZj,tx
′, x

n→v and x
m→w with n,m ≤ j then

there are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. if t > 0, (
i→v)Zj−n+i,t−1 (

i→v′) for all 0 ≤ i <
n, and

3. if t > 0, (
i→w)Zj−m+i,t−1 (

i→w′) for all 0 ≤
i < m.

≡↓
0,0 ≡↓

0,1 ≡↓
0,2 ≡↓

0,3 ≡↓
0,4

≡↓
1,0 ≡↓

1,1 ≡↓
1,2 ≡↓

1,3 ≡↓
1,4

≡↓
2,1≡↓

2,0 ≡↓
2,2 ≡↓

2,3 ≡↓
2,4

≡↓
3,0 ≡↓

3,1 ≡↓
3,2 ≡↓

3,3 ≡↓
3,4

�

=

� �

� ��

==

= ==

== = =

...
...

...
...

...

. . .

�

�

� �

�

� � � �

���

� � �

· · ·

· · ·

· · ·

· · ·

Figure 5: Hierarchy of XPath↓=.

• Zag: If xZj,tx
′, x′

n→v′ and x′
m→w′ with n,m ≤ j

then there are v, w ∈ T such that x
n→v, x

m→w and
items 1, 2 and 3 above are verified.

Following the same ideas used in Propositions 3.8
and 3.9, it is easy to show that (`, k)-bisimulations char-
acterize (`, k)-equivalence.

Proposition 7.1. T , u↔↓`,k T ′, u′ iff T , u ≡↓`,k T ′, u′.

The following theorem —proved in the Appendix us-
ing the bisimulation notion introduced above— charac-
terizes when an increase in nesting depth results in an
increase in expressive power (see Figure 5). We con-
jecture that a similar hierarchy holds in the absence of
data values, but this is not a direct consequence of our
result.

Theorem 7.2. For all `, k ≥ 0, i ≥ 1,

≡↓`,0) ≡↓`,1) · · ·) ≡↓`,` = ≡↓`,`+i, and

≡↓`,k) ≡↓`+i,k.

7.2 Safe operations on models
Bisimulations can also be used to show that certain

operations on models preserve truth. Such operations
are usually called safe for a given logic, as they can be
applied to a model without changing the truth values
of any formula in the language. Proposition 3.3, for
example, is already an example of this kind of results
showing that the class of models of a formula is closed
under sub-model generation. We will now show a more
elaborate example.

We say that T ′ is a subtree replication of T , if T ′ is
the result of inserting T |x into T as a sibling of x, where
x is any node of T different from the root. Figure 6 gives
a schematic representation of this operation.

Proposition 7.3. XPathll
∗

= is closed under subtree
replication, i.e. if T ′ is a subtree replication of T , and
u ∈ T then T ′, u ≡ll∗ T , u.

10

↔�

Figure 6: Closure under subtree replication.

Proof. Suppose that x ∈ T is not the root of T ,
and that T ′ is the result of inserting T |x into T as a
sibling of x. Let us call Tx to the new copy of T |x
inserted into T ′, and let X be the set of nodes of T |x.
Furthermore, if v ∈ X then vx is the corresponding
node of Tx. Nodes v and vx have the same label and
data value, and the position of v in T |x coincides with
the position of vx in Tx.

By Theorem 5.1, it suffices to verify that T , u ↔l
T ′, u via Z ⊆ T × T ′ defined by:

Z = {(y, y) | y ∈ T} ∪ {(v, vx) | v ∈ X}

(Z is depicted as dotted lines in Figure 6).

7.3 Non-expressivity results
Finally, we will use bisimulation to show the expres-

sivity limits of different fragments of XPath. Let key(a)
be the property stating that every node with label a has
a different data value. Let fk(a, b) (for foreign key) be
the property (∀x)[Pa(x)⇒ (∃y)[Pb(y) ∧ x ∼ y]].

Proposition 7.4.

1. key(a) is not expressible in XPathll
∗

= .

2. fk(a, b) is expressible in XPathll
∗

= but it is not ex-

pressible in XPath↓↓∗= or XPathll
∗+

= .

Proof. The first item follows from Proposition 7.3.
Since the logic is closed under subtree replication, the
trees of Figure 7 are equivalent. As key(a) holds in one
and not in the other, the statement follows.

For the second item, it is easy to see that fk(a, b) is
expressible with the formula ¬〈↑∗↓∗[a∧¬〈ε = ↑∗↓∗[b]〉]〉.
However, this property cannot be expressed in XPath↓↓∗=

because the models T and T ′ in Figure 8 are bisimilar
for XPath↓= via Z, depicted as dotted lines. Since T , x
satisfies fk(a, b) but T ′, x′ does not, from Theorem 5.1
it follows that fk(a, b) is not expressible in XPath↓↓∗= .

Finally, suppose there exists ψ ∈ XPathll
∗+

= express-
ing fk(a, b). Since T is a substructure of T ′ we have
T , x→l T ′, x by Lemma 4.2. By Theorem 5.1(2) and
the fact that T , x |= ψ, we have T ′, x |= ψ, which is a
contradiction.

Let dist3(x) be the property stating that there are
nodes y, z so that x→y→z and x, y, z have pairwise
distinct data values.

Proposition 7.5.

1. dist3 is expressible in XPathl=;

2. dist3 is not expressible in XPath↓↓∗= ;

3. neither dist3 nor its complement can be expressed
in XPathll

∗+
= .

Proof. For 1, one can check that T , x |= ϕ iff T , x
satisfies dist3, for ϕ = 〈ε 6= ↓↓[〈ε 6= ↑〉]〉.

Let us see 2. Consider the data trees T , x and T ′, x′
depicted in Figure 9. It is straightforward that T , x
satisfies dist3 and T ′, x′ does not.

Let v′1 and v′2 be the leaves of T ′ and let v be the
only node of T with data value 3. One can check that
T , x↔↓ T ′, x′ via Z ⊆ T × T ′ defined by

Z = {〈u, u′〉 | h(u) = h(u′) ∧ data(u) = data(u′)} ∪
{〈v, v′1〉, 〈v, v′2〉},

where h(y) denotes the height of y, i.e., the distance
from y to the root of the corresponding tree (Z is de-
picted as dotted lines in Figure 9). Since T , x satisfies
dist3 but T ′, x′ does not, from Theorem 5.1 it follows
that dist3 is not expressible in XPath↓↓∗= .

For 3, one can verify that T , x→l T ′, x′ via Z as de-
fined above. If dist3 were definable in XPathll

∗+
= via ψ

and the fact that T , x |= ψ, by Theorem 5.1(2) we would
have T ′, x′ |= ψ, and this is a contradiction.

Let dist3 denote the complement of dist3, i.e., dist3(x)
iff for all y, z so that x→y→z, we have that x, y, z do
not have pairwise distinct data values. Now T ′, x′ satis-
fies dist3 and T , x does not. Since T ′ is a substructure
of T , by an argument analog to the one used in the
proof of Proposition 7.4-2, we conclude that dist3 is not
expressible in XPathll

∗+
= .

8. DISCUSSION
In this article we studied model theoretic properties

of XPath over both finite and arbitrary data trees us-
ing bisimulations. One of the main results we discuss is
the characterization of the downward and vertical frag-
ments of XPath as the fragments of first-order logic
which are invariant under suitable notions of bisimu-
lation. This can be seen as a first step in the larger pro-
gram of studying the model theory and expressiveness
of XPath with data values and, more generally, of logics
on data trees. It would be interesting to study notions
of bisimulation with only descendant; or characteriza-
tions of XPath with child and descendant, as a fragment
of FO with the descendant relation on data trees. We
did not considered XPath with horizontal navigation
between siblings, such as the axes next-sibling and

11

a, 1

a, 2 a, 2a, 2

a, 1
x x0$l

Figure 7: key(a) not

in XPathll
∗

= .

↔↓

a, 1 a, 2b, 1 b, 2

x x�T T �

c, 0

a, 1a, 2 b, 1b, 2

c, 0

a, 3

Figure 8: fk(a, b) not in XPath↓↓∗= .

a, 1

a, 2 a, 3

a, 1

a, 1

a, 2 a, 2

T T 0

a, 1

a, 2

a, 1

a, 1

a, 2

x0x $#

Figure 9: dist3 not in XPath↓↓∗= .

previous-sibling. In fact, adding these axes results
in a fragment that is somewhat less interesting since
the adequate bisimulation notion on finite data trees
corresponds precisely to data tree isomorphism modulo
renaming of data values.

In Section 7 we show a number of concrete application
of the model theoretic tools we developed, discussing
both expressivity and non-expressivity results. We also
show examples of operations which are safe for a given
XPath fragment. It would be worthwhile to devise other
model operations that preserve truth of XPath formulas
as we show is the case for subtree replication.

An important application of bisimulation is as a min-
imization method: given a data tree T1 we want to find
a data tree T2, as small as possible, so that T1 and T2

are bisimilar for some fragment L of XPath. Since L
cannot distinguish between T1 and T2, we can use T2 as
representative of T1 while the expressive power of L is
all that is required by a given application. The com-
plexity of several inference tasks (e.g., model checking)
depends directly on the model size. This is why in some
cases it may be profitable to first apply a minimization
step. The existence of efficient minimization algorithms
is intimately related to bisimulations: we can minimize
a data tree T by partitioning it in terms of its coarsest
auto-bisimulation. We plan to design and implement al-
gorithms for data tree minimization using bisimulation
and investigate their computational complexity.

References
[1] M. Benedikt, W. Fan, and F. Geerts. XPath satis-

fiability in the presence of DTDs. J. of the ACM,
55(2):1–79, 2008.

[2] M. Benedikt and C. Koch. XPath leashed. ACM
Comput. Sur., 41(1), 2008.

[3] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic, volume 53 of Cambridge Tracts Theoret.
Comput. Sci. Cambridge University Press, 2001.

[4] M. Bojańczyk, A. Muscholl, T. Schwentick, and
L. Segoufin. Two-variable logic on data trees and

XML reasoning. J. of the ACM, 56(3):1–48, 2009.

[5] M. Bojańczyk and P. Parys. XPath evaluation in
linear time. J. of the ACM, 58(4):17, 2011.

[6] J. Clark and S. DeRose. XML path language
(XPath). Website, 1999. W3C Recommendation.
http://www.w3.org/TR/xpath.

[7] A. Dawar and M. Otto. Modal characterisation
theorems over special classes of frames. Ann. Pure
Appl. Logic, 161(1):1–42, 2009.

[8] D. Figueira. Reasoning on Words and Trees with
Data. PhD thesis, Laboratoire Spécification et
Vérification, ENS Cachan, France, 2010.

[9] D. Figueira. Decidability of downward XPath.
ACM Trans. Comput. Log., 13(4), 2012.

[10] D. Figueira and L. Segoufin. Bottom-up au-
tomata on data trees and vertical XPath. In Int.
Symp. on Theoretical Aspects of Computer Science
(STACS’11), volume 9 of LIPIcs, pages 93–104.
Leibniz-Zentrum für Informatik, 2011.

[11] M. Forti and F. Honsell. Set theory with free con-
struction principles. Annali Scuola Normale Supe-
riore, Pisa, X(3):493–522, 1983.

[12] V. Goranko and M. Otto. Model theory of modal
logic. In J. Van Benthem P. Blackburn and
F. Wolter, editors, Handbook of Modal Logic, vol-
ume 3 of Studies in Logic and Practical Reasoning,
chapter 5, pages 249–329. Elsevier, 2007.

[13] G. Gottlob, C. Koch, and R. Pichler. Efficient algo-
rithms for processing XPath queries. ACM Trans.
Database Systems, 30(2):444–491, 2005.

[14] Marc Gyssens, Jan Paredaens, Dirk Van Gucht,
and George H. L. Fletcher. Structural characteri-
zations of the semantics of xpath as navigation tool
on a document. In PODS, pages 318–327. ACM,
2006.

[15] D. Harel. Dynamic logic. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosophical
Logic. Vol. II, volume 165 of Synthese Library,

12

http://www.w3.org/TR/xpath

pages 497–604. D. Reidel Publishing Co., Dor-
drecht, 1984. Extensions of classical logic.

[16] N. Kurtonina and M. de Rijke. Simulating without
negation. J. Logic Comput., 7:503–524, 1997.

[17] M. Marx. XPath with conditional axis relations.
In Int. Conf. on Extending Database Technology
(EDBT’04), volume 2992 of LNCS, pages 477–494.
Springer, 2004.

[18] M. Marx and M. de Rijke. Semantic characteri-
zations of navigational XPath. SIGMOD Record,
34(2):41–46, 2005.

[19] R. Milner. A Calculus of Communicating Systems,
volume 92 of LNCS. Springer, 1980.

[20] M. Otto. Elementary proof of the Van Benthem-
Rosen characterisation theorem. Technical Report
2342, Fachbereich Mathematik, Technische Univer-
sität Darmstadt, 2004.

[21] M. Otto. Modal and guarded characterisation the-
orems over finite transition systems. Ann. Pure
Appl. Logic, 130(1-3):173–205, 2004.

[22] M. Otto. Bisimulation invariance and finite models.
In Logic Colloquium’02, volume 27 of Lect. Notes
Log., pages 276–298, 2006.

[23] D. Park. Concurrency and automata on infinite
sequences. In Theoret. Comput. Sci., volume 104
of LNCS, pages 167–183. Springer, 1981.

[24] E. Rosen. Modal logic over finite structures. J.
Logic Lang. Inform., 6(4):427–439, 1997.

[25] Davide Sangiorgi. On the origins of bisimulation
and coinduction. ACM Transactions on Program-
ming Languages and Systems, 31(4), 2009.

[26] J. van Benthem. Modal Correspondence Theory.
PhD thesis, Universiteit van Amsterdam, 1976.

APPENDIX
A. PROOFS OF SECTION 3

Given a path expression α, the navigation of α (no-
tation: nav(α)) is the string of {↑, ↓}∗ that results from
removing all node expressions [ψ] and ε from α. For
example, nav(↓[〈↑〉]↓[〈↓ = ↑〉]↑[b]) = ↓↓↑.

Lemma A.1. Let α be a path expression of XPath↓↓∗= .

Let x
n→v and x′

n→v′ such that (x, v) ∈ [[α]]T and (x′, v′) /∈
[[α]]T

′
. Then there is a subformula ϕ of α and k ∈

{0, . . . , n} such that T , (k→v) |= ϕ and T ′, (k→v′) 6|= ϕ.

Proof. Let x = v0→v1→· · ·→vn = v and x′ =
v′0→v′1→· · ·→v′n = v′. We proceed by induction on
|α|. If α = ε then x = v and so n = 0. Hence x′ = v′

and (x′, v′) ∈ [[α]]T
′
, which contradicts the hypothesis,

and thus the statement is trivially true. If α =↓ then

x→v and so n = 1. Hence x′→v′ and (x′, v′) ∈ [[α]]T
′
.

This case is also trivial. The case α = ↓∗ is similar.
Suppose α = [ψ]. Since (x′, v′) /∈ [[α]]T

′
, we have

x′ = v′ and T ′, v′ 6|= ψ. Taking k = 0 and ϕ = ψ the
statement holds. Observe that ψ is a subformula of α.

Suppose α = βγ. Then there is k such that (x, vk) ∈
[[β]]T and (vk, v) ∈ [[γ]]T . Since (x′, v′) /∈ [[α]]T

′
, we have

(x′, v′k) /∈ [[β]]T
′

or (v′k, v
′) /∈ [[γ]]T

′
. In either case, apply

inductive hypothesis straightforwardly.

Proposition 3.1. ≡↓` has finite index.

Proof. We show by induction on ` that there are
finitely many non-equivalent formulas of downward depth
at most `, and finitely many non-equivalent path expres-
sions of downward depth at most `.

For the base case, any formula of downward depth
0 is a Boolean combination of labels, and hence there
are finitely many non-equivalent of them. Any path
expression of downward depth 0 is equivalent to [ϕ]
for dd(ϕ) = 0, and hence there are finitely many non-
equivalent of them.

For the induction, any formula of downward depth
` + 1 is a boolean combination of labels or formulas of
the form 〈α〉, 〈α = β〉 or 〈α 6= β〉, where dd(α),dd(β) ≤
`+ 1, so it suffices to show that there are finitely many
non-equivalent path expressions of downward depth at
most ` + 1. Let α be such that dd(α) ≤ ` + 1. By
Proposition 6.1, α is either equivalent to a path ex-
pression of the form [ψ] or of the form [ψ] ↓ β, where
dd(ψ),dd(β) ≤ `. By inductive hypothesis there are
finitely many non-equivalent ψ’s and βi’s, and hence
finitely many non-equivalent α’s.

Corollary 3.2. {T ′, u′ | T , u ≡↓` T ′, u′} is defin-

able by an `-XPath↓=-formula χ`,T ,u.

Proof. Consider the conjunction of all `-XPath↓=
formulas ϕ such that T , u |= ϕ. By Proposition 3.1,
up to logical equivalence, there are finitely many such
ϕ’s, and hence the conjunction is equivalent to a finite
one. Define χ`,T ,u as this finite conjunction.

Theorem 3.7.

1. T , u↔↓ T ′, u′ implies T , u ≡↓ T ′, u′. The converse
also holds when T and T ′ are finitely branching.

2. T , u↔↓` T ′, u′ iff T , u ≡↓` T ′, u′.
Proof. Item 2 is a direct consequence of Proposi-

tions 3.8 and 3.9. The argument for item 1 is similar to
the one of the aforementioned propositions, but work-
ing with a single Z instead of (Zi)i≤`. For the converse
implication, define Z by xZx′ iff T , x ≡↓ T ′, x′. The
conjunctions in (1) are then finite because T ′ is finitely
branching, and so P is finite (the fact that T is finitely
branching is used to show that Zag is satisfied).

13

Proposition 3.10.Let ϕ ∈ (r, s, k)-XPathl=. There

is ϕ↑↓ ∈ XPathl= in up-down normal form such that

1. ϕ↑↓ ≡ ϕ;

2. vd(ϕ↑↓) = (r, s); and

3. nd(ϕ↑↓) ≤ k · (r + s+ 2).

Proof. The idea is that we can factorize any path
in the tree going down and up as a node tests in the
expression. Consider for instance the expression α =
↑↓[a]↑↑↓. It is immediate that α is equivalent to the
up-down expression [〈↑[〈↓[a]〉]〉]↑↑↓, which is in up-down
normal form.

We use the following directed equivalences to trans-
late any path expression into an equivalent up-down
expression.

εγ ≡l γ (ε)

α[ψ1][ψ2]β ≡l α[ψ1 ∧ ψ2]β (merge)

α ξ−n↓ · · · ↓ξ−1↓ξ0↑ξ1↑ · · · ↑ξn β ≡l
α[〈ξ−nξn↓ · · · ↓ξ−1ξ1↓ξ0〉]β (factor)

α ξn↓ξn−1↓ · · · ↓ξ0 ≡l α ↓n[〈ξ0↑ξ1↑ . . . ↑ξn〉] (shift-r)

ξ0↑ξ1↑ · · · ↑ξn β ≡l [〈ξ0↑ξ1↑ · · · ↑ξn〉]↑n β (shift-l)

In the expressions above, each ξi is the empty string,
or of the form ε or [ϕ1][ϕ2] . . . [ϕn], α and β can be
any path expression, or the empty string, and γ is any
path expression. The idea is that (factor) converts
an expression that goes down n times and then up n
times into a node expression, and when doing this, any
test done in the i-th node when going down is merged
with the (n − i)-th test when going up. For example,
↓[¬a]↓[c]↑[¬b]↑ ≡l [〈↓[¬a][¬b]↓[c]〉]. On the other hand,
(shift-r) and (shift-l) group all the node tests in the low-
est node in the expression, making use of the fact that
the parent relation is functional. Thus, for example
[a]↓[b]↓ ≡l ↓↓[〈↑[b]↑[a]〉] and ↑[a]↑[b] ≡l [〈↑[a]↑[b]〉]↑↑.
It is thus clear that the left and right expressions above
are semantically equivalent.

Lemma A.2. Let α be an XPathl=-path expression with
vd(α) = (r, s) and nd(α) = k, Then there is an up-down
path expression α↑↓ such that:

1. α↑↓ ≡l α

2. vd(α↑↓) = (r, s), and

3. nd(α↑↓) ≤ k + r + s+ 1.

Proof. We first apply rule (factor) as many times
as possible. It is clear that if nav(α) is of the form ↑n↓m
for some n,m ≥ 0 then rule (factor) cannot be applied
and we are done. Hence, suppose nav(α) contains the
pattern ↓↑. Let

α = γ↑α1γ↓
α1 = γ1 ξ

1
−n1
↓ . . . ↓ξ1

0↑ . . . ↑ξ1
n1︸ ︷︷ ︸

matches (factor)

γ2 ξ
2
−n2
↓ . . . ↓ξ2

0↑ . . . ↑ξ2
n2︸ ︷︷ ︸

matches (factor)

...

γm−1 ξ
m
−nm↓ . . . ↓ξm0 ↑ . . . ↑ξmnm︸ ︷︷ ︸

matches (factor)

γm,

where nav(γ↑),nav(γm) ∈ ↑∗, nav(γ↓),nav(γ1) ∈ ↓∗,
and ξij are the empty string, ε or [ϕi,j1][ϕi,j2] . . . [ϕi,jhi,j].

Furthermore, assume that m is maximal (i.e., it is im-
possible to apply (factor) in any of the γi’s) and that
the length of each γi is minimal (i.e., it is not the case
that nav(γi) ends with ↓ and that nav(γi+1) begins with
↑). Observe that nav(γi) ∈ ↑∗↓∗. We apply rule (factor)
in the m− 1 marked places and obtain

α2 = γ1 [〈ξ1
−n1

ξ1
n1
↓ · · · ↓ξ1

−1ξ
1
1↓ξ1

0〉]︸ ︷︷ ︸
(factor) applied

γ2 [〈ξ2
−n2

ξ2
n2
↓ · · · ↓ξ2

−1ξ
2
1↓ξ2

0〉]︸ ︷︷ ︸
(factor) applied

...

γm−1 [〈ξm−nmξmnm↓ · · · ↓ξm−1ξ
m
1 ↓ξm0 〉]︸ ︷︷ ︸

(factor) applied

γm,

Let vd(nav(α1)) = (r1, s1). Since nav(α) = nav(γ↑α1γ↓)
contains the pattern ↓↑, we have that r1 > 0. It can be
shown that vd(γ↑α2γ↑) = (r, s), nd(α2) ≤ nd(α1) + 1,
and vd(nav(α2)) ≤ (r1− 1, s1). If we repeat this proce-
dure with α2 and so on until we can no longer apply rule
(factor), we end up with an up-down path expression
αf so that

1. αf ≡l α1,

2. vd(γ↑αfγ↓) = (r, s), and

3. nd(αf) ≤ nd(α1) + r1.

We can now apply (shift-r), (shift-l), (ε) and (merge)
to γ↑αfγ↓ in order to obtain an up-down path expres-
sion α↑↓ satisfying the desired conditions:

1. α↑↓ ≡l α

2. vd(α↑↓) = (r, s), and

3. nd(α↑↓) ≤ k + r1 + 1 ≤ r + s+ 1.

This concludes the proof of Lemma A.2.

14

|

{z

}

|

{z

} �
n↵

n�

m�

m↵

|
{z

}
|

{z
}

[↵]
[�]

[⌧�]

[⌧↵]

|

{z

}

|
{z

}

�n↵

m�

m↵

n� � n↵

|
{z

}

|
{z

}

[⌧�]

[⌧↵]

[↵ ^ �]

↵"#

�"#

⌘l

Figure 10: Normal form for data tests.

Lemma A.3. Let α↑↓, β↑↓ be up-down path expressions
and let ϕ = 〈α↑↓ � β↑↓〉 (for � ∈ {=, 6=}) with vd(ϕ) =
(r, s) and nd(ϕ) = k. Then there is an up-down path
expression γ↑↓ such that:

1. 〈ε� γ↑↓〉 ≡l ϕ,

2. vd(γ↑↓) = (r, s), and

3. nd(γ↑↓) ≤ k + 1.

Proof. Let us analyse the case where

α↑↓ = [ψα]↑nα↓mα [τα]

β↑↓ = [ψβ]↑nβ↓mβ [τβ]

(the remaining cases being only simpler), where ψα, ψβ ,
τα, τβ are in up-down normal form. Suppose, without
loss of generality, that nα ≤ nβ . Hence, we have 〈α↑↓ �
β↑↓〉 ≡l 〈ε� γ↑↓〉, where

γ↑↓ = [ψα ∧ ψβ]↑nα↓mα [τα ∧ 〈ε� ↑mα↑nβ−nα↓mβ [τβ]〉].
It is clear that the formulas are equivalent (cf. Fig-
ure 10). Moreover, the right-hand formula has at most
one more nesting than the left-hand formula, and its
vertical depth is at most (r, s). This concludes the proof
of Lemma A.3.

By induction on ϕ, and using lemmas A.2 and A.3,
one can show that there is ϕ↑↓ as desired.

Proposition 3.11. If r+s ≥ 2 then ≡lr,s has infinite
index.

Proof. We show that for every r, s so that r+ s = 2
there is an infinite set of non-equivalent formulas {ψir,s}i≥0

of vertical depth (r, s). It thus follows that for every r, s

so that r + s ≥ 2, ≡lr,s has infinite index.
Consider the following formulas.

ψ0
1,1 = 〈ε = ↑↓↓〉 ψi+1

1,1 = 〈ε = ↑↓[ψi1,1]↓〉
ψ0

0,2 = 〈↑ = ↑↑↓↓〉 ψi+1
0,2 = 〈↑ = ↑↑↓[ψi1,1]↓〉

ψ0
2,0 = 〈↓ = ↓↓〉 ψi+1

2,0 = 〈↓ = ↓[ψi1,1]↓〉

. . .

� �� �
n times

x1,1

x2,0

x0,2

Tn :

Figure 11: Model verifying ψji for all i ≥ n and
not verifying ϕl for no l < n. Dotted lines repre-
sent equal data values.

Note that vd(ψnr,s) = (r, s) and nd(ψnr,s) = n for every
n. The formula ψnr,s intuitively says that there is a chain
of length n as depicted in Figure 11.

In the data tree Tn of the figure, we have that Tn, xr,s |=
ψnr,s but Tn, xr,s 6|= ψn

′

r,s for any n′ > n. Therefore,

{ψir,s}i≥0 is an infinite set of non-equivalent formulas of
vertical depth (r, s).

Proposition 3.12.≡lr,s,k has finite index.

Proof. For any ϕ with nd(ϕ) = k and vd(ϕ) =
(r, s), let F (ϕ) = (k, r + s). Define F in a similar way
for path expressions α. In this proof “finite” means fi-
nite up to logical equivalence. By Proposition 3.10 we
can consider only formulas in up-down normal form.

We show that there are finitely many formulas ϕ in
up-down normal form such that F (ϕ) ≤ (k, t), and that
there are finitely many path expressions α in up-down
normal form such that F (α) ≤ (k, t). We use induction
on the lexicographic ordering of (k, t). Observe that if
F (ϕ) = (k, t) then ϕ is a boolean combination of labels
and formulas of the form 〈ε = α〉, 〈ε 6= α〉 or 〈α〉, where
F (α) ≤ (k, t). Hence it suffices to show the statement
for path expressions. If F (α) = (0, t) then α is either
ε or ↑n↓m, where n,m ≤ 2t, so there are finitely many
of them. If F (α) = (k + 1, t), then α is [ϕ1]↑n↓m[ϕ2],
where n,m ≤ 2t and nd(ϕi) ≤ k for i = 1, 2. Since
F (ϕi) <lex (k + 1, t), by inductive hypothesis there are
finitely many such ϕi’s, and therefore α’s.

Corollary 3.13. {T ′, u′ | T , u ≡lr,s,k T ′, u′} is de-

finable by an (r, s, k)-XPathl=-formula.

Proof. Similar to the proof of Corollary 3.2.

Theorem 3.16.

1. T , u↔l T ′, u′ implies T , u ≡l T ′, u′. The converse
also holds when T and T ′ are finitely branching.

2. T , u↔lr,s,k·(r+s+2) T ′, u′ implies T , u ≡lr,s,k T ′, u′.

15

3. T , u ≡lr,s,k T ′, u′ implies T , u↔lr,s,k T ′, u′.
Proof. Items 2 and 3 are shown in Propositions A.4

and A.5.
The argument for item 1 is similar to the one of the

aforementioned propositions, but working with a single

Z instead of (Z k̂r̂,ŝ)r̂,ŝ,k̂. For the converse implication,

define Z by xZx′ iff T , x ≡l T ′, x′. The conjunctions
in (2) are then finite because T ′ is finitely branching,
and so P is finite (the fact that T is finitely branching
is used for showing that Zag is satisfied).

Proposition A.4. T , u↔lr,s,k·(r+s+2) T ′, u′ implies

T , u ≡lr,s,k T ′, u′.

Proof. We show that if T , u↔lr,s,k T ′, u′ via

(Z k̂r̂,ŝ)r̂+ŝ≤r+s,k̂≤k

then for all n ≤ ŝ and m ≤ r̂ + n, for all ϕ in up-down
normal form with vd(ϕ) ≤ (r̂, ŝ), nd(ϕ) ≤ k̂, for all
upward expression α↑ in up-down normal form, and for
all downward expression α↓ in up-down normal form
with vd(α↑), vd(α↓) ≤ (r̂, ŝ), nd(α↑),nd(α↓) ≤ k̂:

1. If xZ k̂r̂,ŝx
′ then T , x |= ϕ iff T ′, x′ |= ϕ.

2. If y
n→x, y′

n→x′, xZ k̂−1
r̂,ŝ x′, then (x, y) ∈ [[α↑]]T iff

(x′, y′) ∈ [[α↑]]T
′
.

3. If y
m→z, y′m→z′, z Z k̂−1

r̂′,ŝ′ z
′ for r̂′ = r̂ + n−m, ŝ′ =

ŝ−n+m, then (y, z) ∈ [[α↓]]T iff (y′, z′) ∈ [[α↓]]T
′
.

Hence, by Proposition 3.10, the main statement fol-
lows. We simultaneously show 1, 2 and 3 by induction
on |ϕ|+ |α↑|+ |α↓|.

Let us see item 1. The base case is ϕ = a for some
a ∈ A. By Harmony, label(x) = label(x′) and then
T , x |= ϕ iff T ′, x′ |= ϕ. The boolean cases for ϕ are
straightforward.

Suppose ϕ = 〈ε = α↑α↓〉. We show T , x |= ϕ ⇒
T ′, x′ |= ϕ, so assume T , x |= ϕ. Suppose there are

y, z ∈ T and n ≤ ŝ, m ≤ r̂ + n such that y
n→x, y

m→z,
(x, y) ∈ [[α↑]]T , (y, z) ∈ [[α↓]]T and data(x) = data(z).

By Zig, there are y′, z′ ∈ T ′ such that zZ k̂−1
r̂′,ŝ′z

′ for r̂′ =
r̂ + n − m, ŝ′ = ŝ − n + m, and data(x′) = data(z′).
By inductive hypothesis 2 and 3, (x′, y′) ∈ [[α↑]]T

′
and

(y′, z′) ∈ [[α↓]]T
′
. Hence T ′, x′ |= ϕ. The implication

T ′, x′ |= ϕ ⇒ T , x |= ϕ is analogous. The cases ϕ =
〈ε 6= α↑↓〉, and ϕ = 〈ε�α↑〉, ϕ = 〈ε�α↓〉 (� ∈ {=, 6=})
and ϕ = 〈α〉 (for α in up-down normal form) are shown
in a similar way. The cases ϕ = 〈ε � ε〉 (� ∈ {=, 6=})
are trivial.

Let us now analyze item 2. Let α↑ = [ψ]↑n (n ≥ 0),
and let

x0, . . . , xn ∈ T and x′0, . . . , x
′
n ∈ T ′

be such that

y = x0→x1→· · ·→xn = x in T ,

y′ = x′0→x′1→· · ·→x′n = x′ in T ′,

and xZ k̂−1
r̂,ŝ x′. By Observation 3.14, we have x0Z

k̂−1
r̂′,ŝ′x

′
0,

for r̂′ = r̂+n, ŝ′ = ŝ−n. Assume by contradiction that
(x′, y′) /∈ [[α↑]]T

′
. This necessarily means that T , x0 |=

ψ but T ′, x′0 6|= ψ. But ψ is a subformula of α↑, nd(ψ) ≤
k̂−1 and nd(ψ) ≤ (r̂′, ŝ′) and this contradicts inductive
hypothesis 1.

Item 3 is shown in a similar way. Let α↓ = ↓m[ψ]
(m ≥ 0), and let

z0, . . . , zm ∈ T and z′0, . . . , z
′
m ∈ T ′

be such that

y = z0→z1→· · ·→zm = z in T ,
y′ = z′0→z′1→· · ·→z′m = z′ in T ′,

and zZ k̂−1
r̂′,ŝ′z

′. Assume by contradiction that (y′, z′) /∈
[[α↓]]T

′
. This necessarily means that T , xm |= ψ but

T ′, x′m 6|= ψ. But ψ is a subformula of α↓, nd(ψ) ≤
k̂−1 and nd(ψ) ≤ (r̂′, ŝ′) and this contradicts inductive
hypothesis 1.

Proposition A.5. T , u ≡lr,s,k T ′, u′ implies T , u↔lr,s,k
T ′, u′.

Proof. Fix u ∈ T and u′ ∈ T ′ such that T , u ≡lr,s,k
T ′, u′. Define (Z k̂r̂,ŝ)r̂+ŝ≤r+s,k̂≤k by

xZ k̂r̂,ŝx
′ iff T , x ≡l

r̂,ŝ,k̂
T ′, x′.

We show that Zkr,s is a (r, s, k)-bisimulation between

T , u and T ′, u′. By hypothesis, uZkr,su
′. Now fix r̂+ ŝ ≤

r + s, k̂ ≤ k. By construction, Z k̂r̂,ŝ satisfies Harmony.

Let us see that Z k̂r̂,ŝ satisfies Zig (the case for Zag is

analogous). Suppose xZ k̂r̂,ŝx
′,

y = x0→x1→· · ·→vn = x in T ,

y = z0→z1→· · ·→zm = z in T ,

and data(x) = data(z) (the case data(x) 6= data(z) is
shown in a similar way), where m ≤ r̂+n. Let P ⊆ T ′2
be defined by

P = {(y′, z′) | y′ n→x′ ∧ y′m→z′ ∧ data(x′) = data(z′)}.

Since T , x ≡lr,s,k T ′, x′, vd(〈ε = ↑n↓m〉) ≤ (r, s), nd(〈ε =
↑n↓m〉) = 0, and T , x |= 〈ε = ↑n↓m〉, we conclude that
P 6= ∅. We next show that there exists (y′, z′) ∈ P such
that

i. y′ = x′0→x′1→· · ·→x′n = x′ in T ′

ii. y′ = z′0→z′1→· · ·→z′m = z′ in T ′,

iii. T , x ≡l
r̂,ŝ,k̂−1

T ′, x′, and

16

iv. T , z ≡l
r̂′,ŝ′,k̂−1

T ′, z′, where r̂′ = r̂ + n − m, ŝ′ =

ŝ− n+m,

and hence, by inductive hypothesis, Zig is satisfied by

Z k̂r̂,ŝ. By way of contradiction, assume that for all (y′, z′) ∈
P satisfying i and ii we have either

(a) T , x 6≡l
r̂,ŝ,k̂−1

T ′, x′; or

(b) T , z 6≡l
r̂′,ŝ′,k̂−1

T ′, z′ for r̂′ = r̂ + n − m, ŝ′ = ŝ −
n+m.

Fix> as any tautology such that vd(>) = (0, 0), nd(>) =
0. For each (y′, z′) ∈ P we define formulas, ϕy′,z′ and

ψy′,z′ , satisfying that vd(ϕy′,z′) ≤ (r̂, ŝ), nd(ϕy′,z′) < k̂

and vd(ψy′,z′) ≤ (r̂′, ŝ′), nd(ψy′,z′) < k̂ as follows:

• Suppose (a) holds. Let ϕy′,z′ be such that vd(ϕv′,w′) ≤
(r̂, ŝ), nd(ϕv′,w′) < k̂, and such that T , x |= ϕy′,z′

but T ′, x′ 6|= ϕy′,z′ ; and let ψv′,w′ = >.

• Suppose (a) does not hold. Then (b) holds. Let
ψy′,z′ be such that vd(ψy′,z′) ≤ (r̂′, ŝ′), nd(ψy′,z′) <

k̂ and such that T , z |= ψy′,z′ but T ′, z′ 6|= ψy′,z′ ;
and let ϕy′,z′ = >.

Let

Φ =
∧

(y′,z′)∈P
ϕy′,z′ and Ψ =

∧

(y′,z′)∈P
ψy′,z′ . (2)

Since vd(ϕy′,z′) ≤ (r̂, ŝ), nd(ϕy′,z′) < k̂, by Proposi-
tion 3.12, there are finitely many non-equivalent formu-
las ϕy′,z′ . The same applies to formulas ψy′,z′ . Hence
both infinite conjunctions in (2) are equivalent to finite
ones, and therefore without loss of generality we may
assume that Φ and Ψ are well-formed formulas.

Finally, let

α↑ = [Φ]↑n and α↓ = ↓m[Ψ].

By construction, vd(α↑α↓) ≤ (r̂, ŝ), nd(α↑α↓) ≤ k̂. Fur-
thermore, T , x |= 〈ε = α↑α↓〉 and T ′, x′ 6|= 〈ε = α↑α↓〉,
but this contradicts the fact that T , x ≡l

r̂,ŝ,k̂
T ′, x′.

Corollary 3.17. ↔lr,s,k has finite index.

Proof. Immediate from Theorem 3.16 and Proposi-
tion 3.12.

B. PROOFS OF SECTION 4

Theorem 4.1.

1. Let † ∈ {↓, l}. T , u→† T ′, u′ implies T , uV† T ′, u′.
The converse holds when T ′ is finitely branching.

2. T , u→↓` T ′, u′ iff T , uV↓` T ′, u′.

3. T , u→lr,s,k·(r+s+2) T ′, u′ implies T , uVlr,s,k T ′, u′.

4. T , uVlr,s,k T ′, u′ implies T , u→lr,s,k T ′, u′.
Proof. The proofs are straightforward adaptations

of the proofs of Propositions 3.8 and 3.9 and Proposi-
tions A.4 and A.5 respectively, and are ommitted here.
In particular, for the ‘if’ part, in the adaptation of the
proofs of Propositions 3.9 and A.5, the simulations are
defined by

xZix
′ iff T , xV↓i T ′, x

xZ k̂r̂,ŝx
′ iff T , xVl

r̂,ŝ,k̂
T ′, x

respectively, and the conditions (a) and (b) on page 5
become now

(a) [∃i ∈ {0, . . . , n} ∃ϕ ∈ XPath↓+=] dd(ϕ) ≤ h − i ∧
T , vi |= ϕ ∧ T ′, v′i 6|= ϕ; or

(b) [∃j ∈ {0, . . . ,m} ∃ϕ ∈ XPath↓+=] dd(ϕ) ≤ h − j ∧
T , wj |= ϕ ∧ T ′, w′j 6|= ϕ,

and

(a) [∃i ∈ {0, . . . n} ∃ϕ ∈ XPathl+=] vd(ϕ) ≤ (r̂ + i, ŝ −
i) ∧ nd(ϕ) ≤ k − 1 ∧ T , vi |= ϕ ∧ T ′, v′i 6|= ϕ; or

(b) [∃j ∈ {0, . . .m} ∃ϕ ∈ XPathl+=] vd(ϕ) ≤ (r̂+ j′, ŝ−
j′) for j′ = n −m + j ∧nd(ϕ) ≤ k − 1 ∧ T , wj |=
ϕ ∧ T ′, w′j 6|= ϕ

respectively.

Lemma B.1.

(1) {T ′, u′ | T , u→↓` T ′, u′} is definable by an XPath↓+= -
formula χ+

`,u,T of downward depth ≤ `.

(2) {T ′, u′ | T , u→lr,s,k T ′, u′} is definable by an XPathl+= -

formula χ+
r,s,k,u,T of vertical depth ≤ (r, s) and nest-

ing depth ≤ k.

Proof. For item (2), let sim
l
r,s,k(T , u) = {T ′, u′ |

T , u→lr,s,k T ′, u′}. Let ΦT ′,u′ be the set of all positive

formulas ϕ ∈ XPathl+= of vertical depth at most (r, s)
and nesting depth at most k so that T ′, u′ |= ϕ. Let Ψ
be

Ψ =
∨

T ′,u′∈simlr,s,k(T ,u)

∧
ΦT ′,u′ .

Since every ΦT ′,u′ is finite up to logical equivalence by
Proposition 3.12, it follows that Ψ is a valid formula.

We show that it defines sim
l
r,s,k(T , u).

Let T ′, u′ ∈ sim
l
r,s,k(T , u). Then, T ′, u′ |= ∧

ΦT ′,u′
and thus T ′, u′ |= Ψ. If on the other hand T ′, u′ |= Ψ
we have that T ′, u′ |= ∧

ΦT ′′,u′′ for some T ′′, u′′ ∈
sim
l
r,s,k(T , u) and then T ′, u′ ≡lr,s,k T ′′, u′′. By Theo-

rem 3.16-3 we then have that T ′, u′↔lr,s,k T ′′, u′′, and in

particular T ′′, u′′→lr,s,k T ′, u′. Since T , u→lr,s,k T ′′, u′′

17

and T ′′, u′′ →lr,s,k T ′, u′, then T , u →lr,s,k T ′, u′ (by

transitivity of→lr,s,k) and thus T ′, u′ ∈ sim
l
r,s,k(T , u).

Item (1) is shown in a similar way, making use of
Proposition 3.1 and Theorem 3.7-2.

Theorem 4.3.

1. ϕ ∈ XPath↓= is→↓-invariant [resp.→↓`] iff it is equiv-

alent to a formula of XPath↓+= [resp. `-XPath↓+=].

2. ϕ ∈ XPathl= is →l-invariant iff it is equivalent to a

formula of XPathl+= .

3. If ϕ ∈ XPathl= is →lr,s,k-invariant then it is equiva-

lent to a formula of (r, s, k)-XPathl+= .

4. If ϕ ∈ XPathl= is equivalent to a formula of (r, s, k)-

XPathl+= then ϕ is→lr,s,k′-invariant, for k′ = k · (r+
s+ 2).

Proof. We start with item (1), for the case of→↓` .
The ‘if’ part is straightforward from Theorem 4.1-2, and
here we focus on the ‘only if’ part. Let ϕ be preserved
under →↓` . Let {(Ti, ui)}i≤n be the set of all pointed

models of ϕ modulo↔↓` (which is finite due to The-
orem 3.7-2 together with Proposition 3.1). We claim
that

T , u |= ϕ iff Ti, ui→↓` T , u for some i ≤ n. (3)

On the one hand, if T , u |= ϕ then there is i ≤ n such

that Ti, ui ↔↓` T , u, and so Ti, ui →↓` T , u. On the

other hand, suppose Ti, ui→↓` T , u. Since ϕ is preserved

under→↓` and Ti, ui |= ϕ, we conclude T , u |= ϕ.

Let χ`,ui,Ti ∈ XPath↓+= , dd(ψi) ≤ `, be as in Lemma B.1-
(1). Using (3) one shows that

∨
i≤n χ`,ui,Ti ≡ ϕ.

For the case of→↓ of item (1), the ‘if’ direction follows
from Theorem 4.1-1. For the ‘only if’ direction, let ϕ be
preserved under→↓. It is easy to see that ϕ is preserved
under→↓ iff it is preserved under→↓dd(ϕ). We can then

apply the same reasoning as before and the statement
follows.

Item (3) follows the same argument as item (1) but
this time using Corollary 3.17 and Lemma B.1-(2).

Item (4) is straightforward from Theorem 4.1-3.

Item (2) follows from items (3) and (4) and the obser-
vation that ϕ is preserved under→l iff it is preserved

under →lr,s,k·(r+s+2) for vd(ϕ) = (r, s) and nd(ϕ) =

k.

Proposition B.2. Any↔↓-invariant ϕ(x) ∈ FO(σ)

over [finite] data-trees that is `-local, is↔↓` -invariant.

Proof. Let ϕ(x) be `-local and↔↓-invariant. Sup-

pose T , u ↔↓` T ′, u′ and T |= ϕ(u). By `-locality,
T |`u |= ϕ(u). Now

T , u↔↓` T ′, u′ iff (T |`u), u↔↓` (T ′|`u′), u′ (Prop. 3.6)

iff (T |`u), u↔↓ (T ′|`u′), u′. (Prop. 3.5)

By↔↓-invariance, T ′|`u′ |= ϕ(u′) and by `-locality again,
T ′ |= ϕ(u′).

Proposition B.3. If ϕ(x) ∈ FO(σ) is↔↓` -invariant

over [finite] data-trees, then there is ψ ∈ `-XPath↓= such
that Trx(ψ) is logically equivalent to ϕ over [finite] data-
trees.

Proof. By Corollary 3.2, for every data tree T and
u ∈ T there is an `-XPath↓= formula χ`,T ,u such that

T , u ≡↓` T ′, u′ iff T ′, u′ |= χ`,T ,u. Let

ψ =
∨

T |=ϕ(u)

χ`,T ,u.

Since χ`,T ,u ∈ `-XPath↓= and, by Proposition 3.1, ≡↓`
has finite index, it follows that ψ is equivalent to a finite
disjunction.

We now show that ϕ ≡ Trx(ψ). Let us see that ϕ |=
Trx(ψ). Suppose T |= ϕ(u). Since T , u |= χ`,T ,u, we
have T , u |= ψ and so T |= Trx(ψ)(u). Let us now
see that Trx(ψ) |= ϕ. Assume T |= Trx(ψ)(u), and so
T , u |= ψ. Then there exists T ′, u′ such that T ′ |= ϕ(u′)
and T , u |= χ`,T ′,u′ . By the property of χ`,T ′,u′ , we

have T , u ≡↓` T ′, u′ and since ϕ is↔↓` -invariant (and

hence ≡↓` -invariant by Theorem 3.7-2) we conclude T |=
ϕ(u).

C. PROOFS OF SECTION 5

Theorem 5.1.Let † ∈ {↓↓∗, ll∗}.
1. T , u ↔† T ′, u′ implies T , u ≡† T ′, u′. The con-

verse also holds when T ′ is finitely branching.

2. T , u →† T ′, u′ implies T , u V† T ′, u′. The con-
verse also holds when T ′ is finitely branching.

Proof. The proof that T , u↔↓ T ′, u′ ⇒ T , u ≡↓↓∗
T ′, u′ follows from a simple adaptation of Proposition 3.8
to the logic XPath↓↓∗= and Lemma A.1. The fact that
for finitely branching, T , u ≡↓↓∗ T ′, u′ ⇒ T , u↔↓ T ′, u′
is straightforward from Theorem 3.7-1 since ≡↓↓∗ ⊆ ≡↓.

The cases for XPathll
∗

= , XPath↓↓∗= and XPathll
∗+

= are
analogous.

D. PROOFS OF SECTION 6

Proposition 6.1.For any XPathl=- [resp. XPath↓=-]

path expression α there is an equivalent XPathl=- [resp.
XPath↓=-] path expression α′ in simple normal form.
Further, α′ can be computed in polynomial time from
α.

Proof. The translation is straightforward, given the
following equivalences:

ε ≡ [>]

18

α ≡ [>]α ≡ α[>]

α[ϕ][ψ]β ≡ α[ϕ ∧ ψ]β

where > denotes any fixed tautology, for example a∨¬a,
for some a ∈ A.

Lemma 6.5.The FO(σ)-formula

(∃x) Pa(x)

is↔l-invariant though not logically equivalent over [fi-

nite] data-trees to any XPathl=-formula.

Proof. Let ϕ(x) be the FO(σ)-formula for there is
a node labeled a in the tree, i.e.,

ϕ(x) = (∃y) Pa(y).

We prove that ϕ is↔l-invariant over [finite] data-trees,
though it is not logically equivalent over [finite] data-

trees to any XPathl=-formula.
To see that ϕ is↔l-invariant over [finite] data-trees,

take T , u and T ′, u′ such that T , u↔l T ′, u′ and T |=
ϕ(u). Furthermore, suppose that T , u |= ↑m↓na for
adequate n and m. By Theorem 3.16, T ′, u′ |= ↑n↓ma
and so T ′ |= ϕ(u′).

Assume by contradiction that there is ψ ∈ XPathl=
such that T , u |= ψ iff T |= ϕ(u) for all data-tree T and
u ∈ T . Suppose vd(ψ) = (r, s) and nd(ψ) = k. Let T
be a data tree formed by a chain of length r+1 starting
from the root u with all its nodes containing a label
b except the leave, which has label a (the data values

are irrelevant). By Proposition 3.15 we have T , u↔lr,s,k
(T |sru), u. Since T , u |= ψ, by Theorem 3.16, we have
(T |sru), u |= ψ, and so T |sru |= ϕ(u). This last fact
is a contradiction because no node of T |sru is labeled
with a.

Proposition 6.6. Let k′ = k · (r+ s+ 2). If ϕ(x) ∈
FO(σ) is↔lr,s,k′-invariant over [finite] data-trees, then

there is ψ ∈ (r, s, k)-XPathl= such that Trx(ψ) is logi-
cally equivalent to ϕ over [finite] data-trees.

Proof. By Corollary 3.13, for every data tree T and
u ∈ T there is an (r, s, k)-XPathl= formula χr,s,k,T ,u
such that T , u ≡lr,s,k T ′, u′ iff T ′, u′ |= χr,s,k,T ,u. Let

ψ =
∨

T |=ϕ(u)

χr,s,k,T ,u.

As χr,s,k,T ,u ∈ (r, s, k)-XPathl= and, by Proposition 3.12,

≡lr,s,k has finite index, it follows that ψ is equivalent to
a finite disjunction. The proof that ϕ(x) ≡ Trx(ψ) is
similar to Proposition B.3, as we show next. Let us see
that ϕ |= Trx(ψ). Suppose T |= ϕ(u). Since T , u |=
χr,s,k,T ,a, we have T , u |= ψ and so T |= Trx(ψ)(u).
Let us see that Trx(ψ) |= ϕ. Assume T |= Trx(ψ)(u),
and so T , u |= ψ. Then there exists T ′, u′ such that

T ′ |= ϕ(u′) and T , u |= χr,s,k,T ′,u′ . By the property

of χr,s,k,T ′,u′ , we have T , u ≡lr,s,k T ′, u′ and since ϕ is

↔↓r,s,k·(r+s+2)-invariant (and hence ≡↓r,s,k-invariant by

Theorem 3.16-2) we conclude T |= ϕ(u).

Lemma 6.7.The FO(σ)-formula

(∃y, z) [y ≈ z ∧ Pa(y) ∧ Pb(z)]
is↔l-invariant though not logically equivalent over [fi-

nite] data-trees to any XPathlE= -formula.

Proof. Let ϕ(x) be the FO(σ)-formula for there are
two nodes with same data value and labels a and b re-
spectively, i.e.,

ϕ(x) = (∃y, z) [y ≈ z ∧ Pa(y) ∧ Pb(z)].
We show that ϕ cannot be expressed in XPath↓,↑,E= .
Suppose, by means of contradition, that there is a for-
mula ψ ∈ XPath↓,↑,E= expressing ϕ, with vd(ψ) = (r, s)
(vd(·) for XPath↓,↑,E= is defined as in Table 2 plus the
clause vd(Eϕ) = vd(ϕ)). Let n = r + s, and let T be
the chain-like data-tree

u0 → u1 → · · · → un

such that label(u0) = a, label(un) = b, label(ui) = c for
i ∈ {1, . . . n − 1} and data(ui) = i for i ∈ {0, . . . , n}.
Let T ′ be the chain-like data-tree

u′0 → u′1 → · · · → u′n

such that label(u′i) = label(ui) for i ∈ {0, . . . n}, data(u′i) =
data(ui) for i ∈ {0, . . . , n− 1} and data(u′n) = 0. Note
that T 6|= ϕ(u0) and T ′ |= ϕ(u′0). However, one can
show that for all i ∈ {0, . . . , n} we have T , ui |= ψ iff
T ′, u′i |= ψ. Hence, ψ does not express ϕ and thus ϕ is
not expressible in XPath↓,↑,E= .

E. PROOFS OF SECTION 7

Theorem 7.2. For all `, k ≥ 0, i ≥ 1,

≡↓`,0) ≡↓`,1) · · ·) ≡↓`,` = ≡↓`,`+i, and

≡↓`,k) ≡↓`+i,k.

Proof. Consider the data trees defined in Figure 12
for every k. Note that ≡↓`,k+1 ⊆ ≡

↓
`,k and ≡↓`+1,k ⊆ ≡

↓
`,k

by definition. We show that ≡↓`,k 6= ≡
↓
`,k+1 for all ` ≥

k + 1. For this purpose, we show that T 1
k , x

1
k ≡↓k+1,k

T ′1k , x′1k but T 1
k , x

1
k 6≡↓k+1,k+1 T ′1k , x′1k .

The fact that T 1
k , x

1
k 6≡↓k+1,k+1 T ′1k , x′1k comes from

the fact that the property“there is a path of length k+1
ending with a label a whose every pair of consecutive
nodes have distinct data value” is definable with the
following formula ϕk+1 of depth k+1 and nesting depth
k + 1,

ϕ1 = 〈ε 6= ↓[a]〉

19

↔↓
0,0

↔↓
0,0

a, 2 a, 1b, 1 b, 2

a, 1

a, 1b, 1 b, 2

a, 1

T 1
0 T �1

0

↔↓
1,0

T �2
nT �1

n T 2
nT 1

n T �2
nT �1

nT 1
n

↔↓
n+2,n+1

↔↓
n+1,n

T 1
n+1 T �1

n+1

a, 1 a, 1 1

T �2
nT �1

n T 2
nT 1

n

1

T �2
nT �1

n

↔↓
n+2,n+1

↔↓
n+1,n

T 2
n+1 T �2

n+1

T 2
n

a, 2 a, 2

a, 2

a, 2 a, 1b, 1 b, 2 b, 1 b, 2

a, 2

a, 2

T 2
0 T �2

0

↔↓
1,0

↔↓
0,0

↔↓
0,0

x�1
0x1

0 x2
0

x�2
0

x1
n x�1

n x�2
nx2

n

Figure 12: Definition of data trees T in, T ′in (n ≥ 0, i ∈ {1, 2}) for proof of Theorem 7.2.

ϕi+1 = 〈ε 6= ↓[ϕi]〉 for i > 0.

Since T 1
k , x

1
k |= ϕk+1 but T ′1k , x′1k 6|= ϕk+1, it follows

that T 1
k , x

1
k 6≡↓k+1,k+1 T ′1k , x′1k .

To show T 1
k , x

1
k ≡↓k+1,k T ′1k , x′1k we actually use Propo-

sition 7.1 and show T 1
k , x

1
k↔↓k+1,k T ′1k , x′1k . Note that

T 1
k and T 2

k (resp. T ′1k and T ′2k) are equal modulo renam-
ing of data values, so we are also showing that the roots
of any two data trees with subindex k are (k + 1, k)-
bisimilar.

Observation E.1. Note that the set of immediate
subtrees of the roots of T 1

k , T ′1k , T 2
k , T ′2k are the same as

those of T ′1k , T 2
k , T ′2k (and of T 1

k , T ′1k , T ′2k) by construc-
tion.

We now show T 1
k , x

1
k↔↓k+1,k T ′1k , x′1k . For every j ≤

k + 1, t ≤ k, let Zj,t be the set of all pairs (x, y) ∈
T 1
k×T ′1k so that x and y are some xik′ or x′ik′ for i ∈ {1, 2}

and k′ ≥ t.2 Observe that

Zj+1,t ⊆ Zj,t for all j, t ≤ k. (4)

We show that (Zj,t)j≤k+1,t≤k verify the bisimulation
conditions. We proceed by induction on j+ t. The base
case, j = t = 0, is trivial. The case l > 0, t = 0 is also
straightforward.

Suppose then that t > 0. Let (u, u′) ∈ Zj,t. Again,
Harmony is met since Zl,t relates only nodes with label
a. Let us suppose that u is some x1

t′ and u′ is x′1t′ for
some t′ ≤ t, the other cases being similar or simpler.

2Note that xi
k′ or x′ik′ do not necessarily uniquely identify

one node, but many possible. The intended meaning is that
x, y can be any of them.

Let us now show Zig. Let v, w be so that x1
t′
n→v and

x′1t′
m→w with n,m ≤ j.
• If v is inside the subtree T 2

t′−1 of T 1
t′ , but it is

not x2
t′−1, then we choose v′ as the corresponding3

node inside the subtree T 1
t′−1 of T ′1t′ . Note that

data(v) = data(v′) by Observation E.1. Further,
since every node of T 1

t′−1 is in a Zj,t−1-relation with
the corresponding node in T 2

t′−1 by construction

of Zj,t−1, it follows that (
i→v)Zj,t−1(

i→v′) for all

i ≤ n. Thus, by (4), (
i→v)Zj−n+i,t−1(

i→v′) for all
i ≤ n.

• If, on the other hand, v is x2
t′−1, we choose v′

as the root of T ′2t′−1, x′2t′−1. Again, we have that
data(v′) = data(v) and by construction that vZj,t−1v

′.
Thus, by (4), vZj−1,t−1v

′.

• Finally, if v falls outside T ′2t′−1, we choose v′ as the
same node in T ′1t′ , where of course we will have that

data(v) = data(v′) and that (
i→v)Zj,t−1(

i→v′) for

all i ≤ n. Thus, by (4), (
i→v)Zj−n+i,t−1(

i→v′) for
all i ≤ n.

We do the same with w and w′. Since in every case we
can reach a node with the same data value and so that
the corresponding nodes in the path are Zj,t−1-related,
it follows that the Zig condition is satisfied. The Zag
condition is only easier, and hence we conclude that
T 1
k , x↔↓k+1,k T ′k

1
, x′ for every k.

We therefore have that ≡↓`,k+1 (≡↓`,k for all ` ≥ k+1.
3Remember that T 1

t′−1 and T 2
t′−1 are isomorphic modulo a

renaming of data values, so by corresponding we mean the
node in the same position in the tree

20

The fact that ≡↓`+1,k (≡↓`,k is of course trivial, for-
mulas of depth ` + 1 can express “the tree has at least
depth `+ 1”, which cannot be expressed by formulas of
depth `.

It remains to show that ≡↓`,k = ≡↓`,k+1 for all ` ≤ k.

To show this, we prove T , x↔↓`,k+1 T ′, x′ for every T , T ′
so that T , x↔↓`,k T ′, x′. We prove it by induction on
`+ k. The base case is easy.

For the inductive case, let Zj,t = ↔↓j,t for all j ≤
`, t ≤ k. Hence, (Zj,t)j≤`,t≤k verify the bisimulation
conditions. Let Z`,k+1 = {(x, x′)}. We show that
Z`,k+1 together with (Zj,t)j≤`,t≤k verifies the bisimu-
lation conditions. Harmony follows from xZ`,kx

′. We

show Zig since Zag is equivalent. Suppose x
n→v, x

m→w
with n,m ≤ `. Then, since Z`,k verifies Zig, there are

x′
n→v′, x′m→w′ where

(1) data(v) = data(w′) iff data(v′) = data(w′),

(2) (
i→v)Z`−n+i,k−1(

i→v′) for all i ∈ {0, . . . , n−1}, and

(3) (
i→w)Z`−m+i,k−1(

i→w′) for all i ∈ {0, . . . ,m− 1}.
Since ` ≤ k, then ` − n + i ≤ k − 1. Further, ` −
n + i + k < ` + k, which means that we can apply the
inductive hypothesis. Hence, by inductive hypothesis,

T , (i→v)↔↓`−n+i,k T ′, (
i→v′) and thus (

i→v)Z`−n+i,k(
i→v′).

By an indentical reasoning, T , (i→w)↔↓`−n+i,k T ′, (
i→w′)

and thus (
i→w)Z`−n+i,k(

i→w′). Thus, the Zig condition

for↔↓`,k+1 is verified. The Zag condition holds by sym-
metry.

With respect to vertical XPath, note that since ≡lr,s,k ⊆
≡lr′,s′,k′ for all (r, s, k) ≤ (r′, s′, k′), as a consequence of
Proposition 3.11 we obtain that for every r, s, k with

r + s ≥ 2 there is some k′ > k so that ≡lr,s,k) ≡lr,s,k′ .
In fact, we conjecture that ≡lr,s,k) ≡lr,s,k+1 for every
k. We argue that this can be proven through the mod-
els (Tn)n in the proof of Proposition 3.11, by showing

that Tk, xr′,s′ ≡lr,s,k Tk+1, xr′,s′ but Tk, xr′,s′ 6≡lr,s,k+1

Tk+1, , xr′,s′ for every (r, s) ≥ (r′, s′). The fact that

≡lr,s,k) ≡lr+1,s,k and ≡lr,s,k) ≡lr,s+1,k are straightfor-
ward. We then obtain the following.

Claim E.2. ≡lr,s,k) ≡lr′,s′,k′ for all (r, s, k) <
(r′, s′, k′), r + s ≥ 2.

21

	Introduction
	Preliminaries
	Notation
	Data trees
	XPath

	Bisimulation
	Downward XPath
	Bisimulation and -bisimulation
	Equivalence and bisimulation

	Vertical XPath
	Normal form
	Finite index
	Bisimulation and (r,s,k)-bisimulation
	Equivalence and bisimulation

	Simulation
	Adding transitivity
	Characterization
	Translating to first-order logic
	Downward XPath
	Vertical XPath

	Applications
	Expressiveness hierarchies
	Safe operations on models
	Non-expressivity results

	Discussion
	Proofs of Section 3
	Proofs of Section 4
	Proofs of Section 5
	Proofs of Section 6
	Proofs of Section 7

