
UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales

Departamento de Matemática

Teoŕıa de modelos, teoŕıa de prueba, y aspectos computacionales
de lógicas para razonar sobre árboles con datos

Tesis a presentar para optar al t́ıtulo de Doctor de la Universidad de Buenos Aires en el
área Ciencias Matemáticas

Sergio Alejandro Abriola

Director de tesis: Santiago Figueira
Consejero de estudios: Román Sasyk

Lugar de trabajo: Instituto de Investigación en Ciencias de la Computación (ICC)

Contents

Resumen . 7
Summary . 9

Introduction 11
I.1 Context and preliminaries . 13

I.1.1 Logics . 13
I.1.2 XPath= basics . 22
I.1.3 Known model theory of XPath= . 33

I.2 Focus of study and contributions . 35
I.2.1 Bisimulations . 36
I.2.2 Expressive power . 37
I.2.3 Axiomatizations . 37
I.2.4 Relation between data logics and counter systems 38

I.3 Organization . 38

A Model theory and proof theory 41

1 Definability and binary bisimulation 43
1.1 Introduction . 43

1.1.1 Related work . 44
1.1.2 Contributions . 45
1.1.3 Organization . 46

1.2 Preliminaries . 47
1.2.1 Bounded notions of bisimulation . 47
1.2.2 Bounded notions of equivalence . 49
1.2.3 Normal forms . 51
1.2.4 Ultraproducts . 52

1.3 Definability via node expressions . 54
1.3.1 Saturation . 54
1.3.2 Weak data trees and quasi-ultraproducts 57
1.3.3 Definability . 61
1.3.4 Separation . 65

1.4 Binary bisimulations . 67

3

4 CONTENTS

1.4.1 Downward . 67

1.4.2 Vertical . 78

1.5 Definability via path expressions . 83

1.5.1 Saturation . 83

1.5.2 Weak data trees and quasi-ultraproducts 86

1.5.3 Definability and separation . 89

2 Axiomatizations 93

2.1 Introduction . 93

2.1.1 Related work . 94

2.1.2 Contributions . 95

2.1.3 Organization . 96

2.2 Preliminaries . 96

2.3 Axiomatic System for XPath=(↓)− . 98

2.3.1 Axiomatization . 98

2.3.2 Normal forms . 100

2.3.3 Completeness for node and path expressions 106

2.4 Axiomatic System for XPath=(↓) . 118

2.4.1 Axiomatization . 118

2.4.2 Normal forms . 119

2.4.3 Completeness for node and path expressions 121

2.5 Bounded tree model property . 143

2.6 Technical material . 144

B Computational aspects 151

3 Bisimulations on data graphs 153

3.1 Introduction . 153

3.1.1 Related work . 154

3.1.2 Contributions . 157

3.1.3 Organization . 158

3.2 Bisimulations on data graphs . 158

3.3 Computing XPath=(↓a)-bisimulations . 162

3.3.1 Upper bound . 163

3.3.2 Lower bound . 167

3.4 Restricting paths in bisimulations . 169

3.4.1 Bounded bisimulation and equivalence 170

3.4.2 Computing f -XPath=(↓a)-bisimulations 172

3.5 Restricting the models . 176

3.6 Two-way XPath= . 177

5

4 LRV over data trees 181
4.1 Introduction . 181

4.1.1 Related work . 182
4.1.2 Contributions . 184
4.1.3 Organization . 185

4.2 Preliminaries . 185
4.3 Logic of repeating values on data trees . 186
4.4 Models of branching counter systems . 187

4.4.1 Branching VASS . 187
4.4.2 Merging VASS . 188
4.4.3 Decision problems . 190
4.4.4 Decidability of Reach+(MVASS) 193

4.5 Satisfiability of LRVD on data trees . 198
4.5.1 A simple logic: LRVD−

1 . 199
4.5.2 Adding Boolean and Until operators: LRVD

1 210
4.5.3 The general case: LRVD

n . 212
4.5.4 Complexity . 212

4.6 Obtaining equivalence with VASSk . 214
4.7 From LRV to MVASSk . 221

Conclusions and future work 225

Resúmenes en español 229

Bibliography 237

Index of notation 243

Index 244

Teoŕıa de modelos, teoŕıa de prueba,
y aspectos computacionales de lógicas
para razonar sobre árboles con datos

Resumen. XPath es el lenguaje de consultas más ampliamente utilizado para documen-
tos XML; es un estándar abierto y constituye una World Wide Web Consortium (W3C)
Recommendation. Trabajamos con un fragmento de este lenguaje, apropiadamente rein-
terpretado como una lógica: XPath=, una lógica que puede ser vista como una extensión
de la lógica modal básica, pero en el contexto de árboles con datos y, fundamentalmente,
con la capacidad de realizar comparación de datos entre nodos.

Desarrollamos la teoŕıa de modelos de XPath=(↓), que solo puede navegar el árbol
descendiendo, y XPath=(↑↓), que también puede navegar hacia arriba. Obtenemos resul-
tados de definibilidad y separación para los dos tipos de fórmulas en XPath=: expresiones
de nodo y expresiones de camino. También desarrollamos la noción de bisimulación bi-
naria para ambos fragmentos, y demostramos un teorema de caracterización al estilo van
Benthem para expresiones de camino de XPath=(↓).

Encontramos axiomatizaciones ecuacionales correctas y completas para XPath=(↓) y
para su fragmento libre de desigualdades de datos XPath=(↓)−. Para demostrar completi-
tud construimos, para cada expresión de nodo consistente, un árbol finito con datos en
cuya ráız se satisface la formula.

Extendemos XPath= al universo de grafos con datos, y analizamos la complejidad
computacional de decidir si dos nodos en dos grafos con datos son bisimilares. Calculamos
cotas ajustadas de complejidad para varios problemas de bisimilaridad y para diferentes
universos de modelos.

Introducimos LRV, una lógica para navegar sobre árboles con datos múltiples, y obten-
emos procedimientos de decisión para el problema de satisfabilidad de LRV y algunos
fragmentos al reducirlo al problema de control-state-reachability de diferentes sistemas con
contadores.

Palabras clave: XPath=, data-aware logics, bisimulation, model theory, expressivity,
proof theory, computational complexity, automata, satisfiability, branching counter sys-
tems.

7

Model theory, proof theory, and
computational aspects of logics

for reasoning on data trees

Summary. XPath is the most widely used query language for XML documents; it is an
open standard and constitutes a World Wide Web Consortium (W3C) Recommendation.
We work with a fragment of this language, suitably reinterpreted as a logic: XPath=,
which can be seen as an extension of basic modal logic, but in the context of data trees
and, fundamentally, with the capacity to deal with data comparisons between nodes.

We develop the model theory of both XPath=(↓), which can only navigate the tree
downwards, and XPath=(↑↓), which can also navigate upwards. We obtain definability
and separation results for the two types of formulas in XPath=: node expressions and path
expressions. We also develop the notion of binary bisimulation for both fragments, and
prove a van Benthem-style characterization theorem for paths expressions of XPath=(↓).

Sound and complete equational axiomatizations are found for XPath=(↓) and for its
data-inequality-free fragment XPath=(↓)−. To prove completeness we construct, for every
consistent node expression, a finite data tree where it is satisfied at the root.

XPath= is extended to the universe of data graphs, and we analyze the computational
complexity of deciding if two pointed data graphs are bisimilar. We calculate tight com-
plexity bounds for various bisimilarity problems and different universes of models

We introduce LRV, a logic to navigate over multidata trees, and obtain decision pro-
cedures for the satisfiability problem of LRV and some fragments by reducing it to the
control-state reachability problem of different counter systems.

Keywords: XPath=, data-aware logics, bisimulation, model theory, expressivity, proof
theory, computational complexity, automata, satisfiability, branching counter systems.

9

Introduction

Aha, that’s a wallpaper word,
thought William. When people say
clearly something, that means
there’s a huge crack in their
argument and they know things
aren’t clear at all.

The Truth
Terry Pratchett

What is a logic? In a sense, a logic is a way to reason over a certain domain of discourse,
a language of symbols and rules that allows us to talk about truth and consequence, about
what can be and about what must be if we start with certain premises. More formally,
a logic can be thought of as composed of two interconnected parts: the syntactic and
the semantic. At its basic, the syntactic part establishes a set of usable symbols and
a set of formulas constructed with those symbols, and it might include deduction rules
that connect formulas and dictate what follows from what. But, by themselves, these
symbols and formulas lack any explicit meaning: this is given by the semantics of the
logic, the interpretation of its formulas in a certain framework. Given an interpretation for
the symbols and formulas of the logic, a formula acquires meaning, becoming a statement
about a particular object or model, and as such it may be either true or false. Now, there
are many ways to judge the adequacy or usefulness of a logic. One could for example try to
gauge its expressiveness, the extent up to which we can express various properties (which we
can define in informal or meta-logical terms) by only using formulas from our logic. While
more expressiveness is, all other things being equal, better, it usually comes at a price; in
more expressive logics it might be harder to determine some characteristics of formulas,
such as whether two formulas are semantically equivalent, whether a formula is true on a
particular model, whether a formula can be satisfied in some model, whether a formula can
be deduced from a set of axioms, et cetera. Indeed, other dimensions from which to judge
a logic are those related with the decidability and with the algorithmic complexity of such
problems: are those problems solvable by effective means at all? if so, then how hard is it
for an algorithm to answer them? On the other hand, making a logic more expressive might
have other associated costs, such as the sacrifice of readability or notational succinctness.
These are the kind of trade-offs that explain the existing abundance of logics, and justify

11

12 INTRODUCTION

then why we might use some logic even when there are more expressive ones available. Such
trade-offs will be visible when we analyze our main logics of the thesis: various fragments
of XPath= and other data logics.

A database query language is a computer language that is used to answer questions
about a database, such as whether an entry has a particular property. Query languages can
be formally studied as logics, by making adequate mathematical abstractions of the data
structures on which they are used and by identifying queries with corresponding formulas.
When this is done, we get an equivalence between the answers to queries on databases and
the semantics of their translation into formulas of the logic (on the mathematical models
corresponding to those databases). XPath (XML Path Language) is a query language
designed to work over XML documents, and Data XPath, here called XPath=, is the
corresponding logic designed to reason over data trees, an abstraction of XML documents
consisting of a rooted tree where each node comes with a single label and a single data
value. XPath= is close in many aspects to basic modal logic (BML): it has navigational
modalities (such as ↑ or ↓) and it is local (formulas are analyzed on particular nodes of
the trees, and, depending on the fragment of the logic, the depth up to which they can
‘see’ is bounded by the size of the formula). XPath= has two sorts of formulas: node
expressions, which, like BML formulas, are analyzed on nodes, but also path expressions,
which are analyzed on pairs of nodes. Unlike BML, where nodes do not even have data
values, XPath= is capable of making data comparisons between two nodes, that is, it can
check whether two nodes have the same data value or not, but it cannot query for the
particular data value of a node. Furthermore, as we will see, this difference in capabilities
is fundamental, and BML cannot properly express the concept of data comparison even
when its nodes are enriched with data values. While the theory of BML is well-developed,
such is not the case for XPath=. In this thesis we made progress on the following theoretical
aspects of XPath=:

Model-theoretical. We studied problems such as definability, which asks if a class of
models can be characterized by XPath= formulas; and separation, which asks if two classes
can be separated by formulas. Our work on definability and separation for XPath= is
inspired in the corresponding results for basic modal logic; in order to adjust the proofs
for our framework, we devised appropriate notions of saturation and ultraproduct, and
proved various technical results before arriving to the desired theorems. We also studied
problems related to bisimulation, a central concept that approximates logical equivalence
with a more structural notion. We created adequate notions of bisimulations for path
expressions, and derived various key results for this framework. We also observed that
results of XPath= over data trees can be extended to the wider context of data graphs.

Proof-theoretical. We obtained sound and complete axiomatizations for two fragments
of XPath=, that is, axioms such that all provable equivalences are universally true over
data trees, and such that all equivalences which are universally true can be proved from
those axioms. Doing this, we extended previous work done in the simpler case of XPath

I.1 CONTEXT AND PRELIMINARIES 13

without data comparisons. We proved the completeness of our axiomatizations through
normal form theorems, and by making rather intricate constructions that show that all
consistent node expressions in normal form are satisfiable.

Computational. We expanded our study from the universe of data trees to the more
general case of XPath= over data graphs, which are a widely used abstraction of graph
databases. In this area, we extended results of XPath= that were originally stated over
data trees, and studied the problems of similarity and bisimilarity between data graphs from
a computational perspective. We tightly classified these problems into various complexity
classes, depending on the (bi)simulation notions selected and on the restrictions we apply
to the class of models.

Additionally, we continued our study of data-aware logics to reason about data trees,
expanding into logics of repeating values (LRV) over multidata trees. We started by gen-
eralizing previous work made over multidata words, proving interreducibility between the
satisfiability problem of disjoint LRV over ranked trees and the coverability problem for
branching vector addition systems with states (VASS). Then we presented an extension of
BVASS called merging VASS (MVASS), and we proved that the satisfiability problem of
LRV on ranked data trees is reducible to the control-state reachability problem of MVASS.

I.1 Context and preliminaries

In this section we introduce various concepts that are fundamental for this thesis. We
start with a general overview of logics, where we present propositional logic and basic
modal logic. While describing these logics we introduce various problems of relevance for
this thesis, such as characterization, satisfiability, definability, and separation. We then
advance to the main focus of study of this thesis, giving the necessary background and
definitions for XPath=, showing tools and terminology that are ubiquitously used in the
rest of this thesis. After the basics of XPath= are explained, we state important properties
and theorems that form the basis of some of our own results.

I.1.1 Logics

The fundamental syntactic component of a logic is made up of its symbols and the for-
mulas that can be constructed with them. While formulas are inherently meaningless, the
semantics of a logic indicate how these formulas are to be interpreted in concrete models,
where it does makes sense to ask if a certain formula is true or false. Model theory
is the area of study that deals with the semantic aspects of a logic, with the connection
between structures and formulas. A classic problem of model theory is that of definabil-
ity: determining conditions for a class of models to be definable by a formula or a set of
formulas. Closely related is the problem of separation: that of determining conditions
for two disjoint classes of models, such that there must be a formula (or set of formulas)
which defines a third class of models that contains the first one but is disjoint with the

14 INTRODUCTION

second. An important decision problem related to this area is the satisfiability problem:
deciding whether a formula of a logic has a model where it is true.

Beyond symbols and formulas, the syntactics of a logic can include deduction rules,
which connect formulas and establish what formulas can be deduced from what formulas.
Proof theory deals with problems related with the deduction rules and their interaction
with the semantics of a logic. A key problem in this area is that of finding axiomatizations
for a logic: given the formulas and semantics of a logic, finding a deductive system such
that it only deduces formulas that are universally true in all models, and such that all
universal truths can be deduced in this system.

In the remaining of this subsection we give a very short overview of two commonly
used logics: propositional logic and basic modal logic. We present propositional logic as
an introduction to basic modal logic, which is itself presented for its many parallels with
XPath. Among the theoretical results for these logics we include results for some of the
aforementioned problems, and we briefly indicate some interesting computational aspects
of these logics.

Propositional logic

Propositional logic is a very simple logic that can deal with propositional variables and
a limited repertoire of formulas constructed with them. It can express statements of the
form:

‘It is not the case that p1’ (1)

‘It is the case that either p1 holds or p2 and p3 both hold’ (2)

‘If it is the case that p1, then it is the case that p2’ (3)

That is, a formula is formed with propositional variables (in our examples, p1, p2, and
p3), Boolean conectives (not, or, and and), and implication (then). Formally, we have
propositional variables p1, p2, . . . from a countably infinite set P , and logic symbols1 ¬
and →. A formula can then defined constructively as either a propositional variable, the
negation of a single formula, or the composition of two formulas via →. We notate this
schema with the following grammar:

ϕ ::= p | ¬ϕ | (ϕ→ ϕ)

where p can be any of the propositional variables.
So far the formulas are just strings made up in a certain way out of our given symbols.

We still have to provide these of meaning; we have to define their semantics. While in
more complex logics we speak of models, in the simple propositional logic this role is held
by valuations, which assign either true or false to each propositional variable, that is: a
valuation is a function V : P → {0, 1}. The truth value of a formula given a valuation v,

1The symbols ∨ and ∧ are absent, as they are not necessary; when the semantics is given, it can be
seen that they can be simulated using only ¬ and →.

I.1 CONTEXT AND PRELIMINARIES 15

is then given as would be expected: we say that v satisfies p, notated v |= p, iff v(p) = 1,
we say that v |= ¬ϕ iff v 6|= ϕ, and v |= (ϕ→ ψ) iff v |= ψ or v 6|= ϕ. It can be seen that ∨
and ∧, with their expected semantics, can be constructed by only using → and ¬: ϕ ∨ ψ
is thus a meta-syntactical shorthand for (¬ϕ→ ψ) and ϕ ∧ ψ stands for ¬(ϕ→ ¬ψ).

The following propositional formulas express the aforementioned statements:

¬p1 (Expresses (1))

p1 ∨ (p2 ∧ p3) (Expresses (2))

p1 → p2 (Expresses (3))

While propositional logic is quite simple, there are already some interesting problems
to study. As an example, we can ask if there is a decision procedure such that, given a
propositional formula ϕ, determines whether or not there exists a valuation v such that
v |= ϕ. This is the satisfiability problem of propositional logic, and it is quite easier
than in other logics to see that such a procedure exists: it is enough to check whether the
formula is satisfied over valuations with a domain restricted to the variables that appear
in the formula. Regarding the algorithmic complexity, the measure of how hard the
problem is, this satisfiability problem is called the Boolean Satisfiability Problem, and it
is proven to be in NP-complete, i.e. in the category of decision problems whose positive
answers can be checked in polynomial time.

Other problem of propositional logic is the validity problem: can we decide, for any
formula ϕ, whether or not it holds true for every possible valuation?2 We actually already
know the answer to this problem, as it is the dual of the satisfiability problem: a formula
ϕ is valid if and only if ¬ϕ is not satisfiable.

We still can mention another of the syntactic component of logics: deduction rules.
Propositional logic has a set of (somewhat abstruse) axiom schemas:

• ϕ→ (ψ → ϕ),

• (ϕ→ (ψ → ρ))→ ((ϕ→ ψ)→ (ϕ→ ρ),

• (¬ψ → ¬ϕ)→ ((¬ψ → ϕ)→ ψ),

and the single rule of inference modus ponens, which indicates that, for any formulas ϕ and
ψ, we have that ψ is a consequence of the pair ϕ → ψ and ϕ. A formula ϕ is said to be
provable from a set of formulas Γ, if there is finite derivation, using only the axioms, the
formulas in Γ, and the application of modus ponens, that ends in ϕ. These axiom schema
(with the inference rule modus ponens) constitute a sound and complete axiomatization
of propositional logic: soundness means that all formulas that are provable from these
axioms are true in any valuation, and completeness means that all formulas which are true
in all valuations can be proved from these axioms.

2Such formulas are called a tautologies.

16 INTRODUCTION

We now move on to basic modal logic, a generalization of propositional logic in which
there are potentially many connected worlds, each with their own valuation for the propo-
sitional variables.

Basic modal logic

The main features of modal logics are their relational structure and the fact that they
are mostly ‘internal’ or ‘local’ in the way they can view the structures, unlike first-order
logic, in which formulas have a bird’s-eye view and can ‘see’ all the universe such as with
formulas of the type ∀x . . . or ∃x

Basic modal logic can be thought of as a generalization of propositional logic. The
framework of semantic discourse for modal logics are frames plus valuations. A frame F
of BML is simply a (directed) graph: it consists of a set of elements U , called worlds, and
a binary relation R over the domain U . We often denote (w,w′) ∈ R as w→w′, and we
say that such w′ is a neighbor of w (although R is not necessarily symmetric) or a child of
w (specially when F is a tree). A valuation over a frame with universe U is a function
V : U × P → {0, 1} that assigns, for each world, a truth value for each propositional
variable. On each world, the logic can evaluate all the same things as propositional logic,
but it also has the ‘diamond’ navigational operator 3, which makes it possible to ‘explore’
the topological structure of the frame, and gives rise to quite complex queries that combine
the propositional and the navigational parts.

Basic modal logic can express properties such as:

‘If p1 does not hold in this world, then p2 holds in this world’ (4)

‘This world has a neighbor where p1 and p2 hold’ (5)

‘This world has a neighbor such that it has a neighbor where p1 holds’ (6)

‘All neighbors of this world have a neighbor where p1 does not hold’ (7)

Formulas of BML are defined by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ→ ϕ) | 3ϕ,

where p represents a propositional variable. As in the propositional case, ∨ and ∧ are not
necessary.

Given a frame F and a valuation V , we call model (or Kripke model) to the pair
F, V ; basically, a Kripke model can be seen as a labeled graph, where each node has as
labels those propositional variables that are true in it. For the semantics of BML, formulas
are evaluated over a model and a world of the respective frame. The semantics is as in
propositional logic, but we also need to assign meaning to formulas of the type 3ϕ, which
intuitively will be interpreted as ‘there is a neighbor of the current node such that ϕ holds
in it’. Formally, given a modelM = {F, V } and a world w in F , we say thatM, w |= 3ϕ
iff there is a world w′ such that wRw′ and M, w′ |= ϕ. It is customary to use the ‘box’
symbol 2 in BML-formulas, where 2ϕ is a shorthand for ¬3¬ϕ; this means that the
semantics of 2ϕ over a world w is that ϕ holds in all neighbours of w (if any).

I.1 CONTEXT AND PRELIMINARIES 17

The aforementioned properties can be written as BML-formulas in the following way:

(¬p1 → p2) (Expresses (4))

3(p1 ∧ p2) (Expresses (5))

33p1 (Expresses (6))

23¬p1 (Expresses (7))

See Figure 1 for an example of the semantics of the formulas above on a particular model;
we write only the propositional variables that are positive on each node.

x y

z

p1, p2 p2

p3

Figure 1: A graphical representation of a model M = {F, V }. The frame F is constituted of
three elements x, y, z, a relation R = {(y, x), (x, z), (z, z), (z, y)}. The valuation V assigns value
1 to a propositional variable on a world iff that propositional variable appears next to the node
in the figure. Here property (4) is satisfied in worlds x and y, property (5) in y, (6) in z, and (7)
in x, y.

An important concept for BML, and for logics in general, is that of logical equivalence
between nodes. Given two models M and M′, with worlds w and w′ in the respective
frames M and M ′, we say that M, w is equivalent to M′, w′ (notated M, w ≡ M′, w)
if and only if, for every BML-formula ϕ, ϕ holds on w iff it holds on w′. More precisely
stated:

M, w ≡M′, w′
def⇔ for all (BML) formulas ϕ, M, w |= ϕ iff M′, w′ |= ϕ.

That is, the logic cannot internally distinguish between those two worlds, although they
might be distinguishable by an external observer.

A notion that is closely related to equivalence is that of bisimilarity. For the purpose
of succinctness, let us call pointed model to a pair M, w, where M is model and w is a
world of the frame ofM. Given two modelsM andM′ with respective frames M,M ′, we
say that Z ⊆ M ×M ′ is a bisimulation if for all (x, x′) ∈ M ×M ′ such that (x, x′) ∈ Z
the following conditions hold:

• (Harmony) x and x′ satisfy the same propositional variables.

• (Zig) If x→y, then there exists y′ ∈M ′ such that x′→y′ and (y, y′) ∈ Z.

• (Zag) If x′→y′, then there exists y ∈M such that x→y and (y, y′) ∈ Z.

18 INTRODUCTION

y0

(9y0)

y

(8y)

x x0

M M0

Z

Figure 2: The process of checking the condition Zig of BML-bisimulation for (x, x′) ∈ Z entails
checking that all y that are neighbors of x have a corresponding y′ that is a neighbor of x′.

In Figure 2 we show an example of the process of checking Zig for a pair of nodes in a
bisimulation.

Now, given two pointed models M, x and M′, x′, with respective frames M,M ′, we
define when x and x′ are said to be bisimilar, notated M, x↔M′, x′:

M, x↔M′, x′
def⇔ there exists a bisimulation Z such that (x, x′) ∈ Z .

For example, if x and x′ satisfy the same propositional variables and they have no
neighbors, then they are bisimilar via the bisimulation Z = {(x, x′)}. If they have neigh-
bors, a bisimulation Z that contains (x, x′) will also contain other pairs, which must also
satisfy the clauses Harmony, Zig, and Zag.

In a sense, bisimilarity indicates that basic BML operations done in any of the two
models can be mirrored in the other one. Since it can be seen that BML-bisimulations
are closed under union, it follows that there always exists a single maximal bisimulation
between two models; an example of a maximal BML-bisimulation is shown in Figure 3.

p px1 x2

x3

y1

y2

p

M M0

Z

Figure 3: Z = {(x1, y1), (x2, y1), (x3, y2)} ⊆M ×M ′ is a bisimulation, as it can be verified that
Harmony, Zig, and Zag all hold for the three pairs in Z. Also note that this is a (the) maximal
bisimulation between M and M′, simply because adding any other pair would fail Harmony.

The one-direction version of bisimilarity is called similarity, and it is notatedM, x→
M′, x′. The definition is as that of bisimilarity, but simulation does not include the Zag

I.1 CONTEXT AND PRELIMINARIES 19

condition; here, operations done in M can be replicated in M′, but not necessarily the
other way around. A basic example of two pointed models such that M, x→M′, x′ but
not M, x↔M′, x′ can be seen in Figure 4.

x p x0

y0

p

p

M M0

Z

Figure 4: Z = {(x, x′)} ⊆ M × M ′ is a simulation, since Harmony holds and Zig holds
trivially. But there is no possible Z such that (x, x′) ∈ Z and Zag holds.

It is also important to remark that having both M, x → M′, x′ and M′, x′ → M, x
does not imply that M, x↔M′, x′: Figure 5 shows a counterexample.

x x0

y0p

M M0

z z0p

Figure 5: Similarity in both directions does not imply bisimilarity: it is trivial to see that
M, x→ M′, x′ holds, and it can be seen that M′, x′ → M, x via Z = {(x′, x), (z′, z), (y′, x))};
however, M, x 6↔ M′, x′, as any bisimulation Z including (x, x′) would need to relate y′ to some
node w in M , and that would violate Harmony in the case of w = z and Zig in the case of
w = x (since from x we can move to z, which satisfies p unlike x′, the only possible neighbor of
y′, and as such (z, x′) 6∈ Z).

Bisimilarity between two pointed models is quite a strong property: all bisimilar pointed
models are also equivalent, but there are pointed models that are equivalent but not bisimi-
lar (see Figure 6 for a typical counterexample taken from [15]). However, Hennessy-Milner’s
theorem (or Hennessy-Milner’s characterization theorem) establishes that the two
concepts coincide over finitely branching frames3 , that is, that nodes u and u′ of finitely
branching frames are bisimilar if and only if they cannot be distinguished by BML-formulas
(see, e.g., [16]). Now, bisimilarity between two finite (and thus finitely branching) pointed
models can be easily determined in PTime (see [8] for a more general framework). In par-
ticular, we can efficiently calculate the maximal (auto)bisimulation between a finite model
and itself, and obtain (because of the Hennessy-Milner’s theorem) a division of its nodes

20 INTRODUCTION

x

. . .

...

.

...

. . .

...

x0
M M0

Figure 6: Bisimilarity and equivalence for BML do not coincide over arbitrarily branching
frames. The represented pointed models are equivalent, as any BML-formula has a finite depth
and thus can be satisfied in the finite branches ofM. But these pointed models are not bisimilar:
suppose there is a bisimulation Z with (x, x′) ∈ Z. Then necessarily, if we take y′ as the first
node of the infinite branch of M ′, from Zag there is some y with x→y such that (y, y′) ∈ Z.
Now, iteratively applying Zag, we eventually arrive to the ending node of a branch in M , and
Zag does not hold between this node and the corresponding node of M′.

into equivalence classes of logical indistinguishability.
Beyond the connection between bisimilarity and equivalence, another important result

for basic modal logic and bisimulations is the one that characterizes basic modal logic
as a fragment of first-order logic. Before giving this theorem, we present the standard
translation of BML into first-order logic. We fix the signature σ with a binary relation ,
and an infinite number of unary predicates Pi (one for each propositional variable). Any
Kripke model M = {(U,R), V } can be seen as a first-order σ-structure with universe U ,
where the symbols of the signature have the following semantics:

 M = {(x, y) ∈ U2 | xRy};
PMi = {x ∈ U | V (x, pi) = 1}.

We now present a truth-preserving translation Trx mapping BML-formulas into first-order
σ-formulas with one free variable x:

Trx(pi) = Pi(x) (pi ∈ P a propositional variable)

Trx(¬ϕ) = ¬Trx(ϕ)

Trx(ϕ→ ψ) = Trx(ϕ)→ Trx(ψ)

Trx(3ϕ) = ∃y(x y ∧ Try(ϕ))

If ϕ(x) is a first-order formula with a free variable x, we useM |= ϕ[a] to denote that ϕ
is true inM under the first-order valuation which maps x to an element a of the universe
of M. The fact that the above translation is truth-preserving is expressed as follows:

3A frame with a binary relation R and universe U is said to be finitely branching if for each node
x ∈ U we have that {y ∈ U | xRy} is finite.

I.1 CONTEXT AND PRELIMINARIES 21

Proposition 1. If ϕ is a BML-formula, then M, u |= ϕ (in the sense of BML) iff M |=
Trx(ϕ)[u] (in first-order logic).

Given this translation, we can now state van Benthem’s characterization theorem:

Basic modal logic is the fragment of first-order logic whose truth remains in-
variant by bisimulations.

Or, more precisely stated:

Theorem 2 (Characterization [104]). Let ϕ(x) be a first-order formula (over the signature
σ) with one free variable x. Then:

1. ϕ(x) is↔-invariant over Kripke models

2. ϕ(x) is logically equivalent over Kripke models to a formula of BML.

In other words, we have that (translated) formulas of BML are precisely those first-
order formulas with one free variable whose truth value always coincides in pairs of pointed
models which are bisimilar.

One might ask what is the benefit of using basic modal logic instead of the more ex-
pressive first-order logic. As we have mentioned before, there are usually many trade-offs
between expressiveness and the complexity of various decision problems. One particu-
lar example for our case is that of the satisfiability problem: in first-order logic it is
undecidable, while in BML it is ‘merely’ PSpace-complete [75].

Another two problems, which we will also explore in the context of XPath over data
trees, are those of definability and separation. A class K of pointed models is said to
be definable by a set of formulas Γ when for every pointed model M, w it happens that
M, w |= Γ iff M, w ∈ K. The definability problem over BML asks, when given a class
K of pointed models, if there exists a set Γ of BML-formulas such that K is definable
by Γ. The definability theorem for basic modal logic [30] provides necessary and sufficient
conditions for the K to be definable by a set of formulas, and other necessary and sufficient
conditions for it to be definable by a single formula. This theorem can be stated as follows:

A class of pointed models K is definable by means of a set of basic modal
formulas if and only if K is closed under ultraproducts and bisimulations, and
the complement of K is closed under ultrapowers. Also, K is definable by a
single basic modal formula if and only if both K and its complement are closed
under ultraproducts and bisimulations.

The closely related separation problem asks, given two disjoint classes of pointed mod-
els K1, K2, whether there exists a set of formulas Γ such that the class K of pointed models
defined4 by Γ contains K1 and its disjoint with K2. Similarly as before, the separation the-
orem [30] can be stated as:

4That is, those pointed models M, w such that M, w |= Γ.

22 INTRODUCTION

Let K1 and K2 be two disjoint classes of pointed models such that K1 is closed
under bisimulations and ultraproducts and K2 is closed under bisimulations
and ultrapowers. Then there exists a class K that is definable by a set of basic
modal formulas, contains K1, and is disjoint from K2. Furthermore, if both
K1 and K2 are closed under bisimulations and ultraproducts, then such K is
definable by a single basic modal formula.

The ultraproduct is an operation that, from a family of models, constructs a new model
that in some way is the limit of their constituents. The complete definition is given in
Chapter 1, where we adapt ultraproducts and other classical tools to our framework.

It would be desirable to have a sound and complete deductive system that captured the
truth of the semantics of BML, that is, one where every universal truth over models can
be deduced from the axioms, and where everything that can be deduced from the axioms
is an universal truth. Such a system exists: it has all the axioms of propositional logic, it
has modus ponens, and additionally has one new inference rule and one new axiom schema.
The inference rule is called N (from necessitation), and it states that if ϕ is a theorem,
then so is 2ϕ (recall that 2ϕ means ¬3¬ϕ). The distribution axiom K is the schema:

2(ϕ→ ψ)→ (2ϕ→ 2ψ).

Other (sound and complete) axiomatizations can be given for different semantical frag-
ments of BML. For example, for the fragment where all frames have a relation that is
reflexive we would take our previous axiomatization of the full BML and add the following
axiom schema5:

2ϕ→ϕ

I.1.2 XPath= basics

Basic modal logic, for all its apparent simplicity, is quite expressive and versatile in some
aspects. Even with just propositional variables and a single modality (the diamond 3),
a pointed model can be queried for many interesting topological properties. And, by just
adding extra modalities, a wealth of interesting new logics can be constructed, such as
Linear Temporal Logic (LTL) [11] or Propositional Dynamic Logic (PDL) [60].

However, BML is simply unequipped to deal with some type of domains and queries.
One of these domains, close to that of the labeled graphs of Kripke models, is that of
graphs in which each node has a data value taken from some fixed set of possible values
(such as N or words over some alphabet). If this set of possible values is finite, we can
codify them into a valuation of the propositional values: with only 2 possible data values,
we can use p0 to query whether a node has ‘the same data value’ as a neighbor: we use the
formula (p0 → 3p0) ∧ (¬p0 → 3¬p0). By using combinations of the truth values of many
pi, we can expand this idea to any finite set of values (making very large and exhaustive

5This axiom schema is known in the literature as T , or the Reflexivity Axiom.

I.1 CONTEXT AND PRELIMINARIES 23

formulas), but we cannot expand the idea to infinite sets of values. Indeed, being able to
query for the exact data value in a node is not a good extension if our aim is to be able to
compare data values.

While we have explained that data comparison cannot be simulated by querying for
particular data values in a node, one may ask: why not have both possibilities? There are
three main reasons for this. First, we want to consider as equivalent two models that differ
only in a (bijective) renaming of the data values, so as to make the logic independent on
the data domain. Second, querying for particular data values might require an infinitary
logic, a case that is preferable to avoid when thinking of applications into database querying
languages. Third, having a data-querying operation would in some sense trivialize the logic,
since, for a logic with both data comparison and data querying, the notion of bisimulation
and many related theorems would be almost identical to those of BML. Therefore, we want
a logic that, without being able to compare values against data constants, is capable of
making data comparisons between pairs of nodes.

Of course, comparing data values in nodes of graphs is not a capricious wish, but a
type of query that often occurs in databases. To introduce our main domain of discourse,
we observe that the abstraction of an XML (Extensible Markup Language) document is
a data tree, a tree whose nodes contain a single label (or tag) taken from a finite set A
and a single data value taken from an infinite set V (equivalently from our theoretical
perspective, as we only care about data comparison, we can say that there is an equivalence
relation = defined over the nodes). For an example6 of a data tree derived from an XML
representing a bibliographical database, see Figure 7.

Introducing our central focus of study, XPath is the most widely used query language
for XML documents; it is an open standard and constitutes a World Wide Web Consortium
(W3C) Recommendation [24]. When suitably simplified and reinterpreted as a logic, XPath
can be seen as an extension of BML, but in the context of data trees, with a finite number
of propositional variables, and also, fundamentally, with the capacity to deal with data
comparisons between nodes. And while, as we will see, it has many points in common with
basic modal logic, it also has many complexities that are absent in that simpler framework.

XPath can express properties such as:

‘This node has label a’ (8)

‘This node has two children with different data values’ (9)

‘The ending node of this path has label a and is the grandchild of the starting node’ (10)

‘The starting node of this path has the same data value as one of its children

with label c, its ending node has label a and is a grandchild of the starting

node, and the sole child of the starting node in this path has label b’.

(11)

As indicated by the example properties, XPath is a logic with two sorts of formulas,
or expressions: node expressions, which represent properties of nodes and whose truth

6This figure is taken from Diego Figueira’s slides of ICDT14. Used with permission.

24 INTRODUCTION

name
Julio Cortázar

author
-

book
-

name
Octaedro

numpages
125

chapter
-

name
Liliana llorando

name
Los pasos en las huellas

chapter
-

book
-

name
Rayuela

numpages
..

name
Hermann Hesse

author
-

root
-

<author name = “Julio Cortázar”>
 <book name = “Octaedro” numpages = “125”>
 <chapter name = “Liliana llorando”/>
 <chapter name = “Los pasos en las huellas”/>
 </book>
 <book name= “Rayuela” numpages = “...”>
 ...
 </book>
</author>
<author name = “Hermann Hesse”> ...
</author>

Figure 7: In this representation of an XML document as a data tree, the set of labels is
A = {root, author, name, book, numpages, chapter}, and the data domain is V = {−} ∪ N ∪
{strings of characters}.

values are analyzed in nodes (as in BML), and path expressions, which represent prop-
erties of paths and are analyzed in pairs of nodes. XPath contains the ↓ operator, which,
similarly to the 3 operator of basic modal logic, relates a node in a tree with a child, but
XPath can also navigate the tree with other so-called navigational axes such as ↑ (which
relates a node with is parent), ↓∗ (descendant), ↑∗ (ancestor), ← (left sibling), → (right
sibling), et cetera. Core-XPath [57] is the fragment of XPath 1.0 containing only the nav-
igational behavior of XPath; it is able to express properties (8) and (10) of our previous
examples, but not (9) or (11). Core-Data-XPath [17], on the other hand, can express
them all. Indeed, XPath= is the extension of Core-XPath with (in)equality tests between
attributes of elements in an XML document.

In this thesis we will focus on simplified fragments of XPath= corresponding to the
navigational part of XPath 1.0 with data equality and inequality. Furthermore, altough
XPath supports many navigational axes, we will mostly work only with the downard sub-
fragment XPath=(↓) (which only contains the navigational axis ↓), and with the vertical
subfragment XPath=(↑↓) (which contains both ↓ and ↑).

We now proceed to more formal definitions about the models, the language, and the
semantics of XPath=.

I.1 CONTEXT AND PRELIMINARIES 25

Data trees

A tree is a connected graph with no cycles; even though only finite graphs make sense in
the context of databases, we allow them to be infinite for our study of expressive power
of logics. When we speak of trees, we will actually refer to rooted trees, that is, trees
where one node or vertex has been designated as the root. We say that a tree is ordered
when the children of all nodes have a particular ordering; we will not make this definition
more precise, since we will work with unordered trees. We say that a tree is k-ranked if
every node has at most k children. More often we refer to rank when talking about classes
of trees, and we say that a class of trees is unranked if there is no fixed bound on the
number of children the nodes can have. A tree is said to be finitely branching if every
node has finitely many children. Observe that being finitely branching is not the same as
being ranked, save in the finite case: imagine an infinite tree where the root has one child,
which has two children, which themselves have three children each, and so on.

Let Trees(A) be the set of unordered and unranked (finite or infinite) trees where each
node is provided with a letter from an arbitrary alphabet A. We say that T is a data tree
if it is a tree from Trees(A × V), where A is a finite set of labels and V is an infinite set
of data values (equivalently for our perspective of data comparison, we can think of data
trees as trees from Trees(A) which are provided with an equivalence relation for its nodes).
For instance, the tree T of Figure 8 belongs to Trees({a, b} × N). For any given data tree
T , we typically denote by T its set of nodes. We use letters x, y, z, u, v, w as variables for
nodes. Given a node x ∈ T of T , we write label(x) ∈ A to denote the node’s label, and
data(x) ∈ V to denote the node’s data value.

Given two nodes x, y ∈ T we write x→y if y is a child of x, and x
n→y if y is a descendant

of x at distance n. In particular,
1→ is the same as →, and

0→ is the identity relation. We

denote by x
≤m→y the fact that x

n→y for some n ≤ m. (
n→y) denotes the sole ancestor of y

at distance n (assuming it has one).
If x, y are nodes in a data tree T , we say that T , x is a pointed data tree, and that

T , x, y is a two-pointed data tree.

a, 1

a, 0

b, 2

b, 0a, 0 a, 1

x

y z

u v w

Figure 8: A graphical representation of a data tree T with a and b as labels and integers as
data values. The graphical positions of u, v, and w are interchangeable, as are those of y and z;
all these graphical permutations would yield the same underlying (unordered) data tree.

Recall that, since we will not work with fragments of XPath capable of determining
the particular data values of nodes, our formalism of data trees is equivalent to that where

26 INTRODUCTION

instead of data values we have an equivalence relation = over the nodes of the tree. We
might switch to this perspective when convenient, but it is generally easier to illustrate
examples of data trees using concrete data values instead of abstract equivalence classes.

Our main fragments of XPath=

As we have previously said, we work with a simplification of XPath stripped of its syn-
tactic sugar, corresponding to the navigational part of XPath 1.0 with data equality and
inequality. XPath= is a two-sorted language, with node expressions (that we typically
notate ϕ, ψ, η) expressing properties of nodes, and with path expressions (that we typi-
cally notate α, β, γ) expressing properties of paths. Vertical XPath over the set of labels
A, notated simply XPath=(↑↓), is defined by mutual recursion as follows:

α, β ::= o | [ϕ] | αβ | α ∪ β o ∈ {ε, ↑, ↓}
ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉 a ∈ A

As usual, we allow formulas of the type ϕ∨ψ, which we take to mean ¬(¬ϕ∧¬ψ). After
giving the semantics, we will also see that 〈α〉 is unessential7 and that ∪ is unessential for
node expressions.

We call downward XPath=, notated XPath=(↓), to the syntactic fragment which
only uses the navigation axis ↓, but not ↑. An XPath=(↑↓)-formula [resp. XPath=(↓)-
formula] is either a node expression or a path expression of XPath=(↑↓) [resp. XPath=(↓)].

Next we define the semantics of XPath=(↑↓) in a given data tree T , defining the set
of nodes that satisfy node expressions and the set of pairs of nodes that satisfy path
expressions:

[[↓]]T = {(x, y) | x→y}
[[↑]]T = {(x, y) | y→x}
[[ε]]T = {(x, x) | x ∈ T}

[[αβ]]T = {(x, z) | ∃y ∈ T : (x, y) ∈ [[α]]T , (y, z) ∈ [[β]]T }
[[α ∪ β]]T = [[α]]T ∪ [[β]]T

[[[ϕ]]]T = {(x, x) | x ∈ [[ϕ]]T }
[[a]]T = {x ∈ T | label(x) = a}

[[¬ϕ]]T = T \ [[ϕ]]T

[[ϕ ∧ ψ]]T = [[ϕ]]T ∩ [[ψ]]T

[[〈α〉]]T = {x ∈ T | ∃y ∈ T : (x, y) ∈ [[α]]T }
[[〈α = β〉]]T = {x ∈ T | ∃y,z ∈ T : (x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) = data(z)}
[[〈α 6= β〉]]T = {x ∈ T | ∃y,z ∈ T : (x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) 6= data(z)}

7Even though it is unessential, we keep 〈α〉 in the logic in order to make XPath= a syntactical extension
of the data-oblivious Core-XPath, which has 〈α〉 but does not have 〈α = β〉 nor 〈α 6= β〉.

I.1 CONTEXT AND PRELIMINARIES 27

Observe that if α is an XPath=(↓)-path expression and (x, y) ∈ [[α]]T , then either x = y
or y is a strict descendant of x in the tree T . Note that 〈α 6= β〉 is not the same as
¬〈α = β〉. Indeed, 〈α 6= β〉 states that there exist paths α and β starting from the current
node such that they end in nodes with different data values, while ¬〈α = β〉 functions as
a kind of ‘box’ from BML, saying that all such paths (if they exist at all) must end in
differing data values. Also observe that 〈α〉 has the same semantics as 〈α = α〉. We usually
write ↓n to mean ↓ . . . ↓︸ ︷︷ ︸

n

, and ↑n to mean ↑ . . . ↑︸ ︷︷ ︸
n

.

For a node expression ϕ, we write T , x |= ϕ to denote x ∈ [[ϕ]]T , and in that case we
say that T , x satisfies ϕ or that ϕ is true at T , x. In the same way, for a path expression
α, we write T , x, y |= α to denote (x, y) ∈ [[α]]T , and we say that T , x, y satisfies α or
that α is true at T , x, y. We say that the node expressions ϕ, ψ of XPath= are equivalent
(notated ϕ ≡ ψ) iff [[ϕ]]T = [[ψ]]T for all data trees T . Similarly, path expressions α, β of
XPath= are equivalent (notated α ≡ β) iff [[α]]T = [[β]]T for all data trees T .

We define Th↑↓(T , x) [resp. Th↓(T , x)] as the set of all XPath=(↑↓)-node expressions
[resp. XPath=(↓)-node expressions] true at T , x. Similarly, we define Th↑↓(T , x, y) [resp.
Th↓(T , x, y)] as the set of all XPath=(↑↓)-path expressions [resp. XPath=(↓)-path expres-
sions] true at T , x, y.

In terms of expressive power of node expressions, it is easy to see that ∪ is unessential
(see [44, §2.2]): every XPath=-node expression ϕ has an equivalent ϕ′ with no ∪ in its path
expressions. It is enough to use the following equivalences to eliminate occurrences of ∪:

〈α ? β〉 ≡ 〈β ? α〉
〈β(α ∪ α′)β′〉 ≡ 〈βαβ′〉 ∨ 〈βα′β′〉

〈γ ? β(α ∪ α′)β′〉 ≡ 〈γ ? βαβ′〉 ∨ 〈γ ? βα′β′〉
where ? ∈ {=, 6=}.

For the case of path expressions, there is no such possible elimination of ∪. Indeed the
path expression ↓[a]∪↓↓[a] cannot be restated without using ∪. The reason of this is that
there are no intersections or complementations of path expressions (in §1.4 and §1.5 we
study this issue).

Now, let us express the example properties (8), (9), (10), and (11) using the language
of XPath=(↓):

ϕ = a (Expresses (8))

ψ = 〈↓ 6= ↓〉 (Expresses (9))

α = ↓↓[a] = ↓2[a] (Expresses (10))

β = [〈ε = ↓[c]〉]↓[b]↓[a] (Expresses (11))

It is interesting enough to remark that there are some properties that, non-obviously,
can be expressed in XPath=(↑↓) but not in XPath=(↓). An example is the path property:

‘this descending path covers 3 nodes, all of which have different data values’. (12)

28 INTRODUCTION

a, 1

a, 2a, 1

a, 2

x

y z

a, 2

T

Figure 9: T , x, y |= [〈ε 6= ↓〉 ∧ 〈ε 6= ↓↓〉]↓[〈ε 6= ↓〉]↓, but x and y have the same data value; the
witness for 〈ε 6= ↓↓〉 is not y, but z.

In other words, this property is satisfied by pairs of nodes such that the second node is a
grandchild of the first, and such that it, its parent, and its grandparent all have different
data values. If trying to express this in XPath=(↓), a first attempt might be to take:

α = [〈ε 6= ↓〉 ∧ 〈ε 6= ↓↓〉]↓[〈ε 6= ↓〉]↓

However, there is no guarantee that the witness for the subformula 〈ε 6= ↓↓〉 is the ending
node of the path: see Figure 9 for a counterexample. On the other hand, we can verify
that the following XPath=(↑↓)-path expression has the desired semantics:

β = ↓[〈ε 6= ↑〉]↓[〈ε 6= ↑〉 ∧ 〈ε 6= ↑↑〉]

It is relevant to emphasize that this path expression has the desired semantics because we
are restricted to data trees, where each node has at most one parent; on the wider context
of data graphs, β would not express our desired property.

While we saw that our given α in particular did not work, we have not actually proved
that there is no XPath=(↓)-path expression that does. We will prove this fact later, after
we show a van Benthem-like characterization theorem for XPath=(↓). In order to do so,
however, we need to first introduce a central concept: that of XPath=-bisimulation.

XPath=(↓)-bisimulation

As in the case of basic modal logic, bisimulation is a fundamental notion that gives a
strong definition of indistinguishability by operations of XPath=. In this case, however,
the definition is more complex in order to deal with the possibility of forking from a single
node into two paths of arbitrary length that compare data only at the end. The following
definitions, as well as those we will later see for `, XPath=(↑↓), and (r, s, k) bisimulation,
were originally developed in [44] and [45].

Given two data trees T and T ′, with respective sets of nodes T, T ′, we say that the
relation Z ⊆ T × T ′ is an XPath=(↓)-bisimulation if for all (x, x′) ∈ T × T ′ such that
(x, x′) ∈ Z, the following conditions hold:

• (Harmony) label(x) = label(x′)

I.1 CONTEXT AND PRELIMINARIES 29

• (Zig) If we have paths x→v1→ . . .→vm and x→w1→ . . .→wn in T , then there exist
v′1, . . . , v

′
m and w′1, . . . , w

′
n in T ′ such that:

- x′→v′1→ . . .→v′m,

- (vi, v
′
i) ∈ Z for all 1 ≤ i ≤ m,

- x′→w′1→ . . .→w′n,

- (wi, w
′
i) ∈ Z for all 1 ≤ i ≤ n, and

- data(vm) = data(wn) iff data(v′m) = data(w′n).

• (Zag) (The symmetric condition to Zig, starting from two paths in T ′). If we have
paths x′→v′1→ . . .→v′m and x′→w′1→ . . .→w′n in T ′, then there exist v1, . . . , vm and
w1, . . . , wn in T such that:

- x→v1→ . . .→vm,

- (vi, v
′
i) ∈ Z for all 1 ≤ i ≤ m,

- x→w1→ . . .→wn,

- (wi, w
′
i) ∈ Z for all 1 ≤ i ≤ n, and

- data(vm) = data(wn) iff data(v′m) = data(w′n).

In Figure 10 we show an example of the process of checking Zig for two nodes. Note
that, since each node in a tree has exactly one parent (except the root), to determine a
descending path it suffices to give its starting and ending nodes.

(8v, w)(9v0, w0)

. .

|

{z

} |

{z

}

m n

v0 w0

data(v) = data(w) i↵ data(v0) = data(w0)

. .

|

{z

} |

{z

}

m n

v w

x x0

T T 0
Z

Figure 10: The process of checking the condition Zig of XPath=(↓)-bisimulation for (x, x′) ∈ Z
entails checking that all descending paths starting from x ∈ T can be mirrored pairwise in T ′.

We now define when two nodes x ∈ T and x′ ∈ T ′ are said to be XPath=(↓)-bisimilar,
notated T , x↔↓ T ′, x′:

T , x↔↓ T ′, x′ def⇔ there is an XPath=(↓)-bisimulation Z with (x, x′) ∈ Z.

30 INTRODUCTION

Note that in particular, for any pointed data trees T , x and T ′, x′, if x and x′ are leaves
with the same label, then T , x ↔↓ T ′, x′. Also note that, if (r, r′) is in a XPath=(↓)-
bisimulation Z for r and r′ the roots of T and T ′, then every element in T must be related
to at least one element in T ′, and vice versa, that is: π1(Z) = T and π2(Z) = T ′.

The one-direction version of bisimilarity, similarity, is defined as in BML by not asking
for the Zag condition, and it is analogously notated as→↓.

An important observation is that, as in the case of BML, XPath=(↓)-bisimulations and
simulations (and the other types of (bi)simulations we study) are closed under union. That
is, if Z1 ⊆ T × T ′ and Z2 ⊆ T × T ′ are two XPath=(↓)-(bi)simulations, then Z1 ∪ Z2 also
is an XPath=(↓)-(bi)simulation. This immediately implies that, if a (bi)simulation exists,
then there also exists a maximal (bi)simulation.

It can be shown, using similar counterexamples as those seen in §I.1.1 for BML8, that
we still have that a simulation is not necessarily a bisimulation, and that a similarity in
both ways between pointed data trees does not imply bisimilarity between them.

XPath=(↑↓)-bisimulation

Given that path expressions in XPath=(↑↓) can alternate ↓ and ↑ indefinitely, it could
intuitively appear that the notion of XPath=(↑↓)-bisimulation should be quite complex.
This it not the case; since we are working over data trees, the determinism of the ↑ and
thus the existence of quite compact normal forms (of which we speak later) allows us to
have a relatively simple definition [45].

Given two data trees T and T ′, with respective sets of nodes T, T ′, we say that the
relation Z ⊆ T ×T ′ is an XPath=(↑↓)-bisimulation if for all (x, x′) ∈ T ×T ′ such that
(x, x′) ∈ Z, the following conditions hold:

• (Harmony) label(x) = label(x′)

• (Zig) If v
m→x and v

n→w then there are v′, w′ ∈ T ′ such that:

- v′
m→x′,

- v′
n→w′,

- wZw′, and

- data(w) = data(x) iff data(w′) = data(x′).

• (Zag) (The symmetric condition to Zig, starting in T ′). If v′
m→x′ and v′

n→w′ then
there are v, w ∈ T such that:

- v
m→x,

- v
n→w,

- wZw′, and

8The data values can be made irrelevant to the notions of XPath=-bisimulation by giving the same
data value to all nodes.

I.1 CONTEXT AND PRELIMINARIES 31

- data(w) = data(x) iff data(w′) = data(x′).

In Figure 11 we show an example of the process of checking Zig for two nodes. Since from
the root of a tree we can reach any node, we remark that any non-empty XPath=(↑↓)-
bisimulation Z between two data trees T and T ′ connects every node of T with at least
one node of T ′, and every node of T ′ with at least one node of T .

. .

|

{z

} |

{z

}

m n

v0

w0

data(x) = data(w) i↵ data(x0) = data(w0)

. .

|

{z

} |

{z

}

m n

v

wx x0

T T 0

Z

(8v, w)(9v0, w0)

Figure 11: The process of checking the condition Zig of XPath=(↑↓)-bisimulation for
(x, x′) ∈ Z.

We define when two nodes x ∈ T and x′ ∈ T ′ are said to be XPath=(↑↓)-bisimilar,
notated T , x↔↑↓ T ′, x′:

T , x↔↑↓ T ′, x′ def⇔ there is an XPath=(↑↓)-bisimulation Z such that (x, x′) ∈ Z.

Bounded notions of bisimulation

The previously defined notions of XPath=(↓) and XPath=(↑↓)-bisimilarity might be too
strong for some purposes, as they may distinguish two nodes that only fail the bisimilarity
test with a pair of paths of high length. In §1.2 we write the definitions for two ‘bounded’
notions of bisimulation from [45], `-bisimulation and (r, s, k)-bisimulation, which only need
to explore the tree in some restricted ways.

Logical equivalence

As in BML, we say that two pointed data trees are equivalent respect to some XPath
fragment when the truth value of any node expression of that fragment coincides over
the two nodes. The formal definition of equivalence for the fragments XPath=(↓) and
XPath=(↑↓) (notated ≡↓ and ≡↑↓ respectively) is as follows:

T , x ≡↓ T ′, x′ def⇔ for all XPath=(↓)-node expressions ϕ, T , x |= ϕ iff T ′, x′ |= ϕ.

T , x ≡↑↓ T ′, x′ def⇔ for all XPath=(↑↓)-node expressions ϕ, T , x |= ϕ iff T ′, x′ |= ϕ.

32 INTRODUCTION

A node expression is said to be positive if it contains no negation. We define

T , xV↓ T ′, x′ def⇔ T , x |= ϕ⇒ T ′, x′ |= ϕ for every positive node expression ϕ.

In Section I.1.3 we will state the important results that relate the various notions of
bisimulation with the corresponding types of equivalence.

Node-labeled vs edge-labeled data graphs

In some kinds of databases, such as in social networks, it is more natural to have labels in
the edges connecting nodes rather than in the nodes themselves, specially when wanting to
emphasize relations between objects. This is particularly true in databases whose under-
lying topology is not a tree but a graph, which are common in knowledge representation.

XPath=(↓) can be adapted to this framework of edge-labeled data graphs by some small
changes in the definition of the node and path expressions:

α, β ::= ε | ↓a | αβ | α ∪ β | [ϕ] (a ∈ A)

ϕ, ψ ::= ¬ϕ | ϕ ∧ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉.

We call this logic XPath=(↓a), to highlight its edge-labeled nature. Given a data graph
G with nodes G and labeled edges E ⊆ G×A×G, the semantics for XPath=(↓a)-formulas
over G is as follows:

[[↓a]]G = {(x, y) | (x, a, y) ∈ E}
[[ε]]G = {(x, x) | x ∈ G}

[[αβ]]G = {(x, z) | ∃y ∈ G : (x, y) ∈ [[α]]G, (y, z) ∈ [[β]]G}
[[α ∪ β]]G = [[α]]G ∪ [[β]]G

[[[ϕ]]]G = {(x, x) | x ∈ [[ϕ]]G}
[[¬ϕ]]G = G \ [[ϕ]]G

[[ϕ ∧ ψ]]G = [[ϕ]]G ∩ [[ψ]]G

[[〈α〉]]G = {x ∈ G | ∃y ∈ G : (x, y) ∈ [[α]]G}
[[〈α = β〉]]G = {x ∈ G | ∃y,z ∈ G : (x, y) ∈ [[α]]G, (x, z) ∈ [[β]]G, data(y) = data(z)}
[[〈α 6= β〉]]G = {x ∈ G | ∃y,z ∈ G : (x, y) ∈ [[α]]G, (x, z) ∈ [[β]]G, data(y) 6= data(z)}

Bisimulation in the context of edge-labeled data graphs is very close to the one we gave
for node-labeled data trees, and its definition is given in Chapter 3, where the framework
of edge-labeled graphs is used. Importantly, having data graphs that are edge-labeled
instead of node-labeled does not significantly alter the key notions and results of XPath=:
each node-labeled data tree T can be represented as an edge-labeled data graph T̃ in a
straightforward way, and vice versa, with a translation that is invariant under the respective
notions of bisimulation.

I.1 CONTEXT AND PRELIMINARIES 33

I.1.3 Known model theory of XPath=

We now proceed to state some important properties and theorems of XPath= that are
mentioned or used later in this thesis. Unless otherwise stated, all these results where
originally developed in the foundational paper [45].

Bisimulation and equivalence

We now state theorems from [45], which are analogous to Hennessy-Milner’s characteri-
zation theorem, which show the connection between bisimulation and equivalence for the
downward and for the vertical fragments of XPath=. As in the case of BML, we con-
firm that bisimilarity is a strictly stronger notion than logical equivalence, but that both
coincide over finitely branching models.

We write more complete versions of these theorems in §1.2, after the definitions of some
bounded notions of bisimulation and their corresponding notions of equivalence.

Given two pointed data trees T , x and T ′, x′, the [bi]similarity T , x→↓ T ′, x′
[resp. T , x↔↓ T ′, x′] implies that T , xV↓ T ′, x′ [T , x ≡↓ T ′, x′]. The converse
is not true in general, but it holds when T and T ′ are finitely branching.
Analogously, T , x↔↑↓ T ′, x′ implies that T , x ≡↑↓ T ′, x′. The converse is not
true in general, but it holds when T and T ′ are finitely branching.

The practical importance of theorems of this type is that they affirm that, over finite
data structures, logical indistinguishability between nodes can be exactly determined via
bisimulations. Finding equivalence classes of entries/nodes in a database that respond
equally to all possible queries can be used to improve the performance of an actual querying
language: if we want to retrieve all entries that satisfy a certain query, it is enough to
check the query (and, recursively, its subqueries) on one node of each equivalence class. In
Chapter 3 we perform an exploration of this topic, and calculate tight complexity classes
of various bisimulation problems.

Connection to first-order logic

We fix the signature σ with binary relations and ∼, and a unary predicate Pa for each
a ∈ A. Any data tree T can be seen as a first-order σ-structure with universe T , where

 T = {(x, y) ∈ T 2 | x→ y in T };
∼T = {(x, y) ∈ T 2 | data(x) = data(y)};
P Ta = {x ∈ T | label(x) = a}.

In [44] is shown a truth-preserving translation Trx mapping XPath=(↑↓)-node expres-
sions into first-order σ-formulas with one free variable x. Our following translation, given
in [5], is slightly more clear than the one described in [44], and they differ importantly in

34 INTRODUCTION

that ours can consider the translation of path expressions (resulting in first-order formulas
with two variables):

Trx(a) = Pa(x) (a ∈ A)

Trx(ϕ † ψ) = Trx(ϕ) † Trx(ψ) († ∈ {∧,∨})
Trx(¬ϕ) = ¬Trx(ϕ)

Trx(〈α〉) = (∃y)Trx,y(α) (y a fresh variable)

Trx(〈α = β〉) = (∃y)(∃z)
(
y ∼ z ∧ Trx,y(α) ∧ Trx,z(β)

)
(y, z fresh variables)

Trx(〈α 6= β〉) = (∃y)(∃z)
(
y 6∼ z ∧ Trx,y(α) ∧ Trx,z(β)

)
(y, z fresh variables)

Trx,y(ε) = (x = y)

Trx,y(↓) = (x y)

Trx,y(↑) = (y x)

Trx,y(αβ) = (∃z)
(
Trx,z(α) ∧ Trz,y(β)

)
(z a fresh variable)

Trx,y(α ∪ β) = Trx,y(α) ∨ Trx,y(β)

Trx,y([ϕ]) = Trx(ϕ) ∧ (x = y).

It is easy to see that the above translation is truth-preserving:

Proposition 3. If ϕ is a node expression of XPath=(↑↓) then T , u |= ϕ iff T |= Trx(ϕ)[u].
If α is a path expression of XPath=(↑↓) then T , u, v |= α iff T |= Trx,y(α)[u, v].

Using the previously given translation, we can now give the characterization theorem
for XPath=(↓)-node expressions, the result corresponding to the characterization theorem
of BML that we previously showed. In Chapter 1, we will give an analogous result but for
XPath=(↓)-path expressions.

We can say that:

Over data trees, XPath=(↓) is the fragment of first-order logic (with signa-
ture σ) whose truth remains invariant by bisimulations.

This can be written more precisely as:

Theorem 4 (Characterization). [45] Let ϕ(x) be a first-order formula (over the signature
σ) with one free variable x. Then the following properties are equivalent:

1. ϕ(x) is↔↓-invariant over data trees

2. ϕ(x) is logically equivalent over data trees to a node expression of XPath=(↓).

Furthermore, in [45] it is shown that there is a relation between the quantifier rank of
ϕ and the ` such that the equivalent node expression lies in `-XPath=(↓).

Note that with this result we can demonstrate that the property (12), of being a
descending path of 3 nodes all having different data values is not expressible with a single
XPath=(↓)-path expression. Indeed, were it to be expressible with a single path expression

I.2 FOCUS OF STUDY AND CONTRIBUTIONS 35

α, we would get the node expression 〈α〉 with the interpretation ‘there exists a descending
path of depth two, starting from this node, such that all its nodes have different data
values’. Now it suffices to show that this first-order-expressible property9 is not expressible
with a single XPath=(↓)-node expression, which by Theorem 4 can be done by giving two
XPath=(↓)-bisimilar pointed data trees where its truth value differs. The pointed data trees
of Figure 12 serve this purpose. In §1.3.3 we will prove, using a definability theorem, a
stronger version of this inexpressibility result: that this node property cannot be expressed
even with sets of node-expressions.

x0
a, 1

a, 2 a, 3

a, 1

a, 1

a, 2 a, 2

T T 0

a, 1

a, 2

a, 1

a, 1

a, 2

x $#

Figure 12: The node version of property (12) is not XPath=(↓)-bisimulation-invariant over data
trees: here we can check that T , x↔↓ T ′, x′, but the property holds on T , x and not in T ′, x′.

The statement corresponding to Theorem 4 but adapted to XPath=(↑↓) is false: a
counter-example would be to take the property ‘there exists in this tree some node labeled
a’. This first-order-expressible property is invariant by bisimulation: given a pointed data
tree where it holds, the node that witnesses a must be reachable by some path of the
form ↑m↓n; given another pointed data tree that is bisimilar to the first one, it must have
(from Zig) a corresponding path ending in a node that must necessarily (using Harmony)
have label a. However, there is no way to express the stated property with a single node
expression in XPath=(↑↓), as such formulas can at most ‘see’ around a radius that is
bounded by their length.

I.2 Focus of study and contributions

In this section we present a quick overview of the main subjects we study in this thesis. We
briefly mention previous works that are relevant to our topics of interest, and then proceed
to introduce an outline of the problems we answer in this thesis and the approaches we
take to tackle them.

9ϕ(x) ::= ∃y(∃z x y ∧ y z ∧ ¬(x ∼ y) ∧ ¬(x ∼ z) ∧ ¬(y ∼ z)).

36 INTRODUCTION

I.2.1 Bisimulations

As we have seen, bisimulation is a central concept in BML and XPath=, closely related
to that of logical equivalence. In general, bisimulation is a fundamental notion that es-
tablishes when two nodes (states) in graph-represented data (transition system) cannot
be distinguished by an external observer. It was independently discovered in the areas
of computer science and philosophical logic during the 1970s —see [96] for a thorough
historical revision of the notion of bisimulation. In both contexts, bisimulation (and its
“one-direction” version, simulation) appeared as a refinement of the notion of morphism,
i.e, “structure-preserving” mappings. In the case of computer science, bisimulation was
developed in the context of concurrency theory as a way to study the behavior of programs
[85, 92]. In philosophical logic, it was introduced by van Benthem in order to characterize
the expressive power of the basic modal logic in terms of a fragment of first-order logic
[104].

Nowadays, (bi)simulation is applied in many different fields of computer science. For
instance, it is used in concurrency to study behavioral equality for processes [86]; in model
checking to tackle the state-explosion problem [25]; in databases as a method for indexing
and compressing semi-structured data [87, 41]; in stochastic planning to solve Markov
decision processes efficiently [56]; in description logics to understand the expressiveness of
some languages [74]; and in natural language generation to define semantic counterparts
to the notion of referring expression [8]. Also, the closely related notion of arc consistency
is used in constraint satisfaction as an approximation of satisfiability [32, 33] and as a
method for finding tractable cases of the satisfiability problem [68, 28].

As we mentioned, XPath is a two-sorted logic, with node expressions and path expres-
sions. Most of the recent model theory on XPath= focuses on node expressions, but here
we extend many results to its path expressions. As a step in doing this, we devise an appro-
priate notion of bisimulation for path expressions, which we call binary bisimulation. We
show that this notion, which extends that of unary bisimulation developed in [44], coincides
with that of equivalence over finitely branching data trees, and prove a van Benthem-like
characterization theorem for path expressions. This binary framework is further away from
BML than the unary one of node expressions, and thus the modifications required for the
definitions and proofs turned out to be quite complex. Our research on these topics can
be found in [2] and [5], and here we present it in Chapter 1, specifically in Section 1.4.

In BML, it is easy to see that deciding whether a relation Z is a bisimulation can be
done in polynomial time over the number of nodes in the models, as we have a clear bound
on the search space needed to verify Zig and Zag for each pair in Z. For XPath= over data
trees, the same idea applies: while, for a given pair of nodes in Z, Zig or Zag putatively
need to check paths of arbitrary depth, the size of the data trees gives us a bound to this
search. As a consequence, by starting with a relation Z = T ×T ′ and iteratively removing
pairs that fail any bisimulation test, XPath= bisimilarity between pointed data trees can
be determined in PTime, as was the case for BML. It is no longer so easy to answer the
bisimulation problem in the case of XPath= over data graphs, as in this case we lack an
immediately obvious bound to the depth of the paths we have to check in the Zig and

I.2 FOCUS OF STUDY AND CONTRIBUTIONS 37

Zag operations. The findings on this topic presented in Chapter 3 are from [1], where we
analyze the complexity classes of different bisimilarity problems (unbounded bisimulation,
bisimulation bounded by constants, and bisimulation bounded by functions) over different
classes of models (data trees, directed acyclic graphs, and graphs).

I.2.2 Expressive power

The classical result of definability for first-order logic was adapted to the context of many
modal logics, where the notion of isomorphism is replaced by the weaker concept of bisim-
ulation (the one which turns to be adequate for the chosen modal logic). Thus, definability
theorems were established for the basic modal logic [30], for temporal logics with since
and until operators [72], for negation-free modal languages [73], etc. A global counterpart
was studied in [31], and a general framework stating sufficient conditions for an arbitrary
(modal) logic L to verify it was given in [6]. One of those requirements is that the models
of L are closed under ultraproducts, which is true for the aforementioned logics, but not
for XPath=. Indeed, models of XPath= are data trees, which may not remain connected
under ultraproducts. Hence one cannot expect to use that framework in this case. The
Separation theorem for the basic modal logic was shown by de Rijke in [30], and it was
studied for other specific modal logics such as the temporal logic [72]. For more general
modal logics, Separation was studied in [6], but again, XPath= does not fit in here.

As mentioned before, to prove definability and separation results for node and path
expressions of XPath=, we need to change or refine many of the tools used in the cor-
responding results of basic modal logic. For instance, in our case we have to adjust the
notion of ultraproduct in order to always remain in the domain of data trees, and so we
work with a variant of it called quasi-ultraproduct. We also need to devise suitable no-
tions of saturation. Using these specially developed tools, we arrive to definability and
separation theorems for node and path expressions over both the downward fragmentd
XPath=(↓) and the vertical fragment XPath=(↑↓). These tools and results are presented
in Chapter 1 of this thesis, and can also be found in [2] and, more completely, in [5].

I.2.3 Axiomatizations

Given a logic, a sound and complete axiomatization of a class of models consists of a set of
axioms whose respective theorems are truths in all models of the class, and such that all
universal truths in the class are theorems. There exist axiomatizations for purely naviga-
tional fragments of XPath with different axes [102], axiomatizations of other fragments of
Core-XPath have been investigated in [13], and extensions with XPath 2.0 features have
been addressed in [103]. However, the only other research into the proof theory of XPath=

outside of this thesis has been for a simple fragment [10].

In the framework of equational logic, we give a sound and complete axiomatization for
XPath=(↓) and (first) for an easier subfragment that is unable to express data tests of
the form 〈α 6= β〉. All axioms are of the form ϕ ≡ ψ for node expressions ϕ, ψ or of the

38 INTRODUCTION

form α ≡ β for path expressions α, β, and inference rules are the standard of equational
logic. As usual, proving completeness is the hard part. This proof relies in a normal form
theorem for expressions in XPath=(↓), and in the construction of a canonical model for
any consistent formula in normal form. These results from [3] can be found in Chapter 2
of this thesis.

I.2.4 Relation between data logics and counter systems

In the realms of semistructured data, finite data trees have been considered as simple
abstractions of XML documents, timed automata, program verification, and generally of
systems manipulating data values. Therefore, developing logics over data trees whose
satisfiability problem is decidable is of great importance when reasoning on data-driven
systems. A wealth of specification formalisms on these structures (either for data trees or
its ‘word’ version, data words) have been introduced, stemming from automata [88, 99],
first-order logic [17, 65, 48, 19], XPath= [66, 50, 44, 43, 47], or temporal logics [38, 79, 70,
46, 36, 67]. In their full generality, most formalisms lead to undecidable reasoning problems.
As we mentioned in the prologue of this chapter, there are entangled interactions between
expressiveness and decidability plus algorithmic complexity, and a well-known research
trend consists of finding a good trade-off between them.

In certain aspects, our work is a generalization to ranked (multi)data trees of the work
done in [35] for data words. We present a simple data-aware Logic of Repeating Values
LRV, similar in many aspects to XPath=, and show how the satisfiability problem of the
subfragment LRVD over k-ranked data trees can be reduced to the control-state reachability
problem for VASSk. Afterwards we introduce an extension of Branching VASS, called
Merging VASS, and show that the satisfiability of the full LRV over k-ranked data trees
can be reduced to control-state reachability of MVASSk. These topics and results are
explored in [4], and here we present them in Chapter 4.

I.3 Organization

The main body of this thesis is divided into two parts, each one containing two chapters.
Part A, composed of Chapter 1 and Chapter 2, deals with model-theoretical and proof-

theoretical aspects of XPath=. In Chapter 1 we give definability and separation results
for XPath=(↓) and XPath=(↑↓)-node expressions, extend previous model-theoretical re-
sults such as van Benthem-style characterization to the context of binary bisimulations for
two-pointed data trees, and give definability and separation theorems for XPath=(↓) and
XPath=(↑↓)-path expressions. In Chapter 2 we first give a sound and complete axioma-
tization for XPath=(↓)−, the subfragment of XPath=(↓) which lacks inequality data tests
of the type 〈α 6= β〉; afterwards we give a sound and complete axiomatization for the full
fragment XPath=(↓).

Part B, composed of Chapter 3 and Chapter 4, deals with more computational aspects
of XPath= and the related logic LRV. In Chapter 3 we extend definitions and results of

I.3 ORGANIZATION 39

XPath= over data trees to the wider framework of data graphs, and calculate tight bounds
on the complexity classes of the bisimilarity problems for various fragments of XPath= and
for various restrictions on the models. In Chapter 4 we obtain an algorithmic complexity
bound for the satisfiability problem of the fragment LRVD over k-ranked data trees by
reducing it to the control-state reachability problem of VASSk, and, after introducing an
extension of Branching VASS called Merging VASS, we show that the satisfiability problem
of LRV can be reduced to the control-state reachability problem of MVASSk.

We end the thesis with the conclusions, where we summarize our results and mention
possible avenues of further research.

Part A

Model theory and proof theory

41

Chapter 1

Definability and binary bisimulation

Still, the creatures covered the
territory in careful increments,
moving back and forth along
parallel, invisible paths.

Blindsight
Peter Watts

1.1 Introduction

In this chapter we focus on studying the model theory and the expressive power of the logics
XPath=(↓) and XPath=(↑↓), both for node expressions and path expressions. Our main
aim is to give definability theorems for these logics: on one hand, necessary and sufficient
conditions under which we can assure that classes of pointed data trees can be defined by
the use of a single node expression or a set of them; on the other hand, necessary and
sufficient conditions under which classes of two-pointed data trees are definable by a single
path expression or a set of them. As a consequence of these results, we obtain separation
theorems, which indicate necessary and sufficient conditions for two classes of pointed (or
two-pointed) data trees to be separable by a third class that is definable by a single node
expression (respectively, path expression) or set of them.

Though our research on XPath= takes as a motivation the current relevance of XML
documents (which of course are finite) and the logics for reasoning over them, we do not
restrict ourselves to the finite case. Indeed, an infinite set of node or path expressions may
force all of its models to be infinite. Hence, since we aim at working with arbitrary sets of
node or path expressions, we must consider arbitrary (i.e. finite or infinite) data trees.

In the context of BML, definability theorems use two basic tools: ultraproducts and
bisimulations. As a first step of our adaptation of these theorems into XPath=, we need to
modify the concept of ultraproduct so that its application remains in the universe of data
trees. And while the notion of bisimulation has already been developed and studied for the

43

44 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

case of pointed data trees, we need to develop appropriate notions of binary bisimulation
for the case of two-pointed data trees and path expressions of XPath=(↓) and XPath=(↑↓),
capturing the notion of logical indistinguishability in the respective fragments and over
finitely branching data trees. Our definitions of binary bisimulation are more complex
than those of unary bisimulation, and actually the notion of binary bisimilarity subsumes
that of unary bisimilarity.

For this binary framework, we also show a van Benthem-style characterization theo-
rem paralleling that for unary bisimulation, and show that a first-order formula with two
free variables is expressible in XPath=(↓) if and only if it is binary-bisimulation-invariant
and represents a ‘forward property’. As in the unary case, the characterization fails for
XPath=(↑↓).

1.1.1 Related work

The notion of bisimulation was introduced independently by van Benthem [104] in the
context of modal correspondence theory, by Milner [84] and Park [92] in concurrency the-
ory, and by Forti and Honsell [53] in non-wellfounded set theory (see [97] for a historical
outlook). With respect to notions of binary bisimulations, we can mention the work [52],
where some notions of bisimulations are given for some fragments of Tarski’s calculus of
binary relations, with the aim of understanding the expressive power of the calculus of
relations as a database query language for binary relation structures.

The classical result of definability for first-order logic has been adapted to the context
of many modal logics, where the notion of isomorphism is replaced by the weaker concept
of bisimulation (the one which turns to be adequate for the chosen modal logic). Thus,
definability theorems were established for the basic modal logic [30], for temporal logics
with since and until operators [72], for negation-free modal languages [73], etc. A global
counterpart was studied in [31], and a general framework stating sufficient conditions for
an arbitrary (modal) logic L to verify it was given in [6]. One of those requirements is
that the models of L are closed under ultraproducts, which is true for the aforementioned
logics, but not for XPath=. Indeed, models of XPath= are data trees, which may not
remain connected under ultraproducts. Hence one cannot expect to use that framework in
this case. The Separation theorem for the basic modal logic was shown by de Rijke in [30],
and it was studied for other specific modal logics such as the temporal logic [72]. For more
general modal logics, Separation was studied in [6], but again, XPath= does not fit in that
framework.

In [104] basic modal logic is characterized as the bisimulation invariant fragment of
first-order logic. Van Benthem’s original result over arbitrary structures was proved to
hold for finite structures by Rosen [95]. The proof was then simplified and unified by
Otto [89, 90], and later expanded by Dawar and Otto [29] to other classes of structures.
We follow the ideas of [89] to show the characterization result for binary bisimulations in
the downward fragment.

There are many works in the literature studying the expressive power of Core-XPath

1.1. INTRODUCTION 45

(see e.g. [59, 82, 101]). All these consider the navigational (i.e. data-oblivious) fragment
of XPath. A first step towards the study of the expressive power of XPath when equipped
with (in)equality test over data trees is the paper [44], and its full version [45]. The
developments in this chapter are a natural continuation of that work.

In [45], the expressive power of XPath= was studied, from a logical and modal model
theoretical point of view. Suitable notions of bisimulations were given both for XPath=(↓)
and XPath=(↑↓). There it is shown that if x and x′ are bisimilar then they satisfy exactly
the same node expressions, and that the converse is also true for trees whose every node
has only finitely many children. Hence, bisimulation coincides with logical equivalence,
i.e., with indistinguishability by means of node expressions. A van Benthem-like charac-
terization theorem is also given for the downward fragment of XPath=, which states that
it coincides with the bisimulation-invariant fragment of first-order logic with one free vari-
able (over the adequate signature). For the case of the vertical fragment of XPath= this
characterization fails.

This chapter contains a natural continuation of [45], as we develop new tools and delve
in some aspects of the model theory of the downward and vertical fragments of XPath=,
studying their expressive power regarding both node expressions and path expressions.
Our main result regarding node expressions is the analog of the classic BML definability
theorem mentioned in the introduction of this thesis:

A class of pointed models K is definable by means of a set of basic modal
formulas if and only if K is closed under ultraproducts and bisimulations, and
the complement of K is closed under ultrapowers. Also, K is definable by a
single basic modal formula if and only if both K and its complement are closed
under ultraproducts and bisimulations.

As a corollary, we obtain the analog of the separation theorem, which says:

Let K1 and K2 be two disjoint classes of pointed models such that K1 is closed
under bisimulations and ultraproducts and K2 is closed under bisimulations
and ultrapowers. Then there exists a class K that is definable by a set of basic
modal formulas, contains K1, and is disjoint from K2. Furthermore, if both
K1 and K2 are closed under bisimulations and ultraproducts, then such K is
definable by a single basic modal formulas.

1.1.2 Contributions

In the first part of this chapter we study the expressive power of node expressions for the
downward and vertical fragments of XPath=. We show definability theorems (which provide
conditions under which a class of pointed data trees can be defined by a node expression
or by a set of node expressions) and separation theorems (which provide conditions under
which two disjoint classes of pointed data trees can be separated by a class definable by a
node expression or a set of node expressions).

46 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Our definability and separation theorems for XPath= themselves are shown using rather
known techniques. Our main contribution lies in devising and calibrating the corresponding
notions to be used in the XPath= setting, and in studying the subtle interaction between
them:

• Bisimulation: already introduced in [44], it is the counterpart of isomorphisms in the
classical theorem for first-order logic. It is known that if two (possibly infinite) data
trees are bisimilar then they are logically equivalent (that is, they are not distinguish-
able by an XPath=-node expression) but that the converse is not true in general. If
the trees are finitely branching, then bisimilarity and logical indistinguishability do
coincide.

• Saturation: we define and study the new notion of XPath=-saturation. We show
that for XPath=-saturated data trees, being bisimilar is the same as being logically
equivalent. It is also shown that a 2-saturated data tree (regarded as a first-order
structure) is already XPath=-saturated.

• Ultraproducts: contrary to other adaptations of the classical first-order definability
theorem to modal logics, in our case we have to adjust also the notion of ultraproduct,
and so we work with a variant of it called quasi-ultraproduct. The reason is that we
must not abandon the universe of data trees, as these are the only allowed models
of XPath=.

In the second part of this chapter we start a model-theoretical study of path expressions
of XPath=. We introduce a new kind of binary bisimulation for both the downward and the
vertical fragment, which captures, over finitely branching trees, when two pairs of nodes
(instead of single nodes, as in [44]) are indistinguishable by means of path expressions
(instead of by node expressions). Our binary bisimulations subsume, in fact, the already
known unary bisimulation, since over finitely branching trees, (x, x) is binary-bisimilar to
(x′, x′) if and only if x is unary-bisimilar to x′. The definitions of binary bisimulations
require more rules than the unary ones, but they all have the flavor of back-and-forth
conditions.

We also show a characterization theorem, which states that a first-order formula with
two free variables is expressible in XPath=(↓) if and only if it is binary-bisimulation-
invariant and represents a ‘forward property’. Using the new tool of binary bisimulations,
together with suitable modifications of saturation, we show definability and separation
theorems, this time in the context of path expressions as the language of description, and
with respect to classes of two-pointed data trees (with some restrictions that allow the
expressibility of complementation and intersection of path expressions).

1.1.3 Organization

This chapter is organized as follows. In §1.2 we give some preliminaries that were ommited
from the introduction of the thesis but are of great importance for this chapter, such

1.2. PRELIMINARIES 47

as notions of bounded bisimulation, normal forms, and ultraproducts. In §1.3.1 we give
suitable notions of saturation for the downward and vertical fragments of XPath=, and
show that for saturated trees bisimilarity coincides with logical equivalence. In §1.3.2 we
expand the connection between XPath= and first-order logic, and we introduce the idea
of quasi-ultraproducts for the downward and vertical fragments. In §1.3.3 and §1.3.4 we
state the theorems on definability and separation, respectively.

In §1.4 we start our study of path expressions, which is divided into the downward
fragment (§1.4.1) and the vertical fragment (§1.4.2). For the downward fragment, we
begin with some needed facts and we then define the notions of logical equivalence to be
used. The definitions of binary bisimulations for the downward fragment are also given
here, where it is also shown their coincidence to the logical equivalence for path expressions.
Afterwards we give a characterization theorem for binary bisimulations in XPath=(↓). For
the vertical fragment, we first show some needed facts and then introduce the definition of
binary bisimulation, where, again, it is shown that it matches logical equivalence. In §1.5
we introduce the needed changes to the notions of saturation and quasi-ultraproducts
for the case of two-pointed data trees, and we state for this scenario of path expressions
the theorems of definability and separation, over some restricted classes of two-pointed
data trees where we can express the concepts of complementation and intersection of path
expressions.

1.2 Preliminaries

We begin this section presenting some results from [45]: notions of bounded bisimulation
for XPath=(↓) and XPath=(↑↓), and the theorems that relate the notions of bisimulation
on these fragments with the corresponding notions of logical indistinguishability. Then we
state some normal form theorems for XPath=(↓) and XPath=(↑↓), mostly taken from [45],
which allow us to deal with restricted syntactical fragments that are just as expressive as
the full fragments, but that greatly simplify many of our proofs. Finally, we show the basic
definitions and results for ultraproducts, which are a fundamental tool for our definability
and separation theorems.

1.2.1 Bounded notions of bisimulation

`-bisimulation

The notion of XPath=(↓)-bisimilarity might be too strong for some purposes, as it may
distinguish two nodes that only fail the bisimilarity test with a pair of paths of high length.
In real-world applications, queries are rarely very deep, and it might be useful to consider
two nodes as ‘alike’ when they merely are bisimilar just ‘up to a certain depth’ (see [58]
for some exploration of this topic). `-bisimulation is a possible answer for these types of
utilization, being a bisimulation notion that can only ‘see’ up to a certain fixed depth from
the starting nodes.

48 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Given two data trees T and T ′, with respective sets of nodes T, T ′, we say that a
family of relations (Zj)0≤j≤` in T ×T ′ constitutes an `-bisimulation if for each j ≤ ` and
(x, x′) ∈ Zj the following conditions hold:

• (Harmony) label(x) = label(x′)

• (Zig) If x
m→v and x

n→w with m,n ≤ j then there are v′, w′ ∈ T ′ such that x′
m→v′,

x′
n→w′ and

- (
i→v)Zj−m+i (

i→v′) for all 0 ≤ i < m,

- (
i→w)Zj−n+i (

i→w′) for all 0 ≤ i < n, and

- data(v) = data(w) iff data(v′) = data(w′).

• (Zag) (The symmetric condition to Zig, starting in T ′).

In Figure 13 we show an example of the process of checking Zig for two nodes.

Zj�1

Zj�m

. .

|

{z

} |

{z

}

m n

v0 w0

(9v0, w0)

data(v) = data(w) i↵ data(v0) = data(w0)

. .

|

{z

} |

{z

}

m n

v w

(8v, w)(8m, n  j)

x x0

T T 0

Zj

Zj�n

Figure 13: The process of checking the condition Zig of `-bisimulation for j ≤ ` and (x, x′) ∈ Zj .

We define when two nodes x ∈ T and x′ ∈ T ′ are said to be `-bisimilar, notated
T , x↔↓` T ′, x′:

T , x↔↓` T ′, x′
def⇔ there is an `-bisimulation (Zj)0≤j≤` such that (x, x′) ∈ Z`.

Observe that if Z is an XPath=(↓)-bisimulation, then (Zj)0≤j≤`, with Zj = Z for all j,

is an `-bisimulation for any `. Thus, T , x↔↓ T ′, x′ implies that T , x↔↓` T ′, x′ for all `.

(r,s,k)-bisimulation

As XPath=(↓) has a ‘bounded’ version of bisimulation with `-bisimulation, so does the
logic XPath=(↑↓). In this case, however, the definition is quite more involved.

Given two data trees T and T ′, with respective sets of nodes T, T ′, we say that a
family of relations (Z k̂

r̂,ŝ)r̂+ŝ≤r+s,k̂≤k in T × T ′ constitutes an (r, s, k)-bisimulation if for

all r̂ + ŝ ≤ r + s, k̂ ≤ k, when (x, x′) ∈ Z k̂
r̂,ŝ the following conditions hold:

1.2. PRELIMINARIES 49

• (Harmony) label(x) = label(x′)

• (Zig) If v
m→x and v

n→w with m ≤ ŝ and n ≤ r̂ + m then there are v′, w′ ∈ T ′ such
that v′

m→x′, v′ n→w′, and the following hold:

- if k̂ > 0, (w,w′) ∈ Z k̂−1
r̂′,ŝ′ for r̂′ = r̂ +m− n, ŝ′ = ŝ−m+ n.

- data(w) = data(x) iff data(w′) = data(x′),

• (Zag) (The symmetric condition to Zig, starting in T ′).

In Figure 14 we show an example of the process of checking Zig for two nodes.

Z k̂�1
r̂0,ŝ0

r̂0 = r̂ + m� n

ŝ0 = ŝ�m + n

. .

|

{z

} |

{z

}

m n

(9v0, w0)

v0

w0

data(x) = data(w) i↵ data(x0) = data(w0)

. .

|

{z

} |

{z

}

m n

v

w

Z k̂
r̂,ŝ

(8v, w)(8m  ŝ, n  r̂ + m)

x x0

T T 0

Figure 14: The process of checking the condition Zig of (r, s, k)-bisimulation for r̂+ ŝ ≤ r+ s,

k̂ ≤ k, and (x, x′) ∈ Z k̂r̂,ŝ.

We define when two nodes x ∈ T and x′ ∈ T ′ are said to be (r, s, k)-bisimilar, notated
T , x↔↑↓r,s,k T ′, x′:

T , x↔↑↓r,s,k T ′, x′
def⇔ there is an (r, s, k)-bisimulation (Z k̂

r̂,ŝ)r̂+ŝ≤r+s,k̂≤k s.t. (x, x′) ∈ Zk
r,s

1.2.2 Bounded notions of equivalence

In order to define the appropriate logical fragment for↔↓` and↔↑↓r,s,k, we first have to
provide some definitions.

Given a XPath=(↓)-node expression ϕ, we write dd(ϕ) to denote the downward depth
of ϕ, which measures ‘how deep’ the formula can see, and it is defined as follows:

dd(a) = 0 dd(λ) = 0
dd(ϕ ∧ ψ) = max{dd(ϕ), dd(ψ)} dd(εα) = dd(α)

dd(¬ϕ) = dd(ϕ) dd([ϕ]α) = max{dd(ϕ), dd(α)}
dd(〈α〉) = dd(α) dd(↓α) = 1 + dd(α)

dd(〈α� β〉) = max{dd(α), dd(β)} dd((α ∪ β)γ) = max{dd(αγ), dd(βγ)}

50 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

where a ∈ A, � ∈ {=, 6=}, and α is any path expression or the empty string λ. We remark
that we have a definition for dd including the union ∪ of path expressions, as we said in
§I.1.2 that the union is only expressively unessential for node expressions.

Example 5. Let ϕ = a ∧ 〈↓ = ↓↓〉, α = ↓[ϕ], and β = ↓[ϕ]↓. Then dd(ϕ) = 2, and
dd(α) = dd(β) = 3.

We name as `-XPath=(↓) the fragment of XPath=(↓) consisting of all node expressions
ϕ such that dd(ϕ) ≤ `. We say that T , x and T ′, x′ are `-equivalent for XPath=(↓)
(notated T , x ≡↓` T ′, x′) iff the truth value of any node expression ϕ ∈ `-XPath=(↓)
coincides over both pointed data trees. That is:

T , x ≡↓` T ′, x′
def⇔ for all `-XPath=(↓)-node expressions ϕ, T , x |= ϕ iff T ′, x′ |= ϕ.

For the vertical fragment XPath=(↑↓), we need to define both the maximum downward
distance r and the maximum upward distance s that the formula can reach. We call the
pair (r, s) the vertical depth of a formula, notated vd(ϕ). The nesting depth of a
formula ϕ, notated nd(ϕ), is the maximum number of nested [] appearing in ϕ. More
precisely:

vd(a) = (0, 0) vd(λ) = (0, 0)
vd(ϕ ∧ ψ) = max{vd(ϕ), vd(ψ)} vd(εα) = vd(α)

vd(¬ϕ) = vd(ϕ) vd([ϕ]α) = max{vd(ϕ), vd(α)}
vd(〈α〉) = vd(α) vd(↓α) = max{(0, 0), vd(α) + (1,−1)}

vd(〈α� β〉) = max{vd(α), vd(β)} vd(↑α) = max{(0, 0), vd(α) + (−1, 1)}
vd((α ∪ β)γ) = max{vd(αγ), vd(βγ)}

nd(a) = 0 nd(αβ) = max{nd(α), nd(β)}
nd(ϕ ∧ ψ) = max{nd(ϕ), nd(ψ)} nd(ε) = 0

nd(¬ϕ) = nd(ϕ) nd([ϕ]) = 1 + nd(ϕ)
nd(〈α〉) = nd(α) nd(↓) = 0

nd(〈α� β〉) = max{nd(α), nd(β)} nd(↑) = 0
nd((α ∪ β)γ) = max{nd(αγ), nd(βγ)}

where a ∈ A, � ∈ {=, 6=}, the operations ‘+’ and ‘max’ are performed component-wise,
and α is any path expression or the empty string λ.

Example 6. Let α = ↑↓↓, ϕ = 〈↑[a]↓↓ 6= ↓↑↑↑〉, ψ = ¬〈[a] = ↓[〈↑ 6= [b]〉]〉. Then:
vd(α) = (1, 1) and nd(α) = 0, vd(ϕ) = (1, 2) and nd(ϕ) = 1, and vd(ψ) = (1, 0) and
nd(ψ) = 2.

Now, let (r, s, k)-XPath=(↑↓) be defined as the set of XPath=(↑↓) node expressions
ϕ such that vd(ϕ) ≤ (r, s) and nd(ϕ) ≤ k. We say that two pointed data trees T , x and
T ′, x′ are (r, s, k)-equivalent for XPath=(↑↓) (notated T , x ≡↑↓r,s,k T ′, x′) iff the truth
value of any node expression ϕ ∈ (r, s, k)-XPath=(↑↓) coincides over both pointed data
trees. That is:

1.2. PRELIMINARIES 51

T , x ≡↑↓r,s,k T ′, x′
def⇔ for all (r, s, k)-XPath=(↑↓)-node expressions ϕ,

T , x |= ϕ iffT ′, x′ |= ϕ.

We now state the full theorems from [45], already partially mentioned in §I.1.3, which
show the connection between bisimulation and equivalence for the downward and for the
vertical fragments of XPath=.

Theorem 7. [45] Given two pointed data trees T , x and T ′, x′,

1. T , x↔↓ T ′, x′ implies T , x ≡↓ T ′, x′. The converse is not true in general, but it holds
when T and T ′ are finitely branching.

2. T , x↔↓` T ′, x′ iff T , x ≡↓` T ′, x′.

Theorem 8. [45] Given two pointed data trees T , x and T ′, x′, T , x →↓ T ′, x′ implies
T , xV↓ T ′, x′. The converse is not true in general, but it holds when T and T ′ are finitely
branching.

Theorem 9. [45] Given two pointed data trees T , x and T ′, x′,

1. T , x↔↑↓ T ′, x′ implies T , x ≡↑↓ T ′, x′. The converse is not true in general, but it
holds when T and T ′ are finitely branching.

2. T , x↔↑↓r,s,k·(r+s+2) T ′, x′ implies T , x ≡↑↓r,s,k T ′, x′.

3. T , x ≡↑↓r,s,k T ′, x′ implies T , x↔↑↓r,s,k T ′, x′.

1.2.3 Normal forms

The normal form of a node or path expression is a standard or canonical way to represent
it; a normal form theorem states that any expression has an equivalent10 expression that is
in normal form. If normal forms are chosen adequately, they serve to simplify proofs and
definitions. Importantly, the notion of XPath=(↑↓)-bisimilarity we have given in §I.1.2,
and its equivalence with logical indistinguishability as stated in Theorem 9, rely on the
normal form theorem we will soon show.

To begin with, let us observe that a path expression in XPath=(↓) could be of the type
εε↓[ϕ][ψ][η]ε↓, but that this representation is ‘wasteful’ in a certain sense; there is another,
more concise path expression which has the same semantics: ↓[ϕ∧ ψ ∧ η]↓. In general, for
any data tree T and any path expression α, [[α]]T = [[αε]]T , and given node expressions ϕ
and ψ, we also have that [[↓[ϕ][ψ]]]T = [[↓[ϕ ∧ ψ]]]T . Indeed, continuing in this direction, it
is easy to see that any XPath=(↓)-path expression is semantically equivalent to some path
expression in the form:

[ϕ0]↓[ϕ1]↓ . . . ↓[ϕn]. (13)

10In this chapter we deal with normal forms in a semantical context, that is, we speak about equivalences
in respect of the universe of all models, but in Chapter 2 we instead work with normal forms from a proof-
theoretical perspective.

52 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

An XPath=(↓)-path expression is said to be in XPath=(↓)-normal form if it is writ-
ten in the form of (13), and every other path expression contained in it (such as, e.g.,
path expressions appearing in the node expressions ϕi) is also in that form. Similarly,
an XPath=(↓)-node expression is in XPath=(↓)-normal form if all path expressions that
appear in it are in XPath=(↓)-normal form. It can be seen that any XPath=(↓)-formula is
equivalent to a formula in XPath=(↓)-normal form.

We could use some of the insights of the case of XPath=(↓)-normal form in order to
tentatively propose [ϕ0]o1[ϕ1] . . . on[ϕn] as a candidate for the normal form of XPath=(↑↓)-
path expressions, where oi ∈ {↑, ↓}. Surprisingly, there is an even simpler candidate. Let
us say that a path expression α of XPath=(↑↓) is downward [respectively, upward], if it
is of the form ↓n[ϕ] [resp. [ϕ]↑n]. An up-down expression is one of the form ε, α↑, α↓,
or α↑α↓, where α↑ is upward and α↓ is downward. We say that a XPath=(↑↓)-formula
is in up-down normal form, or XPath=(↑↓) normal form, if every path expression
contained in it is up-down, and all data tests are of the form 〈ε� β↑β↓〉 with � ∈ {=, 6=}.

Why should it be possible to transform any path expression into an equivalent one in
up-down normal form? The main idea is to take advantage of the fact that we are working
over data trees, and thus the operation ↑ is deterministic; any node ‘higher’ in the tree can
still be unambiguously accessed if we first go down any number of times and then go up
the appropriate amount. For instance, one can see that:

↓[ϕ]↑2[ψ]↓3[η] is equivalent to [〈↑0↓[ϕ]〉]↑↓3[η ∧ 〈↑3↓0[ψ]〉].

In [45] it is proven that any XPath=(↑↓)-formula has an equivalent formula in up-down
normal form, which furthermore has its same vertical depth and a nesting depth that is
polynomially bounded over the nesting and vertical depth of the original formula. It is with
the help of this normal form theorem that the connection between XPath=(↑↓)-bisimilarity
and XPath=(↑↓)-equivalence is proved.

In §1.4.2 we explicitly state some of the results from [45], and we use them to slightly
extend the study of normal forms for path expressions.

1.2.4 Ultraproducts

The ultraproduct of a family of structures is a construction that preserves properties that
are true ‘in almost all’ members of that family. Ultraproducts are a very useful theoretical
tool to construct structures with certain properties; an example is the construction of the
hyperreal numbers as an appropriate ultrapower11 of the real numbers. In order to properly
define ultraproduct, we first need some preliminary definitions:

Let I be a set, and U be a set of subsets of I. We say that U is an ultrafilter if it has
the following properties:

• ∅ 6∈ U, I ∈ U
11An ultrapower is an ultraproduct where all the structures of the family are the same.

1.2. PRELIMINARIES 53

• If A,B ∈ U , then A ∩B ∈ U

• If A ∈ U and A ⊆ B ⊆ I, then B ∈ U

• For each A ⊆ I, either A ∈ U or I \ A ∈ U
Given any infinite set I, an important example of an ultrafilter over I is the Fréchet filter
given by F = {A ⊆ I | I \ A is finite}. We say that an ultrafilter U is principal if it is
generated by a subset A of I, that is: U = {B ⊆ I | A ⊆ B}.

Now, let L be a signature, I a set, D a non-principal ultrafilter over I, and {Mi}i∈I
a family of L-structures, with the corresponding family of universes {Mi}i∈I . Given a =
{ai}i∈I and b = {bi}i∈I elements of

∏
i∈IMi = {z : I → ⋃

Mi | zi ∈ Mi for each i}, we
say that a and b are equivalent respect to D, notated a ∼ b iff ‘ai = bi almost everywhere
respect to D’, that is:

a ∼ b
def⇔ {i ∈ I | ai = bi} ∈ D.

We denote a/D
def
= {b ∈ ∏i∈IMi | a ∼ b}, and we call this the ultralimit of the family

{ai}i∈I . We are at last in the conditions to give our desired definition. Let M =
∏

iMi/D
the set of ultralimits of the sets Mi. The ultraproductM =

∏
i∈IMi/D, also notated

∏

D

Mi,

is the L-structure with the following components: The universe ofM is M . Constants are
interpreted as the ultralimit of constants in all the structures. Functions over appropriately
sized tuples of ultralimits are defined as the ultralimits of the functions applied to the tuples
of elements. Predicates over tuples of ultralimits are defined to be true iff the set of indexes
where they are true for intervening tuples belongs to D (that is, the interpretation over
tuples of the models is D-a.e. true). More precisely, given a1/D, . . . , an/D ultralimits in M
with ak/D being the ultralimit of {aki /D}i∈I , we define, for every n-ary predicate symbol
R, n-ary function symbol f , and constant symbol c in L:

• cM is the ultralimit of {cMi
}i∈I

• fM(a1/D, . . . , an/D) is the ultralimit of {fMi
(a1
i , . . . , a

n
i)}i∈I

• (a1/D, . . . , an/D) ∈ RM iff (a1
i , . . . , a

n
i) ∈ RMi

D-a.e.

Finally, let us mention the fundamental theorem of ultraproducts (see e.g. [23, Thm.
4.1.9]), which states the aforementioned characteristic the ultraproducts have in the preser-
vation of properties that are true almost everywhere.

Theorem 10 (Fundamental Theorem of Ultraproducts). Let ϕ be a L-formula with free
variables x1, . . . , xn, let Mi be a family of L-structures and let M be their ultraproduct,
and let aki be elements in Mi and ak/D their ultralimit. Then:

M |= ϕ(a1/D, . . . , an/D)⇔Mi |= ϕ(a1
i , . . . , a

n
i) D-a.e.

54 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

1.3 Definability via node expressions

In this section we develop and apply the tools needed to obtain the main results of defin-
ability and separation via node expressions of XPath=(↓) and XPath=(↑↓). While in the
case of XPath=(↓) we work over the full universe of pointed data trees, this framework
is inadequate for XPath=(↑↓); for definability and separation results for XPath=(↑↓), we
mostly work over the universe of k-bounded pointed data trees, which are pointed data
trees where the selected nodes are at a distance at most k from the root.

1.3.1 Saturation

In [44] it is shown that the reverse implication of Item 1. of Theorem 7 holds over finitely
branching trees. However, it does not hold in general. In this section we introduce notions
of saturation for the downward and vertical fragments of XPath, and show that the reverse
implication of Theorem 7 is true over saturated data trees.

Saturation for the downward fragment. Let 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 be tuples
of sets of XPath=(↓)-node expressions. Given a data tree T and u ∈ T , we say that
〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are =↓n,m-satisfiable [resp. 6=↓n,m-satisfiable] at T , u if
there exist v0 → v1 → · · · → vn ∈ T and w0 → w1 → · · · → wm ∈ T such that u = v0 = w0

and

1. for all i ∈ {1, . . . , n}, T , vi |= Σi;

2. for all j ∈ {1, . . . ,m}, T , wj |= Γj; and

3. data(vn) = data(wm) [resp. data(vn) 6= data(wm)].

In Figure 15 we show an example of two tuples of sets of node expressions that are
=↓n,m-satisfiable at a pointed data tree T , x.

. .

|

{z

} |

{z

}

n m

v w

x

T

⌃1

⌃n

⌃n�1

�1

�m�1

�m

data(v) = data(w)

Figure 15: 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are =↓n,m-satisfiable at T , x.

1.3. DEFINABILITY VIA NODE EXPRESSIONS 55

We say that 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are =↓n,m-finitely satisfiable [resp. 6=↓n,m-
finitely satisfiable] at T , u if for every finite Σ′i ⊆ Σi and finite Γ′j ⊆ Γj, we have that
〈Σ′1, . . . ,Σ′n〉 and 〈Γ′1, . . . ,Γ′m〉 are =↓n,m-satisfiable [resp. 6=↓n,m-satisfiable] at T , u.

Definition 11. We say that a data tree T is ↓-saturated if for every n,m ∈ N, every
pair of tuples 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 of sets of XPath=(↓)-node expressions, every
u ∈ T , and ? ∈ {=, 6=}, the following is true:

if 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are ?↓n,m-finitely satisfiable at T , u then
〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are ?↓n,m-satisfiable at T , u.

Proposition 12. Any finitely branching data tree is ↓-saturated.

Proof. Suppose by contradiction that there is u ∈ T and tuples

〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉

of sets of XPath=(↓)-node expressions which are finitely =↓n,m-satisfiable at T , u but not
=↓n,m-satisfiable at T , u (the case for T being 6=↓n,m-satisfiable is analogous). Let

P = {(v, w) ∈ T 2 | u n→v ∧ um→w ∧ data(v) = data(w)}.

Observe that P is finite because T is finitely branching. It is clear that if (v, w) ∈ P , so
that u = v0 → v1 → · · · → vn = v ∈ T , and u = w0 → w1 → · · · → wm = w ∈ T then
either

there is i ∈ {1, . . . , n} such that T , vi 6|= Σi, or (14)

there is j ∈ {1, . . . ,m} such that T , wj 6|= Γj. (15)

We will define sets (Σi,v,w)1≤i≤n and (Γj,v,w)1≤j≤m, each one of them with at most one
element, as follows: If case (14) holds, assume i0 is the least such number and define Σi0,v,w

as {ρ} for some node expression ρ ∈ Σi0 such that T , vi0 6|= ρ, define Σi,v,w = ∅ for any
i ∈ {1, . . . , n} \ {i0}, and define Γj,v,w = ∅ for any j ∈ {1, . . . ,m}. If case (14) does
not hold then case (15) holds, so assume j0 is the least such number and define Γj0,v,w
as {ρ} for some node expression ρ ∈ Γj0 such that T , wj0 6|= ρ, define Γj,v,w = ∅ for any
j ∈ {1, . . . ,m} \ {j0}, and define Σi,v,w = ∅ for any i ∈ {1, . . . , n}. Finally, define the
finite sets Σ′i =

⋃
(v,w)∈P Σi,v,w and Γ′j =

⋃
(v,w)∈P Γj,v,w. By construction, we have Σ′i ⊆ Σi,

Γ′j ⊆ Γj and 〈Σ′1, . . . ,Σ′n〉 and 〈Γ′1, . . . ,Γ′m〉 are not =↓n,m-satisfiable at T , u which is a
contradiction.

Proposition 13. Let T and T ′ be ↓-saturated data trees, and let u ∈ T and u′ ∈ T ′. If
T , u ≡↓ T ′, u′, then T , u↔↓ T ′, u′.

Proof. We show that Z, defined by xZx′ iff T , x ≡↓ T ′, x′ is a XPath=(↓)-bisimulation
between T , u and T ′, u′. Clearly uZu′, and Harmony holds. We only need to show that
Zig and Zag are satisfied. We only check Zig, as Zag is analogous.

56 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Suppose xZx′, x = v0 → v1 → · · · → vn and x = w0 → w1 → · · · → wm are paths
on T , and data(vn) = data(wm) (the case data(vn) 6= data(wm) is shown analogously).
For i ∈ {1, . . . , n}, let Σi = Th↓(T , vi), and for j ∈ {1, . . . ,m}, let Γj = Th↓(T , wj).
Furthermore, let Σ′i be a finite subset of Σi, and let Γ′j be a finite subset of Γj. Define

ϕ = 〈↓[∧Σ′1]↓ . . . ↓ [∧Σ′n] = ↓[∧Γ′1]↓ . . . ↓ [∧Γ′m]〉.

It is clear that T , x |= ϕ, and since by definition of Z we have T , x ≡↓ T ′, x′, we conclude
that T ′, x′ |= ϕ. Hence 〈Σ′1, . . . ,Σ′n〉 and 〈Γ′1, . . . ,Γ′m〉 are =↓n,m-satisfiable at x′. This
holds for any finite sets Σ′i ⊆ Σi and Γ′j ⊆ Γj, and so 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are
=↓n,m-finitely satisfiable at x′. Since T ′ is ↓-saturated, 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are
=↓n,m-satisfiable at T ′, x′, so there are paths x′ = v′0 → v′1 → · · · → v′n and x′ = w′0 →
w′1 → · · · → w′m on T ′ such that

i. data(v′n) = data(w′m).

ii. For all 1 ≤ i ≤ n, T ′, v′i |= Th↓(T , vi). This implies T , vi ≡↓ T ′, v′i: suppose by the
way of contradiction that T ′, v′i |= ϕ but T , vi 6|= ϕ. Then, T , vi |= ¬ϕ, and thus
T ′, v′i |= ¬ϕ, a contradiction.

iii. For all 1 ≤ j ≤ m, T ′, w′j |= Th↓(T , wj), i.e T , wj ≡↓ T ′, w′j.

By the definition of Z, conditions i, ii and iii above imply the conditions for the Zig clause
of XPath=(↓)-bisimulation.

Saturation for the vertical fragment. Given a data tree T and u ∈ T , we say that
the set of XPath=(↑↓)-node expressions Γ is =↑↓n,m-satisfiable [resp. 6=↑↓n,m-satisfiable] at

T , u if there exist v, w ∈ T such that v
n→u, v

m→w, w |= Γ and data(u) = data(w) [resp.
data(u) 6= data(w)]. We say that Γ is =↑↓n,m-finitely satisfiable [resp. 6=↑↓n,m-finitely

satisfiable] at T , u if for every finite Γ′ ⊆ Γ, we have that Γ′ is =↑↓n,m-satisfiable [resp.
=↑↓n,m-satisfiable] at T , u.

In Figure 16 we show an example of a set of node expressions that is =↑↓n,m-satisfiable
at a pointed data tree T , x.

Definition 14. We say that a data tree T is ↑↓-saturated if for every set of XPath=(↑↓)-
node expressions Γ, every u ∈ T , every n,m ∈ N, and ? ∈ {=, 6=}, the following is true:

if Γ is ?↑↓n,m-finitely satisfiable at T , u then Γ is ?↑↓n,m-satisfiable at T , u.

Proposition 15. Let T and T ′ be ↑↓-saturated data trees, and let u ∈ T and u′ ∈ T ′. If
T , u ≡↑↓ T ′, u′, then T , u↔↑↓ T ′, u′.

Proof. We show that Z ⊆ T × T ′, defined by xZx′ iff T , x ≡↑↓ T ′, x′ is a XPath=(↑↓)-
bisimulation between T , u and T ′, u′. Clearly uZu′, and Harmony also holds, so we only
need to show that Zig and Zag are satisfied. We only check Zig, as Zag is analogous.

1.3. DEFINABILITY VIA NODE EXPRESSIONS 57

. .

|

{z

} |

{z

}

n m

v

wx

T

�

data(x) = data(w)

Figure 16: Γ is =↑↓n,m-satisfiable at T , x.

Suppose xZx′, y
n→x and y

m→z are in T , and data(x) = data(z) (the case data(x) 6=
data(z) can be shown analogously). Let Γ = Th↑↓(T , z), and let Γ′ be a finite subset of Γ.
Define

ϕ = 〈ε = ↑n ↓m [∧Γ′]〉.
It is clear that T , x |= ϕ, and since by definition of Z we have T , x ≡↑↓ T ′, x′, we conclude
that T ′, x′ |= ϕ. Hence Γ′ is =↑↓n,m-satisfiable at x′. This holds for any finite set Γ′ ⊆ Γ,
and so Γ is =↑↓n,m-finitely satisfiable at x′. Since T ′ is ↑↓-saturated, Γ is =↑↓n,m-satisfiable at

x′, and thus there are y′
n→x′ and y′

m→z′ on T ′ such that data(x′) = data(z′) and T ′, z′ |=
Th↑↓(T , z), i.e T , z ≡↑↓ T ′, z′. By the definition of Z, we have zZz′ and hence the Zig
clause for XPath=(↑↓)-bisimulation is verified.

1.3.2 Weak data trees and quasi-ultraproducts

From now on we fix σ as the first-order signature from §I.1.3:

σ = { ,∼, (Pa)a∈A},

where we recall that and ∼ are symbols for binary relations and we have an unary
predicate symbol Pa for each a ∈ A. As we have shown, every data tree T can be seen as a
first-order σ-structure with universe T . But, for reasons that will become clearer later on,
we will need to work with σ-structures which are slightly more general than data trees:

Definition 16. A σ-structure T is a weak data tree if the following conditions hold:

• ∼ is an equivalence relation;

• there is exactly one node r with no u such that u r (r is called root of T);

• for all nodes x 6= r there is exactly one y such that y x; and

• for each n ≥ 0 the relation has no cycles of length n.

58 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Observe that a weak data tree need not be connected, and that the class of weak data
trees is elementary, i.e. definable by a set of first-order σ-sentences (with equality). For a
weak data tree T and u ∈ T , let T |u be defined as:

T |u def
= the substructure of T induced by {v ∈ T | u ∗ v}.

Observe that in this case T |u is a data tree with root u.
The following proposition shows the ‘local’ aspect of XPath=(↓) and XPath=(↑↓). It

is stated in terms of first-order because models are weak data trees. From now, unless
specified otherwise, let Tr be the translation given in §I.1.3.

Proposition 17. Let T be a weak data tree and let r ∗ u in T .

1. If ϕ is a XPath=(↓)-node expression then T |= Trx(ϕ)[u] iff T |r |= Trx(ϕ)[u].

2. If r is the root of T and ϕ ∈ XPath=(↑↓) then T |= Trx(ϕ)[u] iff T |r |= Trx(ϕ)[u].

Observe that the condition of r being the root in the second item is needed. Suppose
for example we are on the data tree with only 2 nodes, the root r and its child u, with
same data value. Consider now ϕ = 〈ε = ↑〉. Clearly T |= Trx(ϕ)[u], but T |u 6|= Trx(ϕ)[u].

We now give some technical definitions and notation that are needed for the statement
of Proposition 19. If M is a first-order σ-structure and A ⊆ M , we denote by σA the
language obtained by adding to σ constant symbols for each a ∈ A. That is:

σA = σ ∪ A.

M can be seen as a σA structure by interpreting the new symbols as expected: as the
corresponding elements of M . Let ThA(M) be the set of all σA-sentences true in M:

ThA(M)
def
= {σA-sentences ϕ | M |= ϕ}

Now, let κ be a cardinal. We recall the definition of κ-saturated first-order structures:

Definition 18. We say that the σ-structure M is κ-saturated if for all A ⊆ M and all
n, if |A| < κ and Γ(x1, . . . , xn) is a set of σA-formulas with free variables among x1, . . . , xn
such that Γ(x1, . . . , xn) ∪ ThA(M) is satisfiable, then Γ(x1, . . . , xn) is realized in M.

We now show that 2-saturated data trees are already both downward and vertical
saturated, a result that is later used for the proofs of Lemma 23 and Lemma 28. For
technical reasons we state this proposition in the more general setting of weak data trees.

Proposition 19. Let T be a 2-saturated weak data tree and r ∈ T .

1. T |r is a ↓-saturated data tree.

2. If r is the root of T then T |r is a ↑↓-saturated data tree.

1.3. DEFINABILITY VIA NODE EXPRESSIONS 59

Proof. Let T ′ = T |r and let u ∈ T ′. For item 1, let 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 be
tuples of sets of XPath=(↓)-node expressions. Suppose 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are
=↓n,m-finitely satisfiable at T ′, u (the case for 6=↓n,m-finitely satisfiable is analogous). We
show that 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are =↓n,m-satisfiable at T ′, u.

Consider the following first-order σ{u}-formula with free variables x̄ = x1, . . . , xn and
ȳ = y1, . . . , ym:

ϕ(x̄, ȳ) = u x1 ∧
n−1∧

i=1

xi xi+1 ∧ u y1 ∧
m−1∧

j=1

yj yj+1 ∧ xn ∼ ym.

Define the following set of first-order σ{u}-formulas:

∆(x̄, ȳ) = {ϕ(x̄, ȳ)} ∪
n⋃

i=1

Trxi(Σi) ∪
m⋃

j=1

Tryj(Γj).

Let ∆′(x̄, ȳ) be a finite subset of ∆(x̄, ȳ). Since 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are =↓n,m-
finitely satisfiable at T ′, u, then ∆′(x̄, ȳ) is satisfiable and, by item 1 of Proposition 17, con-
sistent with Th{u}(T). By compactness, ∆(x̄, ȳ) is satisfiable and consistent with Th{u}(T).
By 2-saturation, we conclude that ∆(x̄, ȳ) is realizable in T , say at v̄ = v1, . . . , vn and
w̄ = w1, . . . , wm. Thus we have:

i. u v1 · · · vn and u w1 · · · wm in T , and hence in T ′;

ii. for all i ∈ {1, . . . , n}, T |= Trxi(Σi)[vi], and for all j ∈ {1, . . . ,m}, T |= Tryj(Γj)[wj];
by item 1 of Proposition 17 this implies that T ′ |= Trxi(Σi)[vi] and T ′ |= Tryj(Γj)[wj];

iii. vn ∼ wm in T , and hence in T ′.

Since Tr is truth-preserving, we have that for all i ∈ {1, . . . , n}, T ′, vi |= Σi, and for
all j ∈ {1, . . . ,m}, T ′, wi |= Γi. Together with i and iii we conclude that 〈Σ1, . . . ,Σn〉 and
〈Γ1, . . . ,Γm〉 are =↓n,m-satisfiable at T ′, u.

For item 2, let Γ be a set of XPath=(↑↓)-node expressions. Suppose Γ is =↑↓n,m-finitely
satisfiable at T ′, u (the case for 6=↑↓n,m-finitely satisfiable is analogous). We show that Γ are
=↑↓n,m-satisfiable at T ′, u.

Consider the following first-order σ{u}-formula with free variable y:

ϕ(y) = (∃x0 . . . ∃xn)(∃y0 . . . ∃ym)[xn = u ∧ y = ym ∧ x0 = y0 ∧
n−1∧

i=0

xi xi+1 ∧
m−1∧

j=0

yj yj+1 ∧ xn ∼ ym].

Define the following set of first-order σ{u}-formulas: ∆(y) = {ϕ(y)} ∪ Try(Γ). Let ∆′(y)
be a finite subset of ∆(y). Since Γ is =↑↓n,m-finitely satisfiable at T ′, u, then ∆′(y) is
satisfiable and, by item 2 of Proposition 17, consistent with Th{u}(T). By compactness,
∆(y) is satisfiable and consistent with Th{u}(T). By 2-saturation, we conclude that ∆(y)
is realizable in T , say at w. Thus we have:

60 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

iv. There is v ∈ T such that v
n→u and v

m→w in T and hence in T ′.

v. T |= Try(Γ)[w]; by item 2 of Proposition 17 this implies that T ′ |= Try(Γ)[w];

vi. u ∼ w in T , and hence in T ′.

Since Tr is truth-preserving, we have that T ′, w |= Γ. Together with iv and vi we
conclude that Γ is =↑↓n,m-satisfiable at T ′, u.

In what follows, we introduce the notion of quasi-ultraproduct, a variant of the usual
notion of first-order model theory, which will be needed for the definability theorems.

Let I 6= ∅, let U be an ultrafilter over I and let (Ti)i∈I be a family of data trees. As
usual, we denote with

∏
U Ti the ultraproduct of (Ti)i∈I modulo U . Observe that by the

fundamental theorem of ultraproducts (Thm. 10),
∏

U Ti is a weak data tree σ-structure
—though it may not be a data tree because it may be disconnected, as it is shown next:

Example 20. For i ∈ N, let Ti as any data tree of height at least i, and let ui as any
node of Ti at distance i from the root of Ti. Let ϕn(x) be the first-order property “x is at
distance at least n from the root”. It is clear that Tm |= ϕn[um] for every m ≥ n. Let u∗

be the ultralimit of (ui)i∈I modulo U . Since {m | m ≥ n} ∈ U for any non-principal U ,
we conclude that

∏
U Ti |= ϕn[u∗] for every n, and so u∗ is disconnected from the root of∏

U Ti.
Let (Ti, ui)i∈I be a family of pointed data trees. The ultraproduct of such pointed data

trees is defined, as usual, by (
∏

U Ti, u∗), where u∗ is the ultralimit of (ui)i∈I modulo U .

Definition 21. Suppose (Ti, ui)i∈I is a family of pointed data trees, ri is the root of Ti, U
is an ultrafilter over I, T ∗ =

∏
U Ti, and u∗ and r∗ are the ultralimits of (ui)i∈I and (ri)i∈I

modulo U respectively.

1. The ↓-quasi ultraproduct of (Ti, ui)i∈I modulo U is the pointed data tree (T ∗|u∗, u∗).

2. The ↑↓-quasi ultraproduct of (Ti, ui)i∈I modulo U is the pair (T ∗|r∗, u∗).

Observe that both T ∗|u∗ and T ∗|r∗ are data trees. However, while u∗ is in the domain
of the former, it may not be in the domain of the latter (cf. Example 20). See Figure 17
for a graphical comparison between ultraproduct and ↓-quasi ultraproduct.

Hence, in general, pointed data trees are not closed under ↑↓-quasi ultraproduct. Let
k ≥ 0, let T be a data tree and let u ∈ T . We say that T , u is a k-bounded pointed
data tree if u is at distance at most k from the root of T . In particular, if r is the root
of T then T , r is a 0-bounded pointed data tree. The following proposition states that
k-bounded data trees are closed under ↑↓-quasi ultraproducts.

Proposition 22. Let (Ti, ui)i∈I be a family of k-bounded pointed data trees. Then the
↑↓-quasi ultraproduct of (Ti, ui)i∈I is a k-bounded pointed data tree.

1.3. DEFINABILITY VIA NODE EXPRESSIONS 61

#-quasi ultraproduct

of (Ti, ui)

...

ultraproduct of (Ti, ui)

u⇤

...
.

u1 u2 u3 ui

(T1, u1)
(T2, u2)

(T3, u3)

(Ti, ui)

Figure 17: As shown in Example 20, the ultraproduct of the lower marked nodes of each Tj is
disconnected from the ultraproduct of the ui, so the ultraproduct of (Ti, ui) is not a tree.

Proof. Let (T ↑↓, u∗) be the ↑↓-quasi ultraproduct of (Ti, ui)i∈I modulo U . By definition it
is clear that T ↑↓ is a data tree. To see that u∗ ∈ T ↑↓, let

ϕ(x) = (∃r) [¬(∃y)y r ∧ [r = x ∨ r x ∨∨

1≤i<k

(∃z1 . . . ∃zi)[r z1 ∧ zi−1 x ∧
∧

1≤j<i−1

zj zj+1]]],

which is a first-order formula for “r is the root and x is at distance at most k from r”.
Since for every i ∈ I we have Ti |= ϕ[ui], we conclude that T ↑↓ |= ϕ[u∗] and hence u∗ is at
distance at most k from the root of T ↑↓.

As a particular case one has the notion of ↓-quasi ultrapower and ↑↓-quasi ultra-
power of a family of pointed data trees. Observe that if (T ↑↓, u∗) is the ↑↓-quasi ultrapower
of (T , u)i∈I then u∗ belongs to the domain of T ↑↓ and so (T ↑↓, u∗) is a pointed data tree.

1.3.3 Definability

In this subsection we state the main results of definability of classes of pointed data trees
via node expressions of XPath=(↓) and XPath=(↑↓).

We begin with the downward fragment:

Definability via node expressions of XPath=(↓)
Lemma 23. Let (T , u) and (T ′, u′) be two pointed data trees such that T , u ≡↓ T ′, u′. Then
there exist ↓-quasi ultrapowers (T ↓, u∗) and (T ′↓, u′∗) of (T , u) and (T ′, u′) respectively such
that (T ↓, u∗)↔↓ (T ′↓, u′∗)

62 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Proof. It is known that there is a suitable ultrafilter U such that
∏

U T and
∏

U T ′ are
ω-saturated (see e.g. [15, Lemma 2.7.3]). By item 1 Proposition 19, T ↓ = (

∏
U T)|u∗ and

T ↓ = (
∏

U T ′)|u′∗ are ↓-saturated data trees. By hypothesis T , u ≡↓ T ′, u′, and hence
T ↓, u∗ ≡↓ T ′↓, u′∗. Finally, by Proposition 13, T ↓, u∗↔↓ T ′↓, u′∗.

Lemma 24. Let K be a class of pointed data trees and let Σ be a set of XPath=(↓)-node
expressions finitely satisfiable in K. Then Σ is satisfiable in some ↓-quasi ultraproduct of
pointed data trees in K.

Proof. Let I = {Σ0 ⊆ Σ | Σ0 is finite} and for each ϕ ∈ Σ, let ϕ̂ = {i ∈ I | ϕ ∈ i}. Then
the set E = {ϕ̂ | ϕ ∈ Σ} has the finite intersection property: {ϕ1, . . . , ϕn} ∈ ϕ̂1 ∩ · · · ∩ ϕ̂n.
By the Ultrafilter Theorem (see [23, Proposition 4.1.3]) E can be extended to an ultrafilter
U over I.

Since Σ is finitely satisfiable inK, for each i ∈ I there is (Ti, ui) ∈ K such that Ti, ui |= i.
Let (T ↓, u∗) be the ↓-quasi ultraproduct of (Ti, ui)i∈I modulo U . We show that T ↓, u∗ |= Σ:
let ϕ ∈ Σ. Then ϕ̂ ∈ E ⊆ U and ϕ̂ ⊂ {i ∈ I | Ti, ui |= ϕ}. Hence {i ∈ I | Ti, ui |= ϕ} ∈ U ,
which implies that

∏
U Ti |= Trx(ϕ)[u∗], where u∗ is the ultralimit of (ui)i∈I and Tr is

the translation into first-order logic given in §I.1.3. Since T ↓ = (
∏

U Ti)|u∗, by item 1 of
Proposition 17 we conclude that T ↓, u∗ |= ϕ.

If K is a class of pointed data trees, we denote its complement over the universe of
data trees by K.

Theorem 25. Let K be a class of pointed data trees. Then K is definable by a set of
XPath=(↓)-node expressions iff K is closed under XPath=(↓)-bisimulations and ↓-quasi
ultraproducts, and K is closed under ↓-quasi ultrapowers.

Proof. For (⇒), suppose that K is definable by a set of XPath=(↓)-node expressions. By
Theorem 7 it is clear that K is closed under XPath=(↓)-bisimulations. By the fundamental
theorem of ultraproducts (Thm. 10) together with item 1 of Proposition 17 it is clear that
K is closed under ↓-quasi ultraproducts. It is also clear that the fundamental theorem of
ultraproducts and the fact that any XPath=(↓)-node expression is expressible in first-order
imply that T , u ≡↓ T ↓, u∗ for any (T ↓, u∗) ↓-quasi ultrapower modulo U , and therefore
that K is closed under ↓-quasi ultrapowers.

For (⇐), suppose K is closed under bisimulations and ↓-quasi ultraproducts, and K is
closed under ↓-quasi ultrapowers. We show that Γ =

⋂
(T ,u)∈K Th↓(T , u) defines K. It is

clear that if (T , u) ∈ K then T , u |= Γ.
Now suppose that T , u |= Γ and consider Σ = Th↓(T , u). Let ∆ be a finite subset of

Σ, and assume that ∆ is not satisfiable in K. Then, ¬∧∆ is true in every pointed data
tree of K, so ¬∧∆ ∈ Γ. Therefore T , u |= ¬∧∆ which is a contradiction because ∆ ⊆ Σ.
This shows that Σ is finitely satisfiable in K.

By Lemma 24, Σ is satisfiable in some ↓-quasi ultraproduct of pointed data trees in K,
and since K is closed under ↓-quasi ultraproducts, Σ is satisfiable in K. Then there exists
(T ′, u′) ∈ K such that T ′, u′ |= Σ and therefore T , u ≡↓ T ′, u′. By Lemma 23, there exist

1.3. DEFINABILITY VIA NODE EXPRESSIONS 63

↓-quasi ultrapowers (T ↓, u∗) and (T ′↓, u′∗) of (T , u) and (T ′, u′) respectively such that
(T ↓, u∗)↔↓ (T ′↓, u′∗). Since K is closed under XPath=(↓)-bisimulations, (T ↓, u∗) ∈ K.
Suppose (T , u) ∈ K. Since K is closed under ↓-quasi ultrapowers, (T ↓, u∗) ∈ K, and this
is a contradiction. Hence we conclude (T , u) ∈ K.

Theorem 26. Let K be a class of pointed data trees. Then K is definable by an XPath=(↓)-
node expression iff both K and K are closed under XPath=(↓)-bisimulations and ↓-quasi
ultraproducts.

Proof. For (⇒) suppose that K is definable by an XPath=(↓)-node expression. By Theo-
rem 7 it is clear that K and K are closed under bisimulations. By the fundamental theorem
of ultraproducts together with item 1 of Proposition 17 it is clear that K and K are closed
under ↓-quasi ultraproducts.

For (⇐) suppose K and K are closed under bisimulations and ↓-quasi ultraproducts.
Then, by Theorem 25, there exist sets Γ1 and Γ2 of XPath=(↓)-node expression defining
K and K respectively. Consider the set of XPath=(↓)-node expressions Γ1 ∪ Γ2. This set
is clearly inconsistent and so, by compactness, there are finite sets ∆1 and ∆2 such that
∆i ⊆ Γi (i = 1, 2) and

T , u |=
∧

∆1 → ¬
∧

∆2 (16)

for any pointed data tree (T , u). We show that ϕ =
∧

∆1 defines K. On the one hand,
it is clear that if (T , u) ∈ K then T , u |= ϕ. On the other hand, suppose that T , u |= ϕ.
From (16) we conclude T , u |= ¬∧∆2 and so T , u 6|= Γ2. Then (T , u) /∈ K as we wanted
to prove.

Like Theorem 26, the following result characterizes when a class of pointed data trees
is definable by a single XPath=(↓)-node expression. However, instead of using the rather
abstract notion of ↓-quasi ultraproducts, it uses the perhaps more natural notion of `-
bisimulation.

Theorem 27. Let K be a class of pointed data trees. Then K is definable by a node
expression of XPath=(↓) iff K is closed by `-bisimulations for some `.

Proof. (⇒) is a direct consequence of Theorem 7. Let us see (⇐). Given T , u a pointed
data tree in K, we know [44, Corollary 3.2] that {T ′, u′ | T , u ≡↓` T ′, u′} is definable by an
XPath=(↓)-node expression χ`,T ,u of downward depth ≤ `. We show that

ϕ =
∨

(T ,u)∈K

χ`,T ,u

defines K. In [44, Proposition 3.1] it is shown that ≡↓` has finite index, and therefore the
above disjunction is equivalent to a finite one. On the one hand, if (T ′, u′) ∈ K then it is
clear that T ′, u′ |= χ`,T ′,u′ and so T ′, u′ |= ϕ. On the other hand, we have T ′, u′ |= ϕ iff

there is (T , u) ∈ K such that T ′, u′ |= χ`,T ,u iff there is (T , u) ∈ K such that T , u↔↓` T ′, u′.
Hence since K is closed under↔↓` , if T ′, u′ |= ϕ we have (T ′, u′) ∈ K.

We now turn to the vertical fragment:

64 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Definability via node expressions of XPath=(↑↓)
Lemma 28. Let (T , u) and (T ′, u′) be two pointed data trees such that T , u ≡↑↓ T ′, u′.
Then there exist ↑↓-quasi ultrapowers (T ↑↓, u∗) and (T ′↑↓, u′∗) of (T , u) and (T ′, u′) respec-
tively such that (T ↑↓, u∗)↔↑↓ (T ′↑↓, u′∗)

Proof. The proof is analogous to the proof of Lemma 23 but using item 2 instead of item 1
of Proposition 19 and Proposition 15 instead of Proposition 13.

Lemma 29. Let K be a class of k-bounded pointed data trees and let Σ be a set of
XPath=(↑↓)-node expressions finitely satisfiable in K. Then Σ is satisfiable in some ↑↓-
quasi ultraproduct of pointed data trees in K.

Proof. The proof is analogous to the proof of Lemma 24 but taking ↑↓-quasi ultraproducts
instead of ↓-quasi ultraproducts and using item 2 instead of item 1 of Proposition 17. To
apply this Proposition, one has to note that u∗ ∈ T ↑↓ since the Ti, ui are k-bounded pointed
data trees.

In the next two theorems, the universe of pointed data trees is restricted to those which
are k-bounded (for any fixed k). Therefore, the operations of closure and complement must
be taken with respect to this universe.

Theorem 30. Over k-bounded pointed data trees: K is definable by a set of XPath=(↑↓)-
node expressions iff K is closed under XPath=(↑↓)-bisimulations and ↑↓-quasi ultraproducts,
and K is closed under ↑↓-quasi ultrapowers.

Proof. The proof is analogous to the proof of Theorem 25 but replacing pointed data trees
for k-bounded pointed data trees and every occurrence of ↓ for ↑↓. Also, for (⇒), one has
to use item 2 instead of item 1 of Proposition 17 and for (⇐), Lemmas 29 and 28 instead
of Lemmas 24 and 23.

Theorem 31. Over k-bounded pointed data trees: K is definable by an XPath=(↑↓)-node
expression iff both K and K are closed under XPath=(↑↓)-bisimulations and ↑↓-quasi ul-
traproducts.

As in Theorem 27, one can also restate Theorem 31 in terms of (r, s, k)-bisimulations
for XPath=(↑↓).

Theorem 32. Let K be a class of pointed data trees. Then K is definable by a node
expression of XPath=(↑↓) iff K is closed by (r, s, k)-bisimulations for some r, s, k.

Applications

We now present some examples of application of these definability theorems for pointed
data trees:

1.3. DEFINABILITY VIA NODE EXPRESSIONS 65

Example 33. A class of pointed data trees definable by a single XPath=(↑↓)-
node expression but not definable by a set of XPath=(↓)-node expressions. Let
dist3(x) be the property stating that there are nodes y, z so that x→y→z and x, y, z have
pairwise distinct data values. It can be checked that the XPath=(↑↓)-node expression
ϕ = 〈ε 6= ↓↓[〈ε 6= ↑[〈ε 6= ↑〉]〉]〉 expresses dist3(x). We have already seen in §I.1.3 that this
property is not expressible with a single XPath=(↓)-node expression. Now, let K be the
class of pointed data trees (T , u), where dist3(u) holds. Figure 12 shows that K is not
closed under XPath=(↓)-bisimulations and hence, by Theorem 25, K is not definable even
by a set of XPath=(↓)-node expressions.

Example 34. A class of pointed data trees definable in first-order (over data
trees) but not definable by a set of XPath=(↑↓)-node expressions. Let K be the
class of pointed data trees (T , u) where u is the root of T and T has some node labeled
a. On the one hand, K is definable by a first-order σ-formula over the class of data trees.
On the other, K is closed under XPath=(↑↓)-bisimulations but not closed under ↑↓-quasi
ultraproducts: for i ∈ N define Ti as any tree of height i whose only node labeled a is
at distance i from the root, and define ui as the root of Ti. By an argument similar to
the one used in Example 20 one can show that if (T ↑↓, u∗) is any ↑↓-quasi ultraproduct of
(Ti, ui)i∈N then no node of T ↑↓ has label a. By Theorem 30, K is not definable by a set of
XPath=(↑↓)-node expression.

Example 35. A class of pointed data trees definable by set of XPath=(↓)-node
expressions but not by single XPath=(↑↓)-node expression Let K be the class of
pointed data trees (T , u), where u is the root of T , and T has infinite height. It is clear
that K is definable by the set of XPath=(↓)-node expressions {〈↓n〉 | n ≥ 0}. However,
by Theorem 31, it is not definable by an XPath=(↑↓)-node expressions, as K is not closed
under ↑↓-quasi ultraproducts (as any ↑↓-quasi ultraproduct of finite pointed data trees with
increasing height has infinite height).

Example 36. A class of pointed data trees definable by set of XPath=(↑↓)-node
expressions but not definable by single XPath=(↑↓)-node expression. Let K be
the class of pointed data trees (T , u), where u is the root of T , and for all v ∈ T we
have dist3(v). On the one hand, K is definable by the set of XPath=(↑↓)-node expressions
{¬〈↓n [¬ϕ4]〉 | n ≥ 0}. On the other, for i ∈ N, let (Ti, ui) be any pointed data tree not in
K, of height at least i+1, where ui is the root of Ti, and such that for all v ∈ Ti at distance
at most i from ui we have dist3(v). Let (T ↑↓, u∗) be any ↑↓-quasi ultraproduct of (Ti, ui)i∈N.
One can see that all nodes of v ∈ T ↑↓ satisfy dist3(v), and so (T ↑↓, u∗) ∈ K. Therefore K
is not closed under ↑↓-quasi ultraproducts and by Theorem 31, K is not definable by an
XPath=(↑↓)-node expression.

1.3.4 Separation

The theorems of separation are closely related to definability: they provide conditions to
separate two disjoint classes of models K1 and K2 by means of node expressions, i.e. to

66 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

find a class K, definable by a set of node expressions or a single node expression, such that
K1 ⊆ K and K ∩K2 = ∅.

Separation via node expressions of XPath=(↓)
Theorem 37. Let K1 and K2 be two disjoint classes of pointed data trees such that K1

is closed under XPath=(↓)-bisimulations and ↓-quasi ultraproducts and K2 is closed under
XPath=(↓)-bisimulations and ↓-quasi ultrapowers. Then there exists a third class K which
is definable by a set of XPath=(↓)-node expressions, contains K1 and is disjoint from K2.

Proof. Let K = {(T ′, u′) | there is (T , u) ∈ K1 such that T , u ≡↓ T ′, u′}. Clearly, K1 ⊆
K. We first show that K ∩ K2 = ∅. Suppose that there is a pointed model (T ′, u′) ∈
K ∩K2. Then, there exists (T , u) ∈ K1 such that T , u ≡↓ T ′, u′ and, by Lemma 23, there
exist ↓-quasi ultrapowers (T ↓, u∗) and (T ′↓, u′∗) of (T , u) and (T ′, u′) respectively such
that T ↓, u∗↔↓ T ′↓, u′∗. Since K1 is closed under ↓-quasi ultraproducts and XPath=(↓)-
bisimulations and K2 is closed under ↓-quasi ultrapowers, (T ′↓, u′∗) ∈ K1 ∩K2 which is a
contradiction.

To conclude the proof, we show that K is definable by a set of XPath=(↓)-node expres-
sions. By Theorem 25, it is enough to check thatK is closed under XPath=(↓)-bisimulations
and ↓-quasi ultraproducts and K is closed under ↓-quasi ultrapowers. Clearly, K is closed
under XPath=(↓)-bisimulations, as ↔↓ implies ≡↓. Now, let (T ′i , u′i)i∈I be a family of
pointed data trees contained in K. Then, for all i ∈ I, there is (Ti, ui) ∈ K1 such that
Ti, ui ≡↓ T ′i , u′i. By the fundamental theorem of ultraproducts, if U is an ultrafilter over I
and T ∗, u∗, T ′∗, u′∗ are the ultraproducts of the families (Ti, ui)i∈I and (T ′i , u′i)i∈I respec-
tively, then (T ∗, u∗) ≡↓ (T ′∗, u′∗), and by Proposition 17 (T ↓, u∗) ≡↓ (T ′↓, u′∗). Now, since
K1 is closed under ↓-quasi ultraproducts, (T ′↓, u′∗) ∈ K which proves that K is closed
under ↓-quasi ultraproducts. Finally, let (T ′, u′) ∈ K. Suppose that (T ′↓, u′∗), some ↓-
quasi ultrapower of (T ′, u′), belongs to K. By the fundamental theorem of ultraproducts,
(T ′↓, u′∗) ≡↓ (T ′, u′). So, since K is closed under ≡↓, (T ′, u′) ∈ K, which is a contradic-
tion.

Theorem 38. Let K1 and K2 be two disjoint classes of pointed data trees closed under
XPath=(↓)-bisimulations and ↓-quasi ultraproducts. Then there exists a third class K which
is definable by an XPath=(↓)-node expression, contains K1 and is disjoint from K2.

Proof. By Theorem 37, there exists a class K ′ definable by a set of XPath=(↓)-node ex-
pressions Γ1, containing K1 and disjoint from K2. Observe that as a consequence of
Theorem 7, such K ′ is closed under XPath=(↓)-bisimulations and ↓-quasi ultraproducts.
Using Theorem 37 again for K2 and K ′, we have another class K ′′ also definable by a set
of XPath=(↓)-node expressions Γ2, containing K2 and disjoint from K ′.

Now consider the set of XPath=(↓)-node expressions Γ1 ∪ Γ2. This set is clearly incon-
sistent and so, by compactness, there are finite sets ∆1 and ∆2 such that ∆i ⊆ Γi (i = 1, 2)
and

∧
∆1∧

∧
∆2 is unsatisfiable. Now let K = {T , u | T , u |= ∧∆1}. This K satisfies the

desired properties, as K1 ⊂ K ′ ⊂ K and K2 ∩K ⊂ K ′′ ∩K = ∅.

1.4. BINARY BISIMULATIONS 67

Separation via node expressions of XPath=(↑↓)
The same proofs apply for the XPath=(↑↓) version of these theorems, using the corre-
sponding notions of bisimulations and quasi ultraproducts and Lemmas 28 and 30 instead
of Lemmas 23 and 25, with the proviso that the universe of pointed data trees is restricted
to those which are k-bounded (and so operations of closure and complement must be taken
with respect to this universe):

Theorem 39. Let K1 and K2 be two disjoint classes of k-bounded pointed data trees such
that K1 is closed under XPath=(↑↓)-bisimulations and ↑↓-quasi ultraproducts and K2 is
closed under XPath=(↑↓)-bisimulations and ↑↓-quasi ultrapowers. Then there exists a third
class K which is definable by a set of XPath=(↑↓)-node expressions, contains K1 and is
disjoint from K2.

Theorem 40. Let K1 and K2 be two disjoint classes of k-bounded pointed data trees closed
under XPath=(↑↓)-bisimulations and ↑↓-quasi ultraproducts. Then there exists a third class
K which is definable by an XPath=(↑↓)-node expression, contains K1 and is disjoint from
K2.

1.4 Binary bisimulations

We introduce notions of binary bisimulations for the downward and vertical fragments.
These notions are suitable in the sense that they capture the idea of indistinguishability
by path expressions. For the case of the downward fragment, we show a van Benthem-like
characterization theorem.

1.4.1 Downward

Some facts about path expressions over XPath=(↓)
The proofs of Theorem 7 or Theorem 9 of [44] assume that node expressions of XPath=(↓)
do not contain any ∪. Indeed, as explained in §I.1.2, any ∪ of a path expression can
be simulated with a ∨ within a suitable node expression. However, we have seen that
it is not true that any XPath=(↓)-path expression is equivalent to a ∪-free one. Hence,
in our context of studying a notion of binary bisimulation which captures the idea of
indistinguishability by path expressions, we need to develop first some results that allow us
to deal with the ∪ operator. Another difference with respect of the previous work is that
there is no intersection nor complementation of path expressions. But, as we will see next
we can define them under certain contexts within the language of XPath=(↓).
Definition 41. If α is of the form α = [ϕ0] ↓ [ϕ1] ↓ . . . ↓ [ϕn], we say that it is in simple
normal form, and we say that the length of α (notated len(α)) is n.

Fact 42. For each ∪-free XPath=(↓)-path expression α there is an XPath=(↓)-path expres-
sion β in simple normal form such that dd(β) = dd(α) and for all data tree T , we have
[[α]]T = [[β]]T .

68 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Fact 43. If α is a ∪-free XPath=(↓)-path expression then T , x, y |= α implies x
n→y in T ,

where n = len(α).

We observe that the ∪ operator is unessential for distinguishing two pairs of nodes:

Lemma 44. If T , x, y |= α and T ′, x′, y′ 6|= α then there is a ∪-free XPath=(↓)-path
expression α̃ with dd(α̃) ≤ dd(α) such that T , x, y |= α̃ and T ′, x′, y′ 6|= α̃.

Proof. We show it by induction on α. The only interesting case is when α = α1 ∪ α2.
Since T , x, y |= α then there is i ∈ {1, 2} such that T , x, y |= αi. Since T ′, x′, y′ 6|= α
then T ′, x′, y′ 6|= αi. By inductive hypothesis there is α̃i which is ∪-free and such that
T , x, y |= α̃i and T ′, x′, y′ 6|= α̃i.

The following lemma gives us a restricted form of negation for path expressions:

Lemma 45. Let x
n→y in T and x′

n→y′ in T ′. If α is an ∪-free XPath=(↓)-path expression
such that T , x, y |= α and T ′, x′, y′ 6|= α then there is a ∪-free path expression α such that
dd(α) = dd(α) and T , x, y 6|= α and T ′, x′, y′ |= α.

Proof. By Fact 42 we can assume that α is in simple normal form, say α = [ϕ0] ↓ [ϕ1] ↓
. . . ↓ [ϕn]. Let x = x0→x1→ . . .→xn = y and x′ = x′0→x′1→ . . .→x′n = y′. Since
T , x, y |= α and T ′, x′, y′ 6|= α there is i such that xi |= ϕi and x′i 6|= ϕi. One can check
that α = ↓i[¬ϕi]↓n−i is as we wanted.

The following lemma simplifies many of the proofs, and it will be used frequently and
without mention.

Lemma 46. If α is a XPath=(↓)-path expression, it is equivalent to a XPath=(↓)-path
expression of the form β1 ∪ · · · ∪ βn, with the βi in simple normal form.

Definition 47. If α = [ϕ0] ↓ [ϕ1] ↓ . . . ↓ [ϕi] and β = [ψ0] ↓ [ψ1] ↓ . . . ↓ [ψi] are XPath=(↓)-
path expressions of the same length in simple normal form, we define the intersection of
α and β as

α ∩ β := [ϕ0 ∧ ψ0] ↓ [ϕ1 ∧ ψ1] ↓ . . . ↓ [ϕi ∧ ψi]. (17)

Fact 48. If α and β are XPath=(↓)-path expressions in simple normal form of the same
length, then dd(α∩β) = max{dd(α), dd(β)}, and for every data tree T , we have [[α∩β]]T =
[[α]]T ∩ [[β]]T .

Equivalence for XPath=(↓)-path expressions

For a data tree T , let us define

D(T) = {(u, v) ∈ T 2 | u ∗→v},

and for ` ≥ 0,

D`(T) = {(u, v) ∈ T 2 | u≤`→v}.

1.4. BINARY BISIMULATIONS 69

We say that (x, y) ∈ D(T) and (x′, y′) ∈ D(T ′) are equivalent for XPath=(↓)-
path expressions (notated T , x, y ≡↓ T ′, x′, y′) iff the truth value of any path expression
α ∈ XPath=(↓) coincides over both two-pointed data trees. That is:

T , x, y ≡↓ T ′, x′, y′ def⇔ for all XPath=(↓)-path expressions α, T , x, y |= α iff T ′, x′, y′ |= α.

We say that (x, y) ∈ D`(T) and (x′, y′) ∈ D`(T ′) are `-equivalent for XPath=(↓)-
path expressions (notated T , x, y ≡↓` T ′, x′, y′) iff the truth value of any path expression
α ∈ XPath=(↓) with dd(α) ≤ ` coincides over both two-pointed data trees. That is:

T , x, y ≡↓` T ′, x′, y′
def⇔ for all XPath=(↓)-path expressions α with dd(α) ≤ `,

T , x, y |= α iff T ′, x′, y′ |= α.

Of course, one could have defined T , x, y ≡↓ T ′, x′, y′ even for pairs (x, y) /∈ D(T) or
for pairs (x′, y′) /∈ D(T ′). For instance, if x is not an ancestor of y then T , x, y does not
verify any path expression, and so one could say that T , x, y ≡↓ T ′, x′, y′ only when x′, y′

does not verify any path expression (in other words, when x′ is not an ancestor of y′, i.e.
(x′, y′) /∈ D(T)). We restricted the equivalences ≡ to D(T)×D(T ′) for reasons of clarity
when comparing logical equivalence with binary bisimulations, as we will see next.

Notice that if T , x, y ≡↓ T ′, x′, y′ and x
n→y then T , x, y |= ↓n and hence T ′, x′, y′ |= ↓n,

which means x′
n→y′ in T ′. The same holds in case T , x, y ≡↓` T ′, x′, y′ when n ≤ `.

Lemma 49. Let u
m→v in T and u′

n→v′ in T ′, and let n,m ≤ `. If T , u, v 6≡↓` T ′, u′, v′
then there is a ∪-free XPath=(↓)-path expression α such that dd(α) ≤ `, T , u, v |= α and
T ′, u′, v′ 6|= α.

Proof. If n 6= m then T , u, v |= ↓m and T ′, u′, v′ 6|= ↓m. Suppose that n = m and that there
is an XPath=(↓)-path expression α, dd(α) ≤ `, such that T , u, v |= α and T ′, u′, v′ 6|= α.
By Lemma 44, α can be taken ∪-free and we are done. The same argument applies in case
T , u, v 6|= α and T ′, u′, v′ |= α, via Lemma 45.

Proposition 50. ≡↓` has finite index in the context of path expressions, that is, there are
finitely many non-equivalent path expressions of downward depth at most `.

Proof. Let qr be the quantifier rank of a first-order formula, i.e., the depth of nesting of its
quantifiers. It can be easily shown by induction that for any path expression α of XPath=(↓)
with bounded downward depth and unnecessary uses of ε (recall that αεβ ≡ αβ) we have
that qr(Trx,y(α)) is bounded (recall that Tr is the translation into first-order logic given in
§I.1.3). It is a well-known result of first-order that there are finitely many nonequivalent
formulas of bounded quantifier rank. Hence there are finitely many nonequivalent node
expressions of bounded downward depth.

Corollary 51. Suppose u
n→v, with n ≤ `. Then {T ′, u′, v′ | T , u, v ≡↓` T ′, u′, v′} is

definable by an `-XPath=(↓)-path expression γ`,T ,u,v.

70 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Proof. Let

A = {α | T , u, v |= α, α is ∪-free and dd(α) ≤ `}.
First, observe that by Fact 42, each α ∈ A can be written in simple normal form, and
all of them have the same length. Hence it makes sense to take the intersection between
finitely many elements of A. Second, notice that by Proposition 50 there are finitely many
non-equivalent α ∈ A, and hence the infinite intersection β =

⋂
A is equivalent to a finite

one.
It is clear by Fact 48 that dd(β) ≤ ` and that T , u, v |= β. Let us show that

T ′, u′, v′ |= β iff T , u, v ≡↓` T ′, u′, v′.

The right-to-left direction is straightforward. For the left-to-right direction, suppose by
contradiction that T ′, u′, v′ |= β and T , u, v 6≡↓` T ′, u′, v′. By hypothesis, T , u, v |= ↓n
(where n ≤ `), and thus, since T ′, u′, v′ |= β, we have T ′, u′, v′ |= ↓n. By Lemma 49, there is
a ∪-free XPath=(↓)-path expression γ such that dd(γ) ≤ ` and T , u, v |= γ and T ′, u′, v′ 6|=
γ. Since γ ∈ A and T ′, u′, v′ |= β then T ′, u′, v′ |= γ, which is a contradiction.

Binary bisimulation for XPath=(↓)
We introduce a new notion of binary bisimulation between pairs of nodes (x, y) in one data-
tree T and pairs of nodes (x′, y′) in another data tree T ′. For simplicity we only define
binary bisimulation as a relation in D(T) × D(T ′). But it can be naturally extended to
T 2 × T ′2 if the definitions of ≡ are likewise extended.

We say that a relation Z ⊆ D(T)×D(T ′) is a binary XPath=(↓)-bisimulation, or
simply an XPath=(↓)-bisimulation when the binary context is clear, if for all x, y ∈ T
and x′, y′ ∈ T ′ we have:

• (Harmony) If (x, y)Z(x′, y′) then label(x) = label(x′).

• (Equidistance) If (x, y)Z(x′, y′) then there is k such that x
k→y and x′

k→y′.

• (Split) If (x, y)Z(x′, y′), x
n→z m→y and x′

n→z′ m→y′ then (x, z)Z(x′, z′) and (z, y)Z(z′, y′).

• (Zig) If (x, y)Z(x′, y′), x
n→v and x

m→w then there are v′, w′ ∈ T ′ such that: x′
n→v′;

x′
m→w′; (x, v)Z(x′, v′); (x,w)Z(x′, w′); and data(v) = data(w) iff data(v′) = data(w′).

• (Zag) If (x, y)Z(x′, y′), x′
n→v′ and x′

m→w′ then there are v, w ∈ T such that: x
n→v;

x
m→w; (x, v)Z(x′, v′); (x,w)Z(x′, w′); and data(v) = data(w) iff data(v′) = data(w′).

In Figure 18 we show an example of the process of checking Split for a particular pair
of pairs of nodes in a binary XPath=(↓)-bisimulation, and in Figure 19 we show an example
of checking Zig.

1.4. BINARY BISIMULATIONS 71

Z
Z

x x0

T T 0

Z

y y0

n ...

...m

|
{z

}

n
...

...

|
{z

}

m

|
{z

}
|

{z
}

(8n, m)

Figure 18: The process of checking the condition Split of binary XPath=(↓)-bisimulation for
(x, y)Z(x′, y′) entails checking that all divisions of the path between x and y into two different
paths have a corresponding division into two paths between x′ and y′. As there are different pairs
with nodes in common, to avoid graphical superposition we represent pairs of nodes as a dashed
line between them.

Z
Z

. .

|

{z

} |

{z

}

n m

v0 w0

data(v) = data(w) i↵ data(v0) = data(w0)

x0

T 0

Z

y0

. .

|

{z

} |

{z

}

n m

x

yv w

T
(8v, w)(9v0, w0)

Figure 19: The process of checking Zig for a binary XPath=(↓)-bisimulation Z between T and
T ′ for (x, y)Z(x′, y′). The conditions we need to verify are akin to those of checking in an unary
XPath=(↓)-bisimulation the condition Zig for (x, x′); however, we only have to check that the
paths themselves (and not every intermediate node) are connected via Z.

72 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

We define when two pairs of nodes (t, u) ∈ D(T)12 and (t′, u′) ∈ D(T ′) are said to be
XPath=(↓)-bisimilar, notated: T , t, u↔↓ T ′, t′, u′:

T , t, u↔↓ T ′, t′, u′ def⇔ there is binary XPath=(↓)-bisimulation Z such that (t, u)Z(t′, u′).

See Figure 20 for an example of a binary XPath=(↓)-bisimilarity between two different
pairs of nodes on the same data tree.

T

a, 1

a, 2 a, 1

u

v w

T

a, 1

a, 2 a, 1

u

v w
Z

Figure 20: T , u, w↔↓ T , u, v, as witnessed by the represented binary XPath=(↓)-bisimulation
Z between the same data tree T . Pairs (u, u)Z(u, u), (v, v)Z(v, v), (w,w)Z(w,w), (w,w)Z(v, v)
and (v, v)Z(w,w) are not shown.

We say that a family of relations (Zj)j≤` in Dj(T) × Dj(T ′) forms a binary `-
bisimulation, or simply an `-bisimulation when the binary context is clear, if for all
j ≤ `, (x, y) ∈ Dj(T) and (x′, y′) ∈ Dj(T ′) we have:

• (Harmony) If (x, y)Zj(x
′, y′) then label(x) = label(x′).

• (Equidistance) If (x, y)Zj(x
′, y′) then there is k ≤ j such that x

k→y and x′
k→y′.

• (Split) If (x, y)Zj(x
′, y′), x

n→z m→y and x′
n→z′ m→y′ then (x, z)Zj(x

′, z′) and (z, y)Zj−n(z′, y′).

• (Zig) If (x, y)Zj(x
′, y′), x

n→v and x
m→w, with n,m ≤ j, then there are v′, w′ ∈ T ′

such that: x′
n→v′, x′ m→w′, (x, v)Zj(x

′, v′), (x,w)Zj(x
′, w′), and data(v) = data(w) iff

data(v′) = data(w′).

• (Zag) If (x, y)Zj(x
′, y′), x′

n→v′ and x′
m→w′, with n,m ≤ j, then there are v, w ∈ T

such that: x
n→v, x

m→w, (x, v)Zj(x
′, v′), (x,w)Zj(x

′, w′), and data(v) = data(w) iff
data(v′) = data(w′).

12The definition can be extended to (u, v) ∈ T × T if the definition of ≡↓ is likewise extended. Observe

that whenever u
∗→v and u′

∗→v′ do not hold, T , u, v |= α⇔ T ′, u′, v′ |= α is trivially true for all XPath=(↓)-
path expressions α.

1.4. BINARY BISIMULATIONS 73

Notice that, because of the Split condition, the rules Zig and Zag for binary bisimulations
only require Z to relate (x, v) and (x′, v′) on one hand and (x,w) and (x′, w′) on the other,
instead of relating all nodes along the path from x to v to the corresponding nodes in the
path from x′ to v′, and the same for the paths from x to w and x′ to w′.

We now define when (t, u) ∈ D`(T) is said to be `-bisimilar to (t′, u′) ∈ D`(T ′),
notated T , t, u↔↓` T ′, t′, u′:

T , t, u↔↓` T ′, t′, u′
def⇔ there is a binary `-bisimulation (Zj)j≤` such that (t, u)Z`(t

′, u′)

Recall that for a data tree T and u ∈ T , T |u denotes the subtree of T induced by
{v ∈ T | (∃n) u

n→v}. Observe that the root of T |u is u. The following results are
straightforward consequences of the definition of binary bisimulation:

Proposition 52. If (u, v) ∈ D(T) then T , u, v↔↓ (T |u), u, v.

Proposition 53. If T is a subtree of T ′ and (u, v) ∈ D(T) then T , u, v↔↓ T ′, u, v.

For a data tree T and u ∈ T , we denote T |`u as:

T |`u def
= the subtree of T induced by {v ∈ T | (∃n ≤ `) u

n→v}.

Proposition 54. If (u, v) ∈ D`(T) then T , u, v↔↓` (T |`u), u, v.

Proof. Define the family (Zj)j≤`, Zj ⊆ Dj(T |`u)×Dj(T) as following: given j ≤ `, if x
≤j→y

and u
`−j→x, then (x, y)Zj(x, y) (observe that j = `−(`−j); intuitively, start with a Z` which

matches all identical pairs of nodes in D(T |`u), then consider Z`−1 the subset where the
first coordinate of the pairs must be at a downward distance of 1 from u, and so on). We see
that this family defines an `-bisimulation. It is clear that Harmony holds, as (x, y)Zj(w, z)
implies x = w, y = z. Equidistance holds for similar reasons, as also (x, y)Zj(x, y) implies

that x
≤j→y. For Split, let (x, y)Zj(x, y) and x

m→z n→y and x
m→z′ n→y. Note that it must

be z = z′. We want to see that (x, z)Zj(x, z) and (z, y)Zj−m(z, y). That (x, z)Zj(x, z)

follows from the definition of Zj, as x
≤j→y and then x

≤j→z. (z, y)Zj−m(z, y) follows from

the definition of Zj−m and the fact that if u
`−j→x and x

≤j→y then u
`−(j−m)→ x and z

≤j−m→ y.
Now it only remains to verify Zig and Zag. We only prove Zag, as Zig is simpler. Let
(x, y)Zj(x, y), x

m→v′, x n→w′, m,n ≤ j, and data(v′) ? data(w′), with ? ∈ {=, 6=}. We want

to prove that there are v, w ∈ T |`u such that x
m→v, x

n→w, (x, v)Zj(x
′, v′), (x,w)Zj(x

′, w′),

and data(v) ? data(w). Now, (x, y)Zj(x, y) implies that u
`−j→x and thus (since m,n ≤ j)

u
≤`→v′, u≤`→w′. But then v′ and w′ are in T |`u, and the result follows from taking v = v′

and w = w′.

Proposition 55. Suppose T and T ′ have height at most `, (u, v) ∈ D`(T), and (u′, v′) ∈
D`(T ′). Then T , u, v↔↓` T ′, u′, v′ iff T , u, v↔↓ T ′, u′, v′.

74 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

We now show that in the new context of path expressions of XPath=(↓) we have an
analog of Theorem 7 for binary bisimulations and path equivalence, i.e.,↔↓ coincides with
≡↓ on finitely branching data trees, and↔↓` always coincides with ≡↓` .

Theorem 56. Let T , u, v and T ′, u′, v be two-pointed data trees. Then:

1. T , u, v↔↓ T ′, u′, v′ implies T , u, v ≡↓ T ′, u′, v′. The converse also holds when T and
T ′ are finitely branching.

2. T , u, v↔↓` T ′, u′, v′ iff T , u, v ≡↓` T ′, u′, v′.

Item 2 of the above theorem is a consequence of the next two propositions. Item 1
can be shown analogously (the set P that will appear in the proof of Proposition 58 for
showing Zig is finite when T ′ is finitely branching, and its version over T for showing Zag
is finite when T is finitely branching).

Proposition 57. If T , t, u↔↓` T ′, t′, u′ then T , t, u ≡↓` T , t′, u′.

Proof. We actually show that if T , t, u↔↓` T ′, t′, u′ via (Zi)i≤` then for all 0 ≤ n ≤ j ≤ `,
for all ϕ with dd(ϕ) ≤ j, and for all α with dd(α) ≤ j:

1. If (x, x)Zj(x
′, x′) then T , x |= ϕ iff T ′, x′ |= ϕ,

2. If (x, y)Zj(x
′, y′) then T , x, y |= α iff T ′, x′, y′ |= α.

We show 1 and 2 by induction on |ϕ|+ |α|.
Let us see item 1. The base case is ϕ = a for some a ∈ A. By Harmony, label(x) =

label(x′) and then T , x |= ϕ iff T ′, x′ |= ϕ. The Boolean cases for ϕ are straightforward.
Suppose ϕ = 〈α = β〉. We will show T , x |= ϕ⇒ T ′, x′ |= ϕ, so assume T , x |= ϕ. Sup-

pose there are v, w ∈ T and n,m ≤ j such that x
n→v, x

m→w, T , x, v |= α, T , x, w |= β and
data(v) = data(w). By Zig, there are v′, w′ ∈ T ′ such that x′

n→v′, x′ m→w′, (x, v)Zj(x
′, v′),

(x,w)Zj(x
′, w′) and data(v′) = data(w′). By inductive hypothesis 2 (twice), T ′, x′, v′ |= α

and T ′, x′, w′ |= β. Hence T ′, x′ |= ϕ. The implication T ′, x′ |= ϕ⇒ T , x |= ϕ is analogous.
The case ϕ = 〈α 6= β〉 is shown similarly.

Let us now analyze item 2. We only show the ‘only if’ direction, as the ‘if’ is analogous.
The base case is when α ∈ {ε, ↓}. If α = ε, we have:

T , x, y |= α iff x
0→y

iff x′
0→y′ (Equidistance)

iff T ′, x′, y′ |= α

If α =↓, we have the same argument but with
1→ instead of

0→. For the inductive step,
suppose α = βγ and assume T , x, y |= α. Then there is z ∈ T such that x

n→z m→y,
T , x, z |= β and T , z, y |= γ. By Split we have (x, z)Zj(x

′, z′) and (z, y)Zj−n(z′, y′) Observe
that dd(β) ≤ dd(α) ≤ j and dd(γ) ≤ dd(α)−n ≤ j−n. where z′ is the only node such that

1.4. BINARY BISIMULATIONS 75

x′
n→z′ m→y′ (observe that by Equidistance, x′

n+m→ y′). By inductive hypothesis 2 (again,
twice), we conclude T ′, x′, z′ |= β and T ′, z′, y′ |= γ, and hence T ′, x′, y′ |= α.

Suppose α = α1∪α2 and assume T , x, y |= α. We have T , x, y |= αi for some i ∈ {1, 2}.
By inductive hypothesis we have T ′, x′, y′ |= αi, and so T ′, x′, y′ |= α

Finally, suppose α = [ϕ] and assume T , x, y |= α. By semantics, we must have x = y
and T , x |= ϕ. By inductive hypothesis, T ′, x′ |= ϕ, and by Equidistance we have x′ = y′.
Hence we conclude T ′, x′, y′ |= α.

Proposition 58. If T , t, u ≡↓` T ′, t′, u′ then T , t, u↔↓` T ′, t′, u′.

Proof. Fix (t, u) ∈ D`(T) and (t′, u′) ∈ D`(T ′) such that T , t, u ≡↓` T ′, t′, u′. Define (Zj)j≤`
by

(x, y)Zj(x
′, y′) iff T , x, y ≡↓j T ′, x′, y′

for all (x, y) ∈ D`(T) and all (x′, y′) ∈ D`(T ′). We show that (Zj)j≤` is an `-bisimulation
between T , u, v and T ′, u′, v′.

By hypothesis, (t, u)Z`(t
′, u′). To check all the rules of `-bisimulation for XPath=(↓),

suppose x
k→y for some k ≤ j, and assume (x, y)Zj(x

′, y′). To see Harmony, let a =
label(x) and let α = [a]↓k, of downward depth k ≤ j. It is clear that T , x, y |= α, and so
T , x′, y′ |= α, which means that label(x′) = a. The implication label(x′) = a⇒ label(x) = a
is seen analogously.

For Equidistance, since T , x, y |= ↓k, then T ′, x′, y′ |= ↓k, and so x′
k→y′. The implica-

tion x′
k→y′ ⇒ x

k→y is seen analogously.
Let us see Split. Suppose x

n→z m→y and x′
n→z′ m→y′, where k = m + n ≤ j. We prove

that:

1. T , x, z ≡↓j T ′, x′, z′ and

2. T , z, y ≡↓j−n T ′, z′, y′.

To see 1, assume by contradiction that α is path expression with dd(α) ≤ j such that
T , x, z |= α and T ′, x′, z′ 6|= α (the other case is analogous). Observe that len(α) = n.
Now, T , x, y |= α↓m and T ′, x′, y′ 6|= α↓m. But dd(α↓m) = max{dd(α),m + len(α)} ≤ j,
so, since T , x, y ≡↓j T ′, x′, y′, we have T ′, x′, y′ |= α ↓m, a contradiction.

To see 2, assume by contradiction that α is a path expression with dd(α) ≤ j − n such
that T , z, y |= α and T ′, z′, y′ 6|= α (the other case is analogous). Observe that len(α) = m.
Now, T , x, y |=↓n α and T ′, x′, y′ 6|= ↓nα. But dd(↓nα) = n + dd(α) ≤ n + j − n = j, so,
since T , x, y ≡↓j T ′, x′, y′, we have T ′, x′, y′ |=↓n α, a contradiction.

Finally, let us show Zig (the case for Zag is analogous). Suppose x
n→v, x

m→w, where
n,m ≤ j, and data(v) = data(w) (the case 6= is analogous).

Let P ⊆ T ′2 be defined by:

P = {(v′, w′) | x′ n→v′ ∧ x′ m→w′ ∧ data(v′) = data(w′)}.

76 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Observe that T , x |= 〈↓n=↓m〉. Hence T , x, y |= [〈↓n=↓m〉]↓k and so T ′, x′, y′ |= [〈↓n=↓m
〉]↓k, which implies T ′, x′ |= 〈↓n=↓m〉. Therefore P 6= ∅.

We next show that there exists (v′, w′) ∈ P such that T , x, v ≡↓j T ′, x′, v′ and T , x, w ≡↓j
T ′, x′, w′, and hence Zig is satisfied by Zj.

Suppose by way of contradiction that for all (v′, w′) ∈ P , either T , x, v 6≡↓j T ′, x′, v′ or

T , x, w 6≡↓j T ′, x′, w′. Because of Lemma 49, for all (v′, w′) in P , either there exists a ∪-free
path expression αv′,w′ such that dd(αv′,w′) ≤ j and T , x, v |= αv′,w′ but T ′, x′, v′ 6|= αv′,w′ ,
or there exists a path expression βv′,w′ such that dd(βv′,w′) ≤ j and T , x, w |= βv′,w′ but
T ′, x′, w′ 6|= βv′,w′ .

Call A the set of pairs of the first type, and B the set of pairs of the second type.

α =

{⋂
(v′,w′)∈A αv′,w′ if A 6= ∅;
↓n otherwise.

and β =

{⋂
(v′,w′)∈B βv′,w′ if B 6= ∅;
↓m otherwise.

Now, by Proposition 50, there are only finitely many non-equivalent path expressions of
downward depth at most `, so the intersections that define α and β can be considered finite.
Notice that by Fact 42 we may take all the αv′,w′ involved in simple normal form, and they
will all have the same length (namely, n, the distance from x to v). An analog argument
holds for the βv′,w′ expressions. Therefore, it makes sense to take the operation ∩ among
all the αv′,w′ and among all the βv′,w′ . Let ψ = 〈α = β〉. By construction, T , x |= ψ, and so
T , x, y |= [ψ]↓k. Furthermore, since A or B are nonempty, T ′, x′ 6|= ψ, and so T ′, x′, y′ 6|=
[ψ]↓k. Since dd(ψ) ≤ j (by Fact 48) and k ≤ j we have dd([ψ]↓k) = max{dd(ψ), k} ≤ j.
Hence T , x, y 6≡j T ′, x′, y′, which is a contradiction. This concludes the proof.

The following corollary shows that binary downward bisimulations subsume unary ones.

Corollary 59. T , x ≡↓ T ′, x′ iff T , x, x ≡↓ T ′, x′, x′. Thus, if T and T ′ are finitely
branching, then T , x↔↓ T ′, x′ iff T , x, x↔↓ T ′, x′, x′.

Proof. The second part follows from the first part, item 1 of Theorem 56 and the corre-
sponding result for nodes [44].

For the left-to-right implication, let T , x ≡↓ T ′, x′. Take α = [ϕ0] ↓ . . . ↓ [ϕn] (we can
assume α has this form from Lemma 44 and Fact 42). Suppose T , x, x |= α and let us see
that T , x′, x′ |= α (the other implication is analogous). We have n = 0 and thus α = [ϕ0],
so T , x |= ϕ0. Then T ′, x′ |= ϕ0, and T ′, x′, x′ |= [ϕ0].

For the right-to-left implication, assume T , x, x ≡↓ T ′, x′, x′. In particular, T , x, x |= [ϕ]
iff T ′, x′, x′ |= [ϕ]. Since T , x, x |= [ϕ] iff T , x |= ϕ and T ′, x′, x′ |= [ϕ] iff T ′, x′ |= ϕ, we
arrive to T , x |= ϕ iff T ′, x′ |= ϕ, as we wanted.

Characterization for XPath=(↓) paths

In this section we show that for each formula ϕ(x, y) of first order, over the appropriate
signature and with two free variables x and y: there is a path expression α of XPath=(↓)

1.4. BINARY BISIMULATIONS 77

such that its translation into first-order logic (given in §I.1.3) Trx,y(α) is equivalent to
ϕ(x, y) if and only if ϕ is a ‘forward property’ (defined below), and it is bisimulation-
invariant over data trees. We begin with some definitions.

We say that ϕ(x, y) ∈ FO(σ) is↔↓-invariant [resp.↔↓` -invariant] if for all data trees

T and T ′, u ∗→v [resp. u
≤`→v] in T , u′

∗→v′ [resp. u′
≤`→v′] in T ′, and T , u, v↔↓ T ′, u′, v′ [resp.

T , u, v↔↓` T ′, u′, v′] we have T |= ϕ[u, v] iff T ′ |= ϕ[u′, v′].
A first-order σ-formula ϕ(x, y) is said to be a forward property if for every σ-structure

A and u, v ∈ A, we have that A |= ϕ(u, v) implies u ∗ v in A. By Compactness, ϕ(x, y)
is a forward property iff there is k such that A |= ϕ(u, v) implies u ≤k v in A. In this
case we say that ϕ(x, y) is a k-forward property.

Recall that for a data tree T and u ∈ T , we denote by T |`u the subtree of T induced
by {v ∈ T | (∃n ≤ `) u

n→v}. Let k ≤ `. We say that a first-order formula ϕ(x, y) with two
free variables is (k, `)-local whenever T |= ϕ[u, v] iff T |`u |= ϕ[u, v] for all (u, v) ∈ Dk(T).

We now state some lemmas that will be used for the proof. They all have two versions:
one over all data trees and the other restricted to finite data trees.

Lemma 60. Let ϕ(x, y) ∈ FO(σ) be↔↓-invariant over [finite] data trees. Then for each
k there is ` (large enough, depending on the quantifier rank of ϕ and k) such that ϕ is
(k, `)-local.

Proof. A straightforward modification of the proof in [44, Prop 6.2], which, in turn, follows
Otto’s idea [89].

Lemma 61. If ϕ(x, y) ∈ FO(σ) is a k-forward property,↔↓-invariant over [finite] data
trees and (k, `)-local, then ϕ(x, y) is↔↓` -invariant.

Proof. Since ϕ(x, y) is k-forward, it suffices to show that for T , u, v and T ′, u′, v′ such that

T , u, v↔↓` T ′, u′, v′ and u
≤k→v (and so u′

≤k→v′) we have T |= ϕ[u, v] iff T ′ |= ϕ[u′, v′].
Now for such T , u, v and T ′, u′, v′ we have

T , u, v↔↓` T ′, u′, v′ iff (T |`u), u, v↔↓` (T ′|`u′), u′, v′ (Prop. 54)

iff (T |`u), u, v↔↓ (T ′|`u′), u′, v′. (Prop. 55)

By (k, `)-locality, we have T |= ϕ[u, v] iff T |`u |= ϕ[u, v]. By↔↓-invariance, T |`u |= ϕ[u, v]
iff T ′|`u′ |= ϕ[u′, v′] and by (k, `)-locality again, T |= ϕ[u, v] iff T ′ |= ϕ[u′, v′].

Lemma 62. If ϕ(x, y) ∈ FO(σ) is a k-forward property which is↔↓` -invariant over [finite]
data trees, then there is an XPath=(↓)-path expression δ such that dd(δ) ≤ ` and for all
[finite] data trees T and u, v ∈ T we have T , u, v |= δ iff T |= ϕ[u, v].

Proof. By Corollary 51, for every T , u, v, with u
≤`→v, there is an `-XPath=(↓)-path expres-

sion γ`,T ,u,v such that T , u, v ≡↓` T ′, u′, v′ iff T ′, u′, v′ |= γ`,T ,u,v. Let

δ =
⋃

T |=ϕ[u,v]

γ`,T ,u,v.

78 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Since γ`,T ,u,v ∈ `-XPath=(↓) and, by Proposition 50, ≡↓` has finite index, it follows that
δ is equivalent to a finite union.

We now show that ϕ ≡ Trx,y(δ). Let us first see that ϕ |= Trx,y(δ). Suppose T |=
ϕ[u, v]. Since ϕ(x, y) is a k-forward property, we have u

n→v for some n ≤ k ≤ `. Since
T , u, v |= γ`,T ,u,v, we have T , u, v |= δ and so T |= Trx,y(δ)[u, v], as we wanted to see.

Let us now see that Trx,y(δ) |= ϕ. Assume T |= Trx,y(δ)[u, v], and so T , u, v |= δ. Then
there exists T ′, u′, v′ such that T ′ |= ϕ[u′, v′] and T , u, v |= γ`,T ′,u′,v′ . By the property of

γ`,T ′,u′,v′ , we have T , u, v ≡↓` T ′, u′, v′ and since ϕ is↔↓` -invariant (and hence ≡↓` -invariant
by Theorem 56) we conclude T |= ϕ[u, v].

The main result has two readings: one classical, and one restricted to finite models.

Theorem 63 (Characterization). Let ϕ(x, y) ∈ FO(σ). The following are equivalent:

(i) ϕ(x, y) is a forward property↔↓-invariant over [finite] data trees.

(ii) ϕ(x, y) is logically equivalent over [finite] data trees to a path expression of XPath=(↓).

Observe that the condition on ϕ(x, y) to be a forward property is necessary. Indeed, if
ϕ(x, y) is universally valid then it is trivially↔↓-invariant over [finite] data trees, but it is
clearly not XPath=(↓)-expressible, as its semantics includes pairs of nodes with arbitrarily
large distance between them, or even pairs (x, y) where y is not descendant of x.

Proof of Theorem 63. The implication (ii) ⇒ (i) follows straightforwardly from Item 1 of
Theorem 56, by using that binary XPath=(↓)-bisimilarity implies equivalence for XPath=(↓)-
path expressions. The proof of (i)⇒ (ii) goes as in the proof of [44, Th. 6.1], by Lemma 60,
Lemma 61, and Lemma 62.

1.4.2 Vertical

Some facts about path expressions over XPath=(↑↓)
As was previewed in §1.2.3, here we prove some results related to normal forms for path
expressions. Importantly for the rest of this chapter, we obtain a fragment of XPath=(↑↓)
that is semantically equivalent to the full XPath=(↑↓), but whose node and path expressions
are in some normal forms that greatly simplify proofs (see Remark 67). We begin by stating
two needed results from [45]:

Proposition 64. [45, Prop. 12] Given a XPath=(↑↓)-node expression ϕ, there is ϕ↑↓ in
up-down normal form such that ϕ ≡ ϕ↑↓.

Proposition 65. [45, Lem. 13] Given a ∪-free XPath=(↑↓)-path expression α, there is α↑↓

in up-down normal form such that α ≡ α↑↓.

We say that a path expression α is in ∪-NF (union normal form) if α = β1∪β2∪· · ·∪βn
and the βi are in up-down normal form (and thus ∪-free).

1.4. BINARY BISIMULATIONS 79

Proposition 66. For all path expressions α in XPath=(↑↓), there is α′ in ∪-NF such that
α ≡ α′.

Proof. We proceed by structural induction over α. If α = ε or α = ↓ or α = ↑, the result
holds trivially. If α = [ϕ], with ϕ a node expression, we can take, by Proposition 64, a
node expression ψ in up-down normal form (and therefore ∪-free) with ψ ≡ ϕ. Finally,
for the concatenation α = βγ, we can assume by induction that β ≡ β1 ∪ · · · ∪ βm, and
γ ≡ γ1 ∪ · · · ∪ γn, with βi, γi being in up-down normal form. The conclusion follows from
the fact that

(β1 ∪ · · · ∪ βm)(γ1 ∪ · · · ∪ γn) ≡ β1γ1 ∪ β1γ2 ∪ · · · ∪ β1γn ∪ β2γ1 ∪ · · · ∪ βmγn

and the application of Proposition 65 on the ∪-free path expressions βiγj.

Remark 67. From now on, we only consider the fragment of XPath=(↑↓) where all path
expressions are in ∪-NF and all node expressions are in up-down normal form. Observe
that, by Proposition 64 and Proposition 66, this fragment is semantically equivalent to full
XPath=(↑↓).

The following Lemma gives a restricted form of XPath=(↑↓)-path expression negation:

Lemma 68. Let y
n→x, y

m→z in T and y′
n→x′, y′ m→z′ in T ′. If α is an XPath=(↑↓)-path

expression (in ∪-NF) such that T , x, z |= α and T ′, x′, z′ 6|= α then there is a path expression
α in up-down form such that T , x, z 6|= α and T ′, x′, z′ |= α.

Proof. Let α = β1∪β2∪· · ·∪βn, with βi = [ϕi]↑ni↓mi [ψi]. Let βj be such that T , x, z |= βj.
Since for all i we have T ′, x′, z′ 6|= βi, we have that either T ′, x′ 6|= 〈↑nj↓mj〉 (recall that both
y
n→x, y

m→z, and y′
n→x′, y′ m→z′), or T ′, x′ 6|= ϕj, or T ′, z′ 6|= ψj. So either T ′, x′ |= ¬〈↑nj↓mj〉

or T ′, x′ |= ¬ϕj or T ′, z′ |= ¬ψj. In the first case, let α = [¬〈↑nj↓mj〉]↑n↓m, in the second
case, let α = [¬ϕj]↑n↓m, and in the third case, let α = ↑n↓m[¬ψj].

Binary bisimulation for XPath=(↑↓)
Let T and T ′ be data trees. We say that Z ⊆ T 2 × T ′2 is a binary XPath=(↑↓)-
bisimulation, or simply an XPath=(↑↓)-bisimulation when the binary context is clear,
if for all x, y ∈ T and x′, y′ ∈ T ′ we have:

• (Harmony) If (x, y)Z(x′, y′) then label(x) = label(x′).

• (Reverse) (x, y)Z(x′, y′) iff (y, x)Z(y′, x′).

• (Split-Zig) If (x, y)Z(x′, y′), then for all z such that z
m→x, z n→y, there is z′ such that

z′
m→x′, z′ n→y′ , (x, z)Z(x′, z′), and (z, y)Z(z′, y′).

• (Split-Zag) If (x, y)Z(x′, y′), then for all z′ such that z′
m→x′, z′ n→y′, there is z such

that z
m→x, z n→y, (x, z)Z(x′, z′), and (z, y)Z(z′, y′).

80 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

u

v w a, 2 a, 1

Z

a, 3a, 3

a, 1 a, 2 a, 2t

u0

v0 w0

T 0T

Figure 21: Part of an XPath=(↑↓) binary bisimulation Z between T and T ′. Not shown:
bisimulation of the all the reverse and singleton paths, and of the other two pairs of leaves in T .

• (Zig) If (x, y)Z(x′, y′), then for all z, w such that z
m→x, z n→w, there are z′, w′ such

that z′
m→x′, z′ n→w′, (z, w)Z(z′, w′), and data(x) = data(w) iff data(x′) = data(w′).

• (Zag) If (x, y)Z(x′, y′), then for all z′, w′ such that z′
m→x′, z′ n→w′, there are z, w such

that z
m→x, z n→w, (z, w)Z(z′, w′), and data(x) = data(w) iff data(x′) = data(w′).

Observe that any of Split-Zig or Split-Zag imply that (x, y)Z(x′, y′)⇒ (x, x)Z(x′, x′),
and this property in conjunction with Reverse implies that (x, y)Z(x′, y′)⇒ (y, y)Z(y′, y′).
We call these two implications Endpoints. See Figure 21 for an (incomplete) example of
a XPath=(↑↓)-bisimulation.

We now define when (u, v) ∈ T 2 is said to be XPath=(↑↓)-bisimilar to (u′, v′) ∈ T ′2,
notated T , u, v↔↑↓ T ′, u′, v′:

T , u, v↔↑↓ T ′, u′, v′ def⇔ there is binary XPath=(↑↓)-bisimulation Z s.t. (u, v)Z(u′, v′).

We say that (x, y) ∈ T 2 and (x′, y′) ∈ T ′2 are equivalent for XPath=(↑↓)-path
expressions (notated T , x, y ≡↑↓ T ′, x′, y′) iff the truth value of any XPath=(↑↓)-path
expression coincides over both two-pointed data trees. That is:

T , x, y ≡↑↓ T ′, x′, y′ def⇔ for all XPath=(↑↓)-path expressions α,
T , x, y |= α iff T ′, x′, y′ |= α.

Again, in the context of path expressions of XPath=(↑↓) we have an analog of Theorem 9
for binary bisimulations and path equivalence.

Theorem 69. T , u, v↔↑↓ T ′, u′, v′ implies T , u, v ≡↑↓ T ′, u′, v′. The converse also holds
when T and T ′ are finitely branching.

Proof. We first show that if T , u, v↔↑↓ T ′, u′, v′ then T , u, v ≡↑↓ T ′, u′, v′. We actually
show that if T , u, v↔↑↓ T ′, u′, v′ via Z, then:

1. If (x, x)Z(x′, x′), then T , x, x |= [ϕ] iff T ′, x′, x′ |= [ϕ].

1.4. BINARY BISIMULATIONS 81

2. If (x, y)Z(x′, y′), then T , x, y |= α iff T ′, x′, y′ |= α.

We show 1 and 2 by structural induction on |ϕ| + |α|. We start with the Item 1. The
base case for item 1 is ϕ = a, for some label a. Suppose T , x, x |= [a]. By Harmony,
since (x, x)Z(x′, x′), label(x) = label(x′), so T ′, x′, x′ |= [a]. The case for T ′, x′, x′ |= [a] is
identical. The Boolean cases for ϕ are straightforward.

Now suppose ϕ = 〈ε = α↑↓〉, and further assume that α↑↓ = [ψ1]↑m↓n[ψ2] (the cases
with data inequality are analogous). Observe that by inductive hypothesis, it is enough to
check T , x, x |= [〈ε = ↑m↓n[ψ2]〉] iff T ′, x′, x′ |= [〈ε = ↑m↓n[ψ2]〉]. We show the left-to-right
implication, as the reverse is analogous. So, suppose T , x, x |= 〈ε = ↑m↓n[ψ2]〉. There exist
z, w such that z

m→x, z
n→w, T , x, w |= ↑m↓n[ψ2], and data(x) = data(w). By Zig, there

are z′, w′ such that z′
m→x′, z′ n→w′, (x, z)Z(x′, z′), (z, w)Z(z′, w′), and data(x′) = data(w′).

By inductive hypothesis, since (z, w)Z(z′, w′) and T , z, w |= ↓n[ψ2] we have T ′, z′, w′ |=
↓n[ψ2]. Since also T ′, x′, z′ |= ↑m, we conclude T ′, x′, w′ |= ↑m↓n[ψ2], and therefore (because
data(x′) = data(w′)), T ′, x′, x′ |= 〈ε = ↑m↓n[ψ2]〉, as we wanted.

We now proceed to Item 2. We only show the left-to-right direction, as the reverse is
analogous. The base case is when α ∈ {ε, ↑, ↓}. If α = ε then T , x, y |= α iff x = y. Thus,
taking z = x (and thus m = n = 0) in Split-Zig, it follows that x′ = y′ and therefore
T ′, x′, y′ |= α. If α = ↑ then T , x, y |= α implies y→x. Now, T , y, x |= ↓, and, from
Split-Zig we deduce, T , y′, x′ |= ↓. Therefore we conclude T , x′, y′ |= α, as we wanted. If
α = ↓, we proceed as before.

Finally, for the general case where α = α↑↓. Suppose without loss of generality that
T , x, y |= [ϕ]↑m↓n[ψ]. Then, there exists z such that T , x, z |= [ϕ]↑m and T , z, y |= ↓n[ψ].
Since z

m→x and z
n→y, by Split-Zig, we have a corresponding z′ such that z′

m→x′ and z′
n→y′,

(x, z)Z(x′, z′), and (z, y)Z(z′, y′). If m = n = 0, then x = y, and the problem consists of the
already considered case T , x, x |= [ϕ]. If m 6= 0 or n 6= 0, then |[ϕ]↑m| < |α| and |↓n[ψ]| <
|α|, and thus, since (x, z)Z(x′, z′) and (z, y)Z(z′, y′), we can use the inductive hypothesis to
conclude that T ′, x′, z′ |= [ϕ]↑m and T ′, z′, y′ |= ↓n[ψ], and therefore T ′, x′, y′ |= [ϕ]↑m↓n[ψ],
as we wanted.

We now show that if T and T ′ are finitely branching, then T , u, v ≡↑↓ T ′, u′, v′ implies
T , u, v↔↑↓ T ′, u′, v′. Let T , u, v ≡↑↓ T ′, u′, v′. Define the relation Z by:

(x, y)Z(x′, y′) iff T , x, y ≡↑↓ T ′, x′, y′.

We show that Z is a bisimulation between T , u, v and T ′, u′, v′.
First of all, by construction, it holds that (u, v)Z(u′, v′).
To prove Harmony, let (x, y)Z(x′, y′). We will see that if label(x) = a then label(x′) =

a (the other implication is analogous). Note that, since T is a tree, there are m,n such
that T , x, y |= ↑m↓n. Also, if label(x) = a, T , x, y |= [a]↑m↓n. Therefore, since T , x, y ≡↑↓
T ′, x′, y′, we have T ′, x′, y′ |= [a]↑m↓n, and thus label(x′) = a = label(x).

Now we check Reverse. Let (x, y)Z(x′, y′). Observe first that it is enough to check that
(x, y)Z(x′, y′) ⇒ (y, x)Z(y′, x′) . Now, let β be a path expression such that T , y, x |= β,

82 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

which using Remark 67 we can assume to be in up-down normal form13 β = [ψ] ↑n ↓m[ϕ].
Then, T , x, y |= [ϕ] ↑m ↓n[ψ], and, since (x, y)Z(x′, y′), this implies that T ′, x′, y′ |= [ϕ] ↑m
↓n[ψ]. In turn, this implies that T ′, y′, x′ |= [ψ] ↑n ↓m[ϕ] = β, as we wanted.

Now we check Split-Zig (Split-Zag is analogous). Let (x, y)Z(x′, y′). We prove
that if z

m→x and z
n→y then there is z′ in T ′ such that z′

m→x′, z′ n→y′, (x, z)Z(x′, z′), and
(z, y)Z(z′, y′). We have T , x, y |= ↑m↓n, and then so does T ′, x′, y′ |= ↑m↓n. In partic-
ular, there exists z′ such that z′

m→x′, z′ n→y′. To verify (x, z)Z(x′, z′), we see that if α
is a path expression such that T , x, z |= α, then T ′, x′, z′ |= α (the other implication is
analogous). Observe that T , x, y |= α↓n, which implies that T ′, x′, y′ |= α↓n. As there is
only one w such that w

n→y′, namely z′, we conclude that T ′, x′, z′ |= α, as we wanted.
To verify (z, y)Z(z′, y′), we see that if α is a path expression such that T , z, y |= α, then,
T ′, z′, y′ |= α (the other implication is analogous). Now, T , z, y |= α implies T , x, y |= ↑mα,
and then T ′, x′, y′ |= ↑mα. Since T ′ is a tree, this in turn implies that T ′, z′, y′ |= α, as we
wanted.

For the last step, we check that Zig holds (Zag is analogous). Suppose T , x, y ≡↑↓
T ′, x′, y′ (that is, (x, y)Z(x′, y′)). Let z, w be such that z

m→x, z
n→w, and assume that

data(x) = data(w) (the case for 6= is analogous). We want to see that there are z′, w′ in
T ′ such that z′

m→x′, z′ n→w′, data(x′) = data(w′), and (z, w)Z(z′, w′). By Split-Zig, let
z′ ∈ T ′ such that z′

m→x′ and (x, z)Z(x′, z′). Let

P = {w′ ∈ T ′ | z′ n→w′ and data(x′) = data(w′)}.

Notice that P is finite since T ′ is finitely branching. We show that there is w′ ∈ P
such that (z, w)Z(z′, w′). By Split-Zig we had T , x, z ≡↑↓ T ′, x′, z′, and thus T , x, z |=
[〈ε = ↑m↓n〉]↑m implies T ′, x′, z′ |= [〈ε = ↑m↓n〉]↑m, and so there is w′ such that z′

n→w′ and
data(x′) = data(w′). Hence P 6= ∅.

Now, suppose by the way of contradiction that for all w′ ∈ P , we have T , z, w 6≡↑↓
T ′, z′, w′. That is, for every w′ ∈ P , there exists a path expression, which we can assume
is in up-down form αw′ = [ϕw′]↑aw′↓bw′ [ψw′], such that either

1. T , z, w |= αw′ and T ′, z′, w′ 6|= αw′ , or

2. T , z, w 6|= αw′ and T ′, z′, w′ |= αw′ .

First we are going to see that we can assume that αw′ is of the form [ϕw′]↓n[ψw′]. First
of all, observe that since T , x, z ≡↑↓ T ′, x′, z′, by Endpoints we have that (z, z)Z(z′, z′).
Now suppose by the way of contradiction that ↑aw′↓bw′ holds in T , z, w but not in T ′, z′, w′
(the other case is analogous). Since z

n→w, it must be that bw′ − aw′ = n. Since also z′
n→w′

but T ′, z′, w′ 6|= ↑aw′↓bw′ , we have T ′, z′, z′ 6|= [〈↑aw′↓bw′ 〉], or, equivalently, T ′, z′, z′ |=
[¬〈↑aw′↓bw′ 〉]. But then T , z, z |= [¬〈↑aw′↓bw′ 〉], and this implies that T , z, w 6|= ↑aw′↓bw′ , a
contradiction. So we can assume without loss of generality that always ↑aw′↓bw′ = ↓n.

13In the case β = β1 ∪ β2 ∪ · · · ∪ βn with the βi in up-down normal form, it is enough to take a βj such
that T , y, x |= βj and see that T ′, y′, x′ |= βj .

1.5. DEFINABILITY VIA PATH EXPRESSIONS 83

Now, by Lemma 68, we can always assume that case 1 applies. We take:

α = [
∧

w′∈P

ϕw′]↓n[
∧

w′∈P

ψw′]↑n

and observe that T , z, z |= α but T ′, z′, z′ 6|= α, a contradiction.

Corollary 70. T , x ≡↑↓ T ′, x′ iff T , x, x ≡↑↓ T ′, x′, x′. Thus, if T and T ′ are finitely
branching, then T , x↔↑↓ T ′, x′ iff T , x, x↔↑↓ T ′, x′, x′.

Proof. The proof is similar to that of Corollary 59. For the second part we use that if T
and T ′ are finitely branching, then↔↑↓ and ≡↑↓ coincide (Theorem 69)

Assume first that x ≡↑↓ x′. Suppose that T , x, x |= α and let us prove that T ′, x′, x′ |=
α (the other implication is analogous). Without loss of generality we can assume that
α = [ϕ]↑m↓n[ψ]. So n = m, T , x |= ϕ, and T , x |= ψ. Since T , x ≡↑↓ T ′, x′, we conclude
that T ′, x′, x′ |= [ϕ]↑m↓n[ψ].

For the other implication, assume x, x ≡↑↓ x′, x′. In particular, T , x, x |= [ϕ] iff
T ′, x′, x′ |= [ϕ]. As T , x, x |= [ϕ] iff T , x |= ϕ and T ′, x′, x′ |= [ϕ] iff T ′, x′ |= ϕ, we
get T , x |= ϕ iff T ′, x′ |= ϕ, as we wanted.

1.5 Definability via path expressions

In this section we develop and apply the tools needed to obtain the main results of defin-
ability and separation via path expressions of XPath=(↓) and XPath=(↑↓). Here we work
over more restricted universes than in the case of node expressions, in order to deal with
the lack of complementation or intersection of path expression over the full universe of
two-pointed data trees.

1.5.1 Saturation

Saturation for the downward fragment. Let Σ and Γ be sets of XPath=(↓)-path
expressions. Given a data tree T and u ∈ T , we say that Σ and Γ are =↓-satisfiable
[resp. 6=↓-satisfiable] at T , u if there exist v, w ∈ T such that T , u, v |= Σ, T , u, w |= Γ,
and data(v) = data(w) [resp. data(v) 6= data(w)]. We say that Σ and Γ are =↓-finitely
satisfiable [resp. 6=↓-finitely satisfiable] at T , u if for every finite Σ′ ⊆ Σ and finite
Γ′ ⊆ Γ, we have that Σ′ and Γ′ are =↓-satisfiable [resp. 6=↓-satisfiable] at T , u.

Definition 71. We say that a data tree T is binary ↓-saturated if for every pair of sets
Σ,Γ of XPath=(↓)-path expressions, every u ∈ T , and ? ∈ {=, 6=}, the following is true:

if Σ and Γ are ?↓-finitely satisfiable at T , u then Σ and Γ are ?↓-satisfiable at
T , u.

Proposition 72. Any finitely branching data tree is binary ↓-saturated.

84 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Proof. Suppose by contradiction that there is u ∈ T and sets of XPath=(↓)-path expres-
sions Σ, Γ which are finitely =↓-satisfiable at T , u but not =↓-satisfiable at T , u (the case
for T being 6=↓-satisfiable is analogous). Assume, without loss of generality by Lemma 46
that all path expressions in Σ and Γ are the finite union of path expressions in simple
normal form. Let αs =

⋃
i∈I αs,i be one formula in Σ. By Fact 43, there are mi such that

if T , u, v |= αs,i, then u
ni→v. Similarly, take an αg =

⋃
j∈J αg,j for Γ. We are going to

construct finite subsets of Σ and Γ, containing αs and αg respectively, such that they are
not =↓-satisfiable at T , u. Let

P = {(v, w) ∈ T 2 | umi→v ∧ unj→w ∧ data(v) = data(w) ∧ i ∈ I ∧ j ∈ J}.

Observe that P is finite because I and J are finite and T is finitely branching. As we are
assuming Σ, Γ not =↓-satisfiable at T , u, it is clear that if (v, w) ∈ P then either

1. T , u, v 6|= Σ, or

2. T , u, w 6|= Γ.

We will define sets Σv,w and Γv,w, each one of them with at most one element, as follows:
If case 14 holds, define Σv,w as {ρ} for some path expression ρ ∈ Σ such that T , u, v 6|= ρ,
and define Γv,w = ∅. If case 14 does not hold then case 15 holds, so define Γv,w as {ρ}
for some path expression ρ ∈ Γ such that T , u, w 6|= ρ, and define Σv,w = ∅. Finally,
define the finite sets Σ′ =

⋃
(v,w)∈P Σv,w ∪ αs and Γ′ =

⋃
(v,w)∈P Γv,w ∪ αg. Observe that if

data(v) = data(w), T , u, v |= αs, and T , u, w |= αg then (v, w) ∈ P . Thus, by construction
of Σ′ and Γ′, we have finite Σ′ ⊆ Σ, Γ′ ⊆ Γ such that Σ′ and Γ′ are not =↓-satisfiable at
T , u which is a contradiction.

Proposition 73. Let T and T ′ be ↓-saturated data trees, and let u, v ∈ T and u′, v′ ∈ T ′.
If T , u, v ≡↓ T ′, u′, v′, then T , u, v↔↓ T ′, u′, v′.

Proof. We show that Z, defined by (x, y)Z(x′, y′) iff T , x, y ≡↓ T ′, x′, y′ is a XPath=(↓)-
bisimulation between T , u, v and T ′, u′, v′. Clearly (u, v)Z(u′, v′), and Harmony also

holds. For Equidistance, if (x, y)Z(x′, y′), assume x
k→y. Then, since (x, y) ≡↓ (x′, y′),

T , x, y |=↓k iff T ′, x′, y′ |=↓k. For Split, let (x, y)Z(x′, y′), x
n→z m→y, and x′

n→z′ m→y′. We
check first that (x, z)Z(x′, z′): T , x, z |= α ⇔ T , x, y |= α ↓m⇔ T ′, x′, y′ |= α ↓m⇔
T ′, x′, z′ |= α. The proof is similar for checking (z, y)Z(z′, y′): T , z, y |= α ⇔ T , x, y |=↓n
α⇔ T ′, x′, y′ |=↓n α⇔ T ′, z′, y′ |= α.

We now need to show that Zig and Zag are satisfied. We only check Zig, as Zag
is analogous. Suppose (x, y)Z(x′, y′), x

m→v, x
n→w and data(v) = data(w) (the case with

data(v) 6= data(w) is analogous). Let

Σ = {α | T , x, v |= α and α is ∪-free} and Γ = {α | T , x, w |= α and α is ∪-free}.

That is, Σ and Γ are the ∪-free theories of T , x, v and T , x, w, respectively. Furthermore,
let Σ′ be a finite subset of Σ, and let Γ′ be a finite subset of Γ. Observe that, being in

1.5. DEFINABILITY VIA PATH EXPRESSIONS 85

XPath=(↓), all path expressions in Γ and Σ are of the same length, and thus we have a
notion of intersection as in Equation 17.

Now define ϕ = 〈∩Σ′ = ∩Γ′〉. Observe that, from Split, (x, y) ≡↓ (x′, y′) implies
(x, x) ≡↓ (x′, x′) implies (Corollary 59) x ≡↓ x′. Now, it is clear that T , x |= ϕ, and thus
T ′, x′ |= ϕ. Therefore, there exist v′, w′ such that T ′, x′, v′ |= Σ′ (in particular, x′

m→v′),
T ′, x′, w′ |= Γ′ (in particular, x′

n→w′), and data(v′) = data(w′). Hence Σ′ and Γ′ are =↓-
satisfiable at x′, for any finite sets Σ′,Γ′ and thus Σ and Γ are =↓-finitely satisfiable at x′.
Since T ′ is ↓-saturated, this implies that Σ and Γ are =↓-satisfiable at x′, for some v′ and
w′.

Finally, we see that T ′, x′, v′ |= Σ implies that Th↓(T , x, v) = Th↓(T ′, x′, v′) and thus
(x, v) ≡↓ (x′, v′) (the case for (x,w) ≡↓ (x′, b′) is analogous). We are only going to prove
that T ′, x′, v′ |= α ⇒ T , x, v |= α, as the other implication is clear. Suppose by way of
contradiction that there is an α, which by Lemma 44 can be assumed to be ∪-free, such
that T ′, x′, v′ |= α but T , x, v 6|= α. Then, by Lemma 45, there is a ∪-free path expression
ᾱ such that T ′, x′, v′ 6|= ᾱ and T , x, v |= ᾱ. Then, since T ′, x′, v′ |= Σ , we have that
T ′, x′, v′ |= ᾱ, a contradiction.

Saturation for the vertical fragment. Given a data tree T and u ∈ T , we say that
the set of XPath=(↑↓)-path expressions Γ is =↑↓-satisfiable [resp. 6=↑↓-satisfiable] at

T , u if there exist v, w ∈ T such that v
∗→u, v

∗→w, T , u, w |= Γ and data(u) = data(w)
[resp. data(u) 6= data(w)]. We say that Γ is =↑↓n,m-satisfiable [resp. 6=↑↓n,m-satisfiable] at

T , u if for every finite Γ′, we have that Γ′ is =↑↓-satisfiable [resp. =↑↓-satisfiable] at T , u.

Definition 74. We say that a data tree T is binary ↑↓-saturated if for every set of
XPath=(↑↓)-path expressions Γ, every u ∈ T and ? ∈ {=, 6=}, the following is true:

if Γ is ?↑↓-finitely satisfiable at T , u then Γ is ?↑↓-satisfiable at T , u.

Proposition 75. Let T and T ′ be binary ↑↓-saturated data trees, and let u, v ∈ T and
u′, v′ ∈ T ′. If T , u, v ≡↑↓ T ′, u′, v′, then T , u, v↔↑↓ T ′, u′, v′.
Proof. We show that Z ⊆ T 2 × T ′2, defined by

(x, y)Z(x′, y′) iff T , x, y ≡↑↓ T ′, x′, y′

is a XPath=(↑↓)-bisimulation between T , u, v and T ′, u′, v′. Clearly (u, v)Z(u′, v′). Har-
mony, Reverse, Split-Zig, and Split-Zag hold with the same proofs as in the second
part of the proof of Theorem 69.

We now need to show that Zig and Zag are satisfied. We only check Zig, as Zag is
analogous.

Suppose (x, y)Z(x′, y′), s
c→x, s

d→y, z
m→x, z

n→w, and data(x) = data(w) (the case
6= is analogous). We want to see that there are z′, w′ ∈ T ′ such that z′

m→x′, z′ n→w′,
(z, w)Z(z′, w′), and data(x′) = data(w′). Let

Γ = {β | T , x, w |= β and β is of the form [ϕ] ↑m↓n [ψ], for some ϕ and ψ},

86 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

and let Γ′ be a finite subset of Γ. If β1 = [ϕ1] ↑m↓n [ψ1] and β2 = [ϕ2] ↑m↓n [ψ2], we will
define β1 ∩ β2 = [ϕ1 ∩ ϕ2] ↑m↓n [ψ1 ∩ ψ2].

Now, define
α = [〈ε = ∩Γ′〉] ↑c↓d .

It can be seen that T , x, y |= α, and thus, since by definition of Z we have T , x, y ≡↑↓
T ′, x′, y′, we conclude T ′, x′, y′ |= α. This implies that there are p′, q′ such that p′

m→x′,
p′

n→q′, data(x′) = data(q′), and T ′, x′, q′ |= Γ′. Therefore, Γ is =↑↓-finitely satisfiable at
T ′, x′. Since T ′ is binary ↑↓-saturated, this implies that Γ is =↑↓-satisfiable at T ′, x′, and
therefore there exist nodes z′, w′ ∈ T ′ such that t

m→x′, t n→w′, data(x′) = data(w′), and
T ′, x′, w′ |= Γ.

It remains to prove that Th↑↓(T , x, w) = Th↑↓(T ′, x′, w′), as this property in conjunction
with Split-Zig will imply that (z, w)Z(z′, w′).

First we prove that Th↑↓(T , x, w) ⊆ Th↑↓(T ′, x′, w′). Let β ∈ Th↑↓(T , x, w). Without
loss of generality, we can assume that β is ∪-free, and thus of the form β = [ϕ] ↑j↓k [ψ].
Since z′

m→x′ and z′
n→w′, T ′, x′, w′ |= β iff T ′, x′, w′ |= γ, with γ = [ϕ ∧ 〈↑j↓k〉] ↑m↓n [ψ].

But γ ∈ Γ, and thus T ′, x′, w′ |= γ.
We now see that Th↑↓(T ′, x′, w′) ⊆ Th↑↓(T , x, w). Suppose by way of contradiction that

there is a β (which can be assumed to be ∪-free) such that β = [ϕ] ↑j↓k [ψ] and T ′, x′, w′ |=
β but T , x, w 6|= β. As z

m→x and z
n→w, T , x, w |= β iff T , x, w |= [ϕ ∧ 〈↑j↓k〉] ↑m↓n [ψ],

and as z′
m→x′ and z′

n→w′, we also have T ′, x′, w′ |= β iff T ′, x′, w′ |= [ϕ ∧ 〈↑j↓k〉] ↑m↓n [ψ].
So from our supposition we have T , x, w 6|= [ϕ ∧ 〈↑j↓k〉] ↑m↓n [ψ]. Since T , x, w |=↑m↓n,
it must be that either T , x, w |= [¬(ϕ ∧ 〈↑j↓k〉)] ↑m↓n or T , x, w |=↑m↓n [¬ψ]. But since
T ′, x′, w′ |= Γ, this implies that either T ′, x′, w′ |= [¬(ϕ∧ 〈↑j↓k〉)] ↑m↓n or T ′, x′, w′ |=↑m↓n
[¬ψ], which contradicts the fact that T ′, x′, w′ |= [ϕ ∧ 〈↑j↓k〉] ↑m↓n [ψ].

So we have (x,w)Z(x′, w′). As z
m→x and z

n→w, we can use Split-Zig to finally obtain
(z, w)Z(z′, w′), as we wanted.

1.5.2 Weak data trees and quasi-ultraproducts

Recall that a σ-structure T is a weak data tree if: ∼ is an equivalence relation; there is
exactly one node r with no u such that u r (r is called root of T); for all nodes x 6= r
there is exactly one y such that y x; and for each n ≥ 0 the relation has no cycles
of length n. Recall also that a weak data tree need not be connected, and that the class
of weak data trees is elementary, i.e. definable by a set of first-order σ-sentences (with
equality). For a weak data tree T and u ∈ T , remember that T |u denotes the substructure
of T induced by {v ∈ T | u ∗ v}, and that T |u is a data tree.

The following proposition shows the ‘local’ aspect of XPath=(↓) and XPath=(↑↓) for
paths, whereas Proposition 17 showed it for nodes. It is stated in terms of first-order
because models are weak data trees. Recall that Tr is the translation into first-order logic
given in §I.1.3.

Proposition 76. Let T be a weak data tree and let both r ∗ u and r ∗ v in T .

1.5. DEFINABILITY VIA PATH EXPRESSIONS 87

1. If α is a XPath=(↓)-path expression then T |= Trx,y(α)[u, v] iff T |r |= Trx,y(α)[u, v].

2. If r is the root of T and α ∈ XPath=(↑↓) then T |= Trx,y(α)[u, v] iff T |r |=
Trx,y(α)[u, v].

We now show that 2-saturated (recall Definition 18) data trees are already both binary
↓-saturated and binary ↑↓-saturated. For technical reasons we state these results in the
more general setting of weak data trees.

Proposition 77. Let T be a 2-saturated weak data tree and r ∈ T .

1. T |r is a binary ↓-saturated data tree.

2. If r is the root of T then T |r is a binary ↑↓-saturated data tree.

Proof. The proof is similar to that of Proposition 19.
Let T ′ = T |r and let u ∈ T ′. For item 1, let Σ and Γ be sets of XPath=(↓)-path

expressions. Suppose Σ and Γ are =↓-finitely satisfiable at T ′, u (the case for 6=↓-finitely
satisfiable is analogous). We show that Σ and Γ are =↓-satisfiable at T ′, u. Consider the
following first-order σ{u}-formula with free variables x̄ = x1, . . . , xn and ȳ = y1, . . . , ym:

ϕ(x̄, ȳ) = u x1 ∧
n−1∧

i=1

xi xi+1 ∧ u y1 ∧
m−1∧

j=1

yj yj+1 ∧ xn ∼ ym.

Define the following set of first-order σ{u}-formulas:

∆(x̄, ȳ) = {ϕ(x̄, ȳ)} ∪ Trxn(Σ) ∪ Trym(Γ).

Let ∆′(x̄, ȳ) be a finite subset of ∆(x̄, ȳ). Since Σ and Γ are =↓-finitely satisfiable at T ′, u,
then ∆′(x̄, ȳ) is satisfiable and, by item 1 of Proposition 76, consistent with Th{u}(T).
By compactness, ∆(x̄, ȳ) is satisfiable and consistent with Th{u}(T). By 2-saturation, we
conclude that ∆(x̄, ȳ) is realizable in T , say at v̄ = v1, . . . , vn and w̄ = w1, . . . , wm. Thus
we have:

i. u v1 · · · vn and u w1 · · · wm in T , and hence in T ′;

ii. T |= Trxn(Σ)[vn] and T |= Trym(Γ)[wm]; by item 1 of Proposition 76 this implies that
T ′ |= Trxn(Σi)[vn] and T ′ |= Tryj(Γ)[wm];

iii. vn ∼ wm in T , and hence in T ′.

Since Tr is truth-preserving, we have that for T ′, vn |= Σ and T ′, wm |= Γ. Together with
i and iii we conclude that Σ and Γ are =↓-satisfiable at T ′, u.

For item 2, let Γ be a set of XPath=(↑↓)-path expressions. Suppose Γ is =↑↓-finitely
satisfiable at T ′, u (the case for 6=↑↓ -finitely satisfiable is analogous). We show that Γ is
=↑↓-satisfiable at T ′, u.

88 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

Consider the following first-order σ{u}-formula with free variable y:

ϕ(y) = (∃x0 . . . ∃xn)(∃y0 . . . ∃ym)[xn = u ∧ y = ym ∧ x0 = y0 ∧
n−1∧

i=0

xi xi+1 ∧
m−1∧

j=0

yj yj+1 ∧ xn ∼ ym].

Define the following set of first-order σ{u}-formulas: ∆(y) = {ϕ(y)} ∪ Try(Γ). Let ∆′(y)
be a finite subset of ∆(y). Since Γ is =↑↓n,m-finitely satisfiable at T ′, u, then ∆′(y) is
satisfiable and, by item 2 of Proposition 76, consistent with Th{u}(T). By compactness,
∆(y) is satisfiable and consistent with Th{u}(T). By 2-saturation, we conclude that ∆(y)
is realizable in T , say at w. Thus we have:

iv. There is v ∈ T such that v
n→u and v

m→w in T and hence in T ′.

v. T |= Try(Γ)[w]; by item 2 of Proposition 76 this implies that T ′ |= Try(Γ)[w];

vi. u ∼ w in T , and hence in T ′.
Since Tr is truth-preserving, we have that T ′, w |= Γ. Together with iv and vi we conclude
that Γ is =↑↓-satisfiable at T ′, u.

Let (Ti, ui, vi)i∈I be a family of two-pointed data trees. The ultraproduct of such
two-pointed data trees is defined, as usual, by (

∏
U Ti, u∗, v∗), where u∗ and v∗ are the

ultralimits of (ui)i∈I and (ui)i∈I modulo U , respectively.

Example 78. For i ∈ N, let Ti be any data tree of height at least i, and let ui, vi be any pair
of nodes of Ti at distance i from each other. Let ρn(x, y) be the first-order property “x is
at distance at least n from y”. It is clear that Tm |= ρn[um, vm] for every m ≥ n. Let u∗

and v∗ be the ultralimits of (ui)i∈I and (vi)i∈I modulo U . Since {m | m ≥ n} ∈ U for any
non-principal U , we conclude that

∏
U Ti |= ρn[u∗, v∗] for every n, and so u∗ is disconnected

from v∗ in
∏

U Ti.
Hence, in general, two-pointed data trees are not closed under ↑↓-quasi ultraproduct.
Let k ≥ 0, let T be a data tree and let u, v ∈ T . We say that (T , u, v) is a k-bounded

two-pointed data tree if u, v are at distance at most k from the root of T . In particular,
if r is the root of T then (T , r, r) is a 0-bounded two-pointed data tree.

Let n ≥ 0, let T be a data tree and let u, v ∈ T . We say that a two-pointed data tree
T , u, v is n-two-pointed if the minimum distance between u and v is at most n. That
is, if w is the first common ancestor of u and v (i.e. the closest common ancestor), and

w
c→u,w d→v, then c+ d ≤ n.

Definition 79. Suppose (Ti, ui, vi)i∈I is a family of n-two-pointed data trees, ri is the root
of Ti, U is an ultrafilter over I, T ∗ =

∏
U Ti, and u∗, v∗ and r∗ are the ultralimits of (ui)i∈I ,

(vi)i∈I , and (ri)i∈I modulo U respectively. Then

1. If ui
∗→vi, the ↓-quasi ultraproduct of (Ti, ui, vi)i∈I modulo U is the n-two-pointed

data tree (T ∗|u∗, u∗, v∗).

1.5. DEFINABILITY VIA PATH EXPRESSIONS 89

2. If (Ti, ui, vi)i∈I is also a family of k-bounded data trees, the ↑↓-quasi ultraproduct
of (Ti, ui, vi)i∈I modulo U is the k-bounded n-two-pointed data tree (T ∗|r∗, u∗, v∗).

Observe that in the definition of ↑↓-quasi ultraproduct, u∗ and v∗ are effectively in T ∗|r∗
for similar reasons as those in Proposition 22.

1.5.3 Definability and separation

In this subsection we state our definability results for two-pointed data trees. When we
want to extend the proofs for the case of node expressions into the framework of path
expressions, we find a problem: the language of path expressions does not have comple-
mentation or intersection in the general case (unlike node expressions, which have ¬ and
∧). In order to be able to express these operations, we deal with restricted universes of
two-pointed data trees. We start with the downward fragment:

Definability and separation via path expressions of XPath=(↓)
We work with n-two-pointed data trees which are forward, that is, data trees of the form

T , u, v where u
≤n→v. If α, β are XPath=(↓)-path expressions, we say that α ≡n β if for every

forward n-two-pointed data tree T , u, v we have T , u, v |= α iff T , u, v |= β. For a path
expression α = [ϕ0]↓ . . . ↓[ϕi] in simple normal form, we define the complement (over the
class of forward n-two-pointed data trees) as

∼n α =

{
> if i > n;⋃

0≤j≤i ↓j[¬ϕj]↓i−j ∪
⋃

0≤j≤n,i6=j ↓j otherwise.

(We represent ε as ↓0, and > as
⋃

0≤j≤n ↓j.) ∼n α is thus true for all downward paths of a
length at most n and different to that of α, and for paths of the same length as α but that
do not satisfy some intermediate node expression [ϕj]. So for every forward n-two-pointed
data tree T , u, v, we have T , u, v |= α iff T , u, v 6|=∼n α, that is, ∼n α works as a kind
of path expression negation over this restricted class of data trees. Notice that it is not
possible to negate path expressions without a restriction on the class of data trees.

Recall that for XPath=(↓)-path expressions α, β in simple normal form and of the same
length we have defined the intersection α∩β in Definition 47. We extend this definition of
intersection to path expressions in simple normal form, and of length at most n. Let α and
β be path expressions in simple normal form, with len(α) = i, len(β) = j. We define α∩n β
as ⊥ (we let ⊥ to be [〈ε 6= ε〉]) in case i 6= j and as in (17) of Definition 47 otherwise. It
is clear that for every forward n-two-pointed data tree T , u, v, we have T , u, v |= α ∩n β
iff T , u, v |= α and T , u, v |= β. These observations allow us to extend, over the class of
forward n-two-pointed data trees, the operations of complement and intersection to any
XPath=(↓)-path expression:

α ≡n ⊥ (α in simple normal form and len(α) > n)

90 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

∼n (α ∪ β) ≡n (∼n α) ∩n (∼n β) (α, β in simple normal form and len(α), len(β) ≤ n)

∼n (α ∩n β) ≡n (∼n α) ∪ (∼n β) (idem)

(α ∪ β) ∩n γ ≡n (α ∩n γ) ∪ (β ∩n γ) (idem)

α ∩n β ≡n β ∩n α (idem)

Therefore, when restricted to n-two pointed data trees, we can pretend to have comple-
mentation and intersection of path expressions with the standard meaning and within the
language. This allows us to prove the results of definability for path expressions by making
the adequate modifications to the proofs of Theorems 25 and 26. It is important to remark
that these results are true only when restricting the universe to forward n-two-pointed
data trees. In what follows, the universe of two-pointed data trees is restricted to those
which are forward and n-two-pointed (for fixed n). Therefore, the operations of closure
and complement must be taken with respect to this universe.

Theorem 80. Let K be a class of forward n-two-pointed data trees. Then K is definable
by a set of XPath=(↓)-path expressions iff K is closed under XPath=(↓)-bisimulations and
↓-quasi ultraproducts, and K is closed under ↓-quasi ultrapowers.

Theorem 81. Let K be a class of forward n-two-pointed data trees. Then K is definable by
an XPath=(↓)-path expression iff both K and K are closed under XPath=(↓)-bisimulations
and ↓-quasi ultraproducts.

Like Theorem 80, the following result characterizes when a class of two-pointed data
trees is definable by a single XPath=(↓)-path expression. However, instead of using the
rather abstract notion of ↓-quasi ultraproducts, it uses the perhaps more natural notion of
`-bisimulation. It is analogous to Theorem 27 in the context of binary bisimulations.

Theorem 82. Let K be a class of forward n-two-pointed data trees. Then K is definable
by a path expression of XPath=(↓) iff K is closed by `-bisimulations for some `.

Theorems 37 and 38 can also be straightforwardly adapted:

Theorem 83. Over forward n-two-pointed data trees: Let K1 and K2 be two disjoint
classes such that K1 is closed under XPath=(↓)-bisimulations and ↓-quasi ultraproducts and
K2 is closed under XPath=(↓)-bisimulations and ↓-quasi ultrapowers. Then there exists a
third class K which is definable by a set of XPath=(↓)-path expressions, contains K1, and
is disjoint from K2.

Theorem 84. Over forward n-two-pointed data trees: Let K1 and K2 be two disjoint
classes closed under XPath=(↓)-bisimulations and ↓-quasi ultraproducts. Then there exists
a third class K which is definable by an XPath=(↓)-path expression, contains K1, and is
disjoint from K2.

An example of use of these theorems is the following:

1.5. DEFINABILITY VIA PATH EXPRESSIONS 91

Example 85. A class of two-pointed data trees definable by a single XPath=(↑↓)-
path expression but not definable by set of XPath=(↓)-path expressions. Let K
be the class of forward 1-two-pointed data trees T , u, v such that v is a child of u and they
have the same data value. On the one hand, this class is definable by the path expression
α = ↓[〈ε = ↑〉]. On the other hand, the autobisimulation on T shown in Figure 20 shows
that K is not closed under binary bisimulations for XPath=(↓), since T , u, w is bisimilar
to T , u, v but data(u) 6= data(v). Thus, by Theorem 81, K is not definable by a set of
XPath=(↓)-path expressions.

Let us now move to the vertical fragment:

Definability and separation via path expressions of XPath=(↑↓)
Not having complementation or intersection is more cumbersome in this case. We will state
definability theorems restricted to classes of special two-pointed data trees which we denote
n,m, k-two-pointed data trees. These are two-pointed data trees T , u, v such that if w
is the first common ancestor of u and v (i.e. the closest common ancestor) then w

n→u,
w
m→v, and w is at distance k from the root of T . Observe that any n,m, k-two-pointed

data tree is k + max{n,m}-bounded.
If α, β are XPath=(↑↓)-path expressions, we say that α ≡n,m,k β if for every n,m, k-two-

pointed data tree T , u, v we have T , u, v |= α iff T , u, v |= β. The following equivalences,
which are straightforward to verify, allows us to express in XPath=(↑↓) the complementa-
tion ∼n,m,k and intersection ∩n,m,k over the class of n,m, k-two-pointed data trees. Here
we use ⊥ to represent the path expression [〈ε 6= ε〉] ↑n↓m.

[ϕ]↑n′↓m′ [ψ] ≡n,m,k




[ϕ]↑n↓m[ψ]
if n− n′ = m−m′ and

n ≤ n′ ≤ n+ k

⊥ otherwise

∼n,m,k ([ϕ]↑n↓m[ψ]) ≡n,m,k ([¬ϕ]↑n↓m) ∪ (↑n↓m[¬ψ])

([ϕ]↑n↓m[ψ]) ∩n,m,k ([ϕ′]↑n↓m[ψ′]) ≡n,m,k [ϕ ∧ ϕ′]↑n↓m[ψ ∧ ψ′]
∼n,m,k (α ∩n,m,k β) ≡n,m,k (∼n,m,k α) ∪ (∼n,m,k β)

(α ∪ β) ∩n,m,k γ ≡n,m,k (α ∩n,m,k γ) ∪ (β ∩n,m,k γ)

α ∩n,m,k β ≡n,m,k β ∩n,m,k α

In the last three equivalencies, α is of the form [ϕ]↑n↓m[ψ] for some ϕ and ψ, and β is of
the form [ϕ′]↑n↓m[ψ′] for some ϕ′ and ψ′.

In the first equivalence, the condition n− n′ = m−m′ means that the navigation via
↑n′↓m′ could actually connect the same nodes as ↑n↓m, assuming the tree extends sufficiently
upwards and a common ancestor is reached. The condition n ≤ n′ assures that the upward
portion of the navigation reaches at least the first common ancestor of the nodes, and the
condition n′ ≤ n + k means that ↑n′ reaches at most up to the root of the tree, and not
higher. Notice that if any of these conditions do not hold, the path expression ↑n′↓m′ is

92 CHAPTER 1. DEFINABILITY AND BINARY BISIMULATION

always false in the context of n,m, k-two-pointed data trees. If the three conditions hold
simultaneously, then T , u, v |= ↑n′↓m′ for any n,m, k-two-pointed data tree T , u, v.

It can be seen that, as expected, we arrive to results of definability and separation
for XPath=(↑↓)-path expressions, as in Theorems 80, 81, 83, and 84, but over the class
of n,m, k-two-pointed data trees and using the notions of XPath=(↑↓)-bisimulation and
↑↓-quasi ultraproducts.

An example of use of these theorems is the following:

Example 86. A class of two-pointed data trees definable in first-order (over data
trees) but not definable by a set of XPath=(↑↓)-path expressions. Let K be the
class of 1, 1, 0-two-pointed data trees T , u, v such that u and v are both children of the root
of T , and they have the same data value. It is straightforward that this property is definable
by a σ-first-order formula over the class of data trees. However, the autobisimulation
between T and T ′ given in Figure 21 shows that K is not closed under binary bisimulations
for XPath=(↑↓), as T , v, w is bisimilar to T ′, v′, w′ but data(v′) 6= data(w′). Thus, by the
corresponding theorem of definability, K is not definable by a set of XPath=(↑↓)-path
expressions.

Chapter 2

Axiomatizations

En aquel Imperio, el Arte de la
Cartograf́ıa logró tal Perfección que
el Mapa de una sola Provincia
ocupaba toda una Ciudad, y el
mapa del Imperio, toda una
Provincia. Con el tiempo, estos
Mapas Desmesurados no
satisficieron y los Colegios de
Cartógrafos levantaron un Mapa
del Imperio, que teńıa el tamaño
del Imperio y coincid́ıa
puntualmente con él.

Del rigor en la ciencia
Jorge Luis Borges

2.1 Introduction

In this chapter we develop the proof theory of XPath=(↓), designing an equational ax-
iomatic system that only proves semantic truths of XPath=(↓), and such that all semantic
truths of XPath=(↓) can be proved in this system. That is, we obtain a sound and com-
plete axiomatization of XPath=(↓). Studying complete axiomatizations can give us an
alternative method for solving the validity problem, which is undecidable for the full logic
Core-Data-XPath [54], but it is decidable when the only axis present in the language is
‘child’, and in fact, also when adding ‘descendant’ [42] (and also for other fragments). Ad-
ditionally, obtaining a complete axiomatization has applications in querying optimization
through query rewriting. The idea here is to see equivalence axioms, which are of the
form ϕ ≡ ψ, as (undirected) rules for the rewriting of queries; in this context, the com-
pleteness of the axiomatic system means that a semantic equivalence between two node
or path expressions must have a corresponding chain of rewriting rules that transform the

93

94 CHAPTER 2. AXIOMATIZATIONS

first expression into the second one. Therefore, obtaining an axiomatization of XPath=(↓),
along with all the proofs of the theorems involved in the demonstration of its complete-
ness, has the potential to be used as a first step in finding effective strategies for rewriting
XPath-queries into equivalent but less complex forms.

To demonstrate soundness and completeness for Hilbert-style axiomatizations, one
wants to see that a formula can be proved in the axiomatic system if and only it is valid
(that is, it is satisfied in every possible model). More relevant to the framework we choose
for this chapter, when using the rules of inference of equational logic one wants to see that
an equivalence between two formulas can be proved (notated ` ϕ ≡ ψ) if and only if the
truth value of both formulas coincides on all models (notated |= ϕ ≡ ψ). By the (finite)
tree model property of BML, the validity of a formula with respect to the class of all Kripke
models is equivalent to the validity in the class of (finite) tree-shaped Kripke models. Since
there are truth-preserving translations to and from the data-oblivious Core-XPath, it is not
surprising that there exist axiomatizations of the node expressions fragment of Core-XPath
with ‘child’ as the only accessibility operator. Even more, there are also (equational) ax-
iomatizations of all single axis fragments of Core-XPath (those where the only accessibility
relation is the one of ‘child’, ‘descendant’, ‘sibling’, etc.), and also for the full Core-XPath
language [102].

For the case of data-aware XPath=, the resemblance with modal languages is now more
distant, since, as we briefly indicated in §I.1.2, the models of XPath= cannot be represented
by Kripke models. Indeed, finding an axiomatization in this case becomes more complex
than for the navigational case. Our procedure involves devising a normal form theorem that
shows that in our equational axiomatic system all consistent node expressions (resp. path
expressions) can be proved equivalent to the disjunction (resp. union) of node (resp. path)
expressions in normal form. Then we give a method for constructing, for every consistent
node expression, a finite data tree where it is satisfied at the root. The construction of
this tree is quite intricate, so we begin by giving an axiomatization for a simpler case, that
of the syntactic fragment of XPath=(↓) which we call XPath=(↓)−, and is of independent
interest.

2.1.1 Related work

As we mentioned before, there exist axiomatizations for navigational fragments of XPath
with different axes [102]. Axiomatizations of other fragments of Core-XPath have been
investigated in [13], and extensions with XPath 2.0 features have been addressed in [103].
We found only a few attempts of axiomatizing modal logics with some notion of data value.

A logical framework to reason about data organization is investigated in [9]. They
introduce reference structures as the model to represent data storage, and a propositional
labeled modal language to talk about such structures. Both together model memory con-
figurations, i.e., they allow storing data files, and retrieving information about other cells’
content and location of files. A sentence JmKA is read as “memory cell m stores sentence
A”. Then, data is represented by mean of sentences: for instance, if data ci represents a

2.1. INTRODUCTION 95

number N , ci is the sentence “this is a number N” (same for other sorts of data). This
representation is quite different from our approach. Nevertheless, according to our knowl-
edge this is one of the first attempts on axiomatizing data-aware logics, by introducing a
Hilbert-style axiomatization.

Tree Query Language (TQL) is a formalism based on ambient logic designed as a query
language for semi-structured data. It allows checking schema properties, extracting tags
satisfying a property and also recursive queries. The TQL data model is information trees,
and the notation to talk about information trees is called info-terms. In [21] an axioma-
tization for info-terms is given in terms of a minimal congruence. This axiomatization is
sound and complete with respect to the information tree semantics. This is more related
with our approach in the sense that we consider data values as an equivalence relation.

The work most closely related to ours is [10], where an axiomatization was given for a
very simple fragment of XPath=, named DataGL. DataGL allows for constructions of the
form 〈ε = ↓∗[ϕ]〉 and 〈ε 6= ↓∗[ϕ]〉, where ϕ is some node expression and ↓∗ denotes the
navigational axis ‘descendant’, whose semantics is that of the reflexive transitive closure
of the relation given by ↓. In particular, they introduce a sound and complete sequent
calculus for this logic and derive PSpace-completeness for the validity problem.

2.1.2 Contributions

We give sound and complete axiomatizations for XPath=(↓) and for the subfragment
XPath=(↓)−. We extend the axiomatization of Core-XPath given in [102] with the needed
axioms to obtain all validities of XPath=(↓). Our axiomatizations are equational: inference
rules will be the standard ones of equational logic, and all axioms are either of the form
ϕ ≡ ψ for node expressions ϕ and ψ or of the form α ≡ β for path expressions α and β.
We show that an equivalence ϕ ≡ ψ is derivable in the axiomatic system if and only if for
any data tree, and any node x in it, either ϕ and ψ are true at x or both are false at x.
We also present a similar result for path expressions: an equivalence α ≡ β is derivable if
and only if for any data tree, and any pair of nodes (x, y) in it, either α and β are true
at (x, y) or both are false at (x, y). Our completeness proof relies on a new normal form
theorem for expressions of XPath=(↓) (which, unlike those seen in Chapter 1, concerns ax-
iomatically derivable equivalences rather than semantic equivalences), and a construction
of a canonical model for any consistent formula in normal form.

We proceed gradually. To warm up, we first show an axiomatization for the fragment
XPath=(↓)− of XPath=(↓), which has all Boolean operators and data tests of the form
〈α = β〉, but keeps out those of the form 〈α 6= β〉. This fragment is still interesting since
it allows us to express the join query constructor. Then we give the axiomatization for
the full downward fragment XPath=(↓), whose proof is more involved but uses some ideas
from the simpler case.

96 CHAPTER 2. AXIOMATIZATIONS

2.1.3 Organization

In §2.2 we give the formal syntax and semantics of XPath= with ‘child’ axis, called
XPath=(↓). As we already mentioned, we also study a special syntactical fragment, called
XPath=(↓)−, whose data tests are all of the form 〈α = β〉, keeping out those of the form
〈α 6= β〉. In §2.3 we give a sound and complete axiomatic system for XPath=(↓)−: in §2.3.1
we state the needed axioms, an extension of those introduced in [102]; in §2.3.2 we define
the syntactic normal forms for XPath=(↓)− (these are not an extension of those defined in
[102]) and state the corresponding normal form theorem; in §2.3.3 we show the complete-
ness result, whose more complex part lies in proving that any node expression in normal
form is satisfiable in a canonical model. In §2.4 we extend the previous axioms to get a
sound and complete axiomatic system for XPath=(↓). We follow the same route as for
XPath=(↓)−: axioms (§2.4.1), normal form (§2.4.2) and canonical model (§2.4.3). In §2.5
we close with some observations and a corollary of our axiomatizations. Some technical
proofs were deferred to §2.6 to ease the readability of our main arguments.

2.2 Preliminaries

We define the node expressions true and false, and the path expression ⊥, as follows:

true
def
= 〈ε〉

false
def
= ¬true

⊥ def
= [¬〈ε〉]

As we remark later, these expressions behave as expected in the axiomatic systems we
design.

We notate XPath=(↓)− to the syntactic fragment which does not contain data tests
of the form 〈α 6= β〉. An XPath=(↓)−-formula is either a node expression or a path
expression of XPath=(↓)−.

We remark that in this chapter we use, from §1.2.2, the definition of the downward
depth of an XPath=(↓)-expression, notated dd.

Data trees. We will work with an abstraction of the usual definition of data tree: instead
of having data values in each node of the tree, we have an equivalence relation between
the nodes or, equivalently, a partition. We identify two nodes with the same data value as
being related by the equivalence relation, or belonging to the same equivalence class in the
partition. This is more convenient for our purposes, and, as already mentioned before, it is
equivalent to the data-domain formulation as far as the semantics of XPath= is concerned.
With this perspective, we have:

Definition 87. Given A a finite set of labels, a data tree T is a pair (T, π), where T is a
tree whose nodes are labeled with elements from A, and π is a partition over the nodes of
T . We denote with [x]π the class of x in the partition π.

2.2. PRELIMINARIES 97

Recall from §I.1.2 that we say that two node expressions ϕ, ψ of XPath=(↓) are equiv-
alent iff [[ϕ]]T = [[ψ]]T for all data trees T . In this chapter, we notate this as |= ϕ ≡ ψ
to emphasize the semantical nature of this equivalence and distinguish it from the purely
syntactical equivalences that we introduce later. That is, we have:

|= ϕ ≡ ψ
def⇔ [[ϕ]]T = [[ψ]]T for all data trees T .

Similarly, path expressions α, β of XPath=(↓) are equivalent (notated |= α ≡ β) iff for
all data trees T the semantics of α and β coincide:

|= α ≡ β
def⇔ [[α]]T = [[β]]T for all data trees T .

Let T , x, y and T ′, x′, y′ be two-pointed data trees, we say that T , x ≡↓− T ′, x′ iff
for all node expressions ϕ of XPath=(↓)− we have T , x |= ϕ iff T ′, x′ |= ϕ, and we say
that T , x, y ≡↓− T ′, x′, y′ iff for all path expressions α of XPath=(↓)− T , x, y |= α iff
T ′, x′, y′ |= α.

Let T = (T, π) be a data tree. When T ′ is a subset of T , we write π|T ′ to denote
the restriction of the partition π to T ′. Let x ∈ T , and let X be the set of x and all its

descendants in T , i.e. X = {x} ∪ {y ∈ T | (∃i ≥ 1) x
i→y}. In this context, T |x refers

to the data tree (T |X, π|X), that is, the data tree that consists of the subtree of T that is
hanging from x, maintaining the partition of that portion.

We make the following observation:

Remark 88. Let (T , π) be a data tree. Then:

• T , x ≡↓ T |x, x.

• If y, z are descendants of x in T , then T , y, z ≡↓ T |x, y, z.

Inference rules. An XPath=(↓)-node equivalence is an expression of the form ϕ ≡ ψ,
where ϕ, ψ are node expressions of XPath=(↓). An XPath=(↓)-path equivalence is an
expression of the form α ≡ β, where α, β are path expressions. An axiom is either a node
equivalence or a path equivalence.

For P,Q both path expressions or both node expressions, we say that P ≡ Q is derivable
(or also that P is provably equivalent to Q) from a given set of axioms Σ (notated
Σ ` P ≡ Q) if it can be obtained from them using the standard rules of equational logic:

1. P ≡ P .

2. If P ≡ Q, then Q ≡ P .

3. If P ≡ Q and Q ≡ R, then P ≡ R.

4. If P ≡ Q and R′ is obtained from R by replacing some occurrences of P by Q, then
R ≡ R′.

98 CHAPTER 2. AXIOMATIZATIONS

We utilize the following abbreviations:

ϕ ≤ ψ
def⇔ϕ ∨ ψ ≡ ψ

α ≤ β
def⇔α ∪ β ≡ β.

Definition 89 (Consistent Node and Path Expressions). Let Σ be a set of axioms. We
say that a node expression [resp. path expression] P of XPath=(↓) is Σ-consistent if
Σ 6` P ≡ false [resp. Σ 6` P ≡ ⊥]. We define ConΣ as the set of Σ-consistent node
expressions.

2.3 Axiomatic System for XPath=(↓)−

2.3.1 Axiomatization

The main theorems of this article are the ones about the completeness of the proposed
axiomatizations. These theorems have two main ingredients: one is a normal form theorem
that allows to rewrite any consistent node or path expression in terms of normal forms.
The other one is the construction of a canonical model for any consistent node expression
in normal form. As it is usually the case, at the same time, we give (through the set
of axioms) the definition of consistency. So, an axiom (or an axiom scheme) could have
been added either because it was needed to prove the normal form theorem or because it
was needed to guarantee that every unsatisfiable formula is inconsistent —the key fact is
that we have a much better intuition of what should be satisfiable than of what should be
consistent. Of course we should be careful that the added axioms are sound but that is
quite intuitive.

In Table 2.1 we list the axiom schemes for the fragment XPath=(↓)−. This list includes
all the axiom schemes from [102] for the logic Core-XPath with single axis ‘child’ (second,
third and fourth blocks) and adds the new axiom schemes for data tests of the form 〈α = β〉
(last block). Also, remember that in our data trees each node satisfies exactly one label.
We add two axiom schemes to handle this issue (first block). This is unessential for our
development, and could be dropped to axiomatize XPath=(↓) over data trees whose every
node is tagged with multiple labels, with minor changes to the definitions of normal forms.

Let XP− be the set of all instantiations of the axiom schemes of Table 2.1 for a fixed
alphabet A. In the scope of this section we will often say that a node expression is consistent
meaning that it is XP−-consistent (as in Definition 89).

Observe that PrAx4 from [102, Table 3], defined by

PrAx4 (αβ)[ϕ] ≡ α(β[ϕ])

is not present in our axiomatization because, due to our language design, it is a particular
case of IsAx4.

The syntactic equivalences of Fact 90 will be useful for the next sections:

2.3. AXIOMATIC SYSTEM FOR XPATH=(↓)− 99

Axioms for labels

LbAx1 true ≡ ∨
a∈A a

LbAx2 false ≡ a ∧ b (where a 6= b)

Path axiom schemes for predicates

PrAx1 (α[¬〈β〉])β ≡ ⊥
PrAx2 [true] ≡ ε
PrAx3 [ϕ ∨ ψ] ≡ [ϕ] ∪ [ψ]

Path axiom schemes for idempotent semirings

IsAx1 (α ∪ β) ∪ γ ≡ α ∪ (β ∪ γ)
IsAx2 α ∪ β ≡ β ∪ α
IsAx3 α ∪ α ≡ α
IsAx4 α(βγ) ≡ (αβ)γ

IsAx5

{
εα ≡ α
αε ≡ α

IsAx6

{
α(β ∪ γ) ≡ (αβ) ∪ (αγ)
(α ∪ β)γ ≡ (αγ) ∪ (βγ)

IsAx7 ⊥ ∪ α ≡ α

Node axiom schemes

NdAx1 ϕ ≡ ¬(¬ϕ ∨ ψ) ∨ ¬(¬ϕ ∨ ¬ψ)
NdAx2 〈[ϕ]〉 ≡ ϕ
NdAx3 〈α ∪ β〉 ≡ 〈α〉 ∨ 〈β〉
NdAx4 〈αβ〉 ≡ 〈α[〈β〉]〉
Node axiom schemes for equality

EqAx1 〈α = β〉 ≡ 〈β = α〉
EqAx2 〈α ∪ β = γ〉 ≡ 〈α = γ〉 ∨ 〈β = γ〉
EqAx3 ϕ ∧ 〈α = β〉 ≡ 〈[ϕ]α = β〉
EqAx4 〈α = β〉 ≤ 〈α〉
EqAx5 〈γ[〈α = β〉]〉 ≤ 〈γα = γβ〉
EqAx6 〈α = α〉 ≡ 〈α〉
EqAx7 〈α = ε〉 ∧ 〈β = ε〉 ≤ 〈α = β〉
EqAx8 〈α = β[〈ε = γ〉]〉 ≤ 〈α = βγ〉

Table 2.1: Axiomatic system XP− for XPath=(↓)−

Fact 90. As seen in [102], true, false, and ⊥ behave as expected: XP− ` ϕ ∨ true ≡
true, XP− ` α[false] ≡ ⊥, et cetera. Furthermore, we have the following from [102,
Table 6]:

100 CHAPTER 2. AXIOMATIZATIONS

Der1 XP− ` ϕ ∨ ψ ≡ ψ ∨ ϕ
Der2 XP− ` ϕ ∨ (ψ ∨ ρ) ≡ (ϕ ∨ ψ) ∨ ρ
Der12 XP− ` 〈αβ〉 ≤ 〈α〉
Der13 XP− ` 〈α[false]〉 ≡ false
Der21 XP− ` α[ϕ][ψ] ≡ α[ϕ ∧ ψ]

We note that in order to prove the previous derivations one needs to use PrAx1, PrAx2,
PrAx3, IsAx1, IsAx2, IsAx4, IsAx5, IsAx6, IsAx7, NdAx1, NdAx2, NdAx3 and NdAx4.14

As a consequence of Der1, Der2 and Huntington’s equation NdAx1, we can derive all
the axioms of Boolean algebras from the axioms in XP− [64, 63]. In what follows, we will
often use the Boolean properties without explicitly referencing them. In particular, we use
the fact that XP− ` ψ ≤ false implies that ψ is an inconsistent node expression, and that
XP− ` ϕ ≤ ψ implies that ϕ ∧ ¬ψ is inconsistent.

Sometimes we use IsAx1, IsAx4, EqAx1, EqAx4, and EqAx6 without explicitly mentioning
them. We omit such steps in order to make the proofs more readable.

It is not difficult to see that the axioms XP− are sound for XPath=(↓)−:

Proposition 91 (Soundness of XPath=(↓)−).

1. Let ϕ and ψ be node expressions of XPath=(↓)−. Then XP− ` ϕ ≡ ψ implies
|= ϕ ≡ ψ.

2. Let α and β be path expressions of XPath=(↓)−. Then XP− ` α ≡ β implies |= α ≡ β.

Proof. Equational rules are valid because we have compositional semantics, and the proof
that all the axioms schemes from Table 2.1 are sound is straightforward.

2.3.2 Normal forms

When working in Core-XPath, the only expressions of the form 〈·〉 (which we call ‘dia-
monds’) in the language are those of the type 〈α〉. In the absence of data tests, any node
expression 〈[ϕ]↓β〉 is equivalent to ϕ ∧ 〈↓[〈β〉]〉. Hence, when the only axis is ‘child’, the
only path expressions that are needed to write node expressions are those of the form ↓[〈·〉],
of length 1, and therefore the only ‘diamonds’ that we need are of the form 〈↓[ψ]〉, which in
the basic modal logic would be written simply as 3ψ. This rewriting of path expressions is
carried out in [102], and so normal forms have somewhat the same flavour as in the basic
modal logic.

When data shows up, this rewriting is no longer possible: the node expression 〈α = β〉
checks if there are nodes with equal data value at the end of paths α and β. So these

14 Der1 uses IsAx2, NdAx2, and NdAx3. Der2 uses IsAx1 (and NdAx2 and NdAx3 again). We can now
derive all the axioms of Boolean algebras by also using NdAx1. Der12 also uses PrAx2, PrAx3, IsAx4,
IsAx5, IsAx6, and NdAx4. Der13 does not need further axioms. Der21 also uses PrAx1 and IsAx7.

2.3. AXIOMATIC SYSTEM FOR XPATH=(↓)− 101

paths cannot be compressed as before. For an easy example, observe that the data-aware
‘diamond’ 〈↓[a]↓[b] = ε〉 is not equivalent to 〈↓[a ∧ 〈↓[b]〉] = ε〉.

The normal forms that we introduce are inspired by the classic Disjunctive Normal
Form (DNF) for propositional logic, in which literals are formulas of smaller depth. Our
normal forms take into account path expressions of arbitrary length, and this makes our
definition more involved than the one in [102]. We introduce them in this subsection for
the language XPath=(↓)−. This definition is extended to the general logic XPath=(↓) in
§2.4.2.

We define the sets P−n and N−n , which contain the path and node expressions of
XPath=(↓)−, respectively, in normal form at level n:

Definition 92 (Normal form for XPath=(↓)−).

P−0 = {ε}
N−0 = {a ∧ 〈ε = ε〉 | a ∈ A}
P−n+1 = {ε} ∪

{
↓[ψ]β | ψ ∈ N−n , β ∈ P−n

}

D−n+1 =
{
〈α = β〉 | α, β ∈ P−n+1

}

N−n+1 =



a ∧

∧

ϕ∈C

ϕ ∧
∧

ϕ∈D−n+1\C

¬ϕ | C ⊆ D−n+1, a ∈ A



 ∩ConXP− .

Observe that we define normal forms by mutual recursion among three kinds of sets:
P−n , D−n and N−n (for some n), which are sets of path expressions, data-aware diamonds,
and node expressions, respectively. They consist of expressions that can look forward up
to a certain downward depth. The index n indicates which maximum downward depth we
are exploring, both in path and node expressions. Base cases are the simplest expressions
of each kind (depth 0). New path expressions are constructed by using node and path
expressions ψ and β from a previous level of their respective type, and exploring one
more step using ↓. Data-aware diamond expressions are auxiliary expressions consisting
of equalities between two path expressions of the same level. Finally, node expressions in
normal form at some level n are formed of consistent conjunctions of positive and negative
data-aware diamond expressions of level n. Notice that at each level i, each conjunction
in N−i has one conjunct of the form a with a ∈ A which provides a label for the current
node. Finally, let us remark that it would suffice that N−0 contains formulas of the form
a, for a ∈ A. However, we include instead formulas of the form a∧ 〈ε = ε〉 (containing the
tautology 〈ε = ε〉) only for technical reasons.

Example 93. Let us see some examples of expressions in normal form. We consider only
two labels a and b, and ignore redundancies (if we write 〈α = β〉, we do not write 〈β = α〉).
The sets P−1 and D−1 are as follows:

P−1 = {↓[a ∧ 〈ε = ε〉]ε, ↓[b ∧ 〈ε = ε〉]ε, ε}
D−1 = {〈↓[a ∧ 〈ε = ε〉]ε = ↓[b ∧ 〈ε = ε〉]ε〉, 〈ε = ↓[a ∧ 〈ε = ε〉]ε〉, 〈ε = ↓[b ∧ 〈ε = ε〉]ε〉,

102 CHAPTER 2. AXIOMATIZATIONS

〈↓[a ∧ 〈ε = ε〉]ε = ↓[a ∧ 〈ε = ε〉]ε〉, 〈↓[b ∧ 〈ε = ε〉]ε = ↓[b ∧ 〈ε = ε〉]ε〉, 〈ε = ε〉}

An example of a node expression in normal form at level 1, i.e. a node expression in N−1 ,
is

ϕ = a ∧ 〈ε = ε〉 ∧ 〈↓[a ∧ 〈ε = ε〉]ε = ↓[b ∧ 〈ε = ε〉]ε〉 ∧ 〈↓[a ∧ 〈ε = ε〉]ε = ↓[a ∧ 〈ε = ε〉]ε〉
∧〈↓[b ∧ 〈ε = ε〉]ε = ↓[b ∧ 〈ε = ε〉]ε〉 ∧ ¬〈ε = ↓[a ∧ 〈ε = ε〉]ε〉 ∧ ¬〈ε = ↓[b ∧ 〈ε = ε〉]ε〉.

The following lemmas (94, 95 and 96) are very intuitive and their proofs are straight-
forward.

Lemma 94. Let ψ ∈ N−n and α, β ∈ P−n . Let T , x be a pointed data tree, such that
T , x |= ψ and T , x |= 〈α = β〉. Then 〈α = β〉 is a conjunct of ψ.

Proof. The case when n = 0 follows from the definitions of P−0 and N−0 . If n > 0, since
α, β ∈ P−n , by definition of D−n , we have 〈α = β〉 ∈ D−n . Because ψ ∈ N−n , either 〈α = β〉
or its negation is a conjunct of ψ. Suppose that the latter occurs, then T , x |= ¬〈α = β〉,
and, by hypothesis, T , x |= 〈α = β〉, which is a contradiction.

Lemma 95. Let ψ ∈ N−n and α ∈ P−n . If [ψ]α is consistent then 〈α = α〉 is a conjunct
of ψ. As an immediate consequence, if 〈↓[ψ]α〉 is consistent then 〈α = α〉 is a conjunct
of ψ.

Proof. Since α ∈ P−n , then either α = ε or α is of the form ↓[ψ1] . . . ↓[ψk]ε for some
1 ≤ k ≤ n, and ψi ∈ N−n−i. If α = ε, we are done, as 〈ε = ε〉 is always a conjunct of ψ
by consistency. Else, since 〈α = α〉 ∈ D−n , 〈α = α〉 or its negation is a conjunct of ψ. By
using Der 21 from Fact 90, EqAx6 and PrAx1 consecutively, one can see that the latter
case is not possible, because [ψ]α is consistent. Then 〈α = α〉 is a conjunct of ψ.

Lemma 96. For every pair of distinct elements ϕ, ψ ∈ N−n , ϕ ∧ ψ is inconsistent.

Proof. If n = 0, then ϕ = a ∧ 〈ε = ε〉 and ψ = b ∧ 〈ε = ε〉, with a, b ∈ A and a 6= b. Then
by LbAx2, we have XP− ` ϕ ∧ ψ ≡ false, i.e., ϕ ∧ ψ is inconsistent.

Let ϕ and ψ be distinct normal forms of degree n > 0, then we have two possibilities:

• If ϕ and ψ differ in the conjunct of the form a with a ∈ A, then we use an argument
similar to the one used for the base case.

• If not, then there is σ ∈ D−n such that, without loss of generality, σ is a conjunct
of ϕ and ¬σ is a conjunct of ψ. Therefore, because ϕ ∧ ψ contains σ ∧ ¬σ as a
sub-expression, we have XP− ` ϕ ∧ ψ ≡ false, i.e., it is inconsistent.

This concludes the proof.

Lemma 97. Let α, β ∈ P−n . If there is a data tree T and nodes x, y ∈ T such that
T , x, y |= α and T , x, y |= β, then α = β.

2.3. AXIOMATIC SYSTEM FOR XPATH=(↓)− 103

Proof. Let α = ↓[ψ1]...↓[ψi]ε and β = ↓[ρ1]...↓[ρj]ε. By definition of the semantics of
XPath=(↓)−, i = j since T , x, y |= α and T , x, y |= β. In particular, there are nodes
zi ∈ T , 1 ≤ k ≤ i, such that T , zi |= ψk, T , zi |= ρk for all 1 ≤ k ≤ i. Using Proposition 91,
we obtain that ψk ∧ ρk is consistent for all k = 1, . . . , i , and thus by Lemma 96 we have
that ψk = ρk for all k = 1, . . . , i. Then we conclude that α = β.

The following lemma is a normal form result for the special case of data-aware ‘diamond’
node expressions in D−n :

Lemma 98. Let n > 0 and a ∈ A. If ϕ ∈ D−n is consistent then there are ψ1, . . . , ψk ∈ N−n
such that XP− ` a ∧ ϕ ≡ ∨i ψi

Proof. Take

ψ =
∨




a ∧

∧

ψ∈C

ψ ∧
∧

ψ∈D−n \C

¬ψ | C ⊆ D−n , ϕ ∈ C



 ∩ConXP−


 .

It can be seen that XP− ` a ∧ ϕ ≡ ψ. Notice that the above disjunction is not empty.
Indeed, let D−n \{ϕ} = {ψ1, . . . , ψk}, and define ϕ0 = a∧ϕ and ϕi+1 = ϕi∧ψi+1 if ϕi∧ψi+1

is consistent and ϕi+1 = ϕi ∧ ¬ψi+1 otherwise. By NdAx1 either ϕi ∧ ψi+1 or ϕi ∧ ¬ψi+1 is
consistent, and hence ϕi is consistent for all i. This means that ϕk is consistent and hence
it is one of the disjuncts of the above formula.

The next lemma states that expressions in any P−n or N−n are provably equivalent to
the union or disjunction, respectively, of expressions in higher levels of P−n or N−n .

Lemma 99. Let m > n. If ϕ ∈ N−n then there are ϕ1 . . . ϕk ∈ N−m such that XP− ` ϕ ≡∨
i ϕi. If α ∈ P−n then there are α1 . . . αk ∈ P−m such that XP− ` α ≡ ⋃i αi.

Proof. Observe that it suffices to show this result for m = n+ 1.
The basic idea is to proceed by induction over n, first proving the result for P−n and

then using that for the case of N−n .
The base case for P−0 is trivial, while the case for ϕ ∈ N−0 is easy by taking the

disjunction of all node expressions in N−1 which contain the same label as ϕ as a conjunct.
Now for the inductive case α = P−n+1, if α = ε then the result is trivial, and otherwise

α = ↓[ψ]β with ψ ∈ N−n and β ∈ P−n . We now use the inductive hypothesis on ψ and β and
distribute into a union in P−n+2 using PrAx3 and the path axiom schemes for idempotent
semirings. The case ϕ ∈ N−n+1 is solved similarly, using that we know the result holds for
path expressions in P−n+1.

It is easier to prove that every consistent formula is satisfiable over expressions in
normal form than over the general case, as we can rely on the particular structure of those
expressions. However, these proofs would be of little use if expressions in normal form only
represented a small subset of all possible expressions. That is not really the case: Theorem
101 below will show that all node expressions (and also all path expressions) are provably
equivalent to a disjunction of expressions in normal form.

104 CHAPTER 2. AXIOMATIZATIONS

Example 100. As a simple example of these equivalences, take the language with only three
labels a, b, and c, and consider the node expression ϕ = ¬a. Then XP− ` ϕ ≡ (b ∧ 〈ε =
ε〉) ∨ (c ∧ 〈ε = ε〉), where b ∧ 〈ε = ε〉 and c ∧ 〈ε = ε〉 are node expressions in N−0 .

For a slightly more complex example, related with Example 93, take the language with
only the labels a and b, and consider the node expression

ϕ = 〈[a]↓[a] = ↓[b]〉 ∧ ¬〈ε = ↓[a]〉.

Then XP− ` ϕ ≡ ψ1 ∨ ψ2, where

ψ1 = ψ ∧ ¬〈ε = ↓[b ∧ 〈ε = ε〉]ε〉
ψ2 = ψ ∧ 〈ε = ↓[b ∧ 〈ε = ε〉]ε〉
ψ = a ∧ 〈ε = ε〉 ∧ 〈↓[a ∧ 〈ε = ε〉]ε = ↓[b ∧ 〈ε = ε〉]ε〉 ∧ 〈↓[a ∧ 〈ε = ε〉]ε = ↓[a ∧ 〈ε = ε〉]ε〉∧
∧ 〈↓[b ∧ 〈ε = ε〉]ε = ↓[b ∧ 〈ε = ε〉]ε〉 ∧ ¬〈ε = ↓[a ∧ 〈ε = ε〉]ε〉

Theorem 101 (Normal form for XPath=(↓)−). Let ϕ be a consistent node expression of
XPath=(↓)− such that dd(ϕ) = n. Then XP− ` ϕ ≡ ∨i ϕi for some (ϕi)1≤i≤k ∈ N−n . Let
α be a consistent path expression of XPath=(↓)− such that dd(α) = n. Then XP− ` α ≡⋃
i[ϕi]αi for some (αi)1≤i≤k ∈ P−n and (ϕi)1≤i≤k ∈ N−n . Furthermore, if α is ε or starting

with ↓ then XP− ` α ≡ ⋃i αi for some (αi)1≤i≤k ∈ P−n .

Proof. We show that if F is a consistent formula of XPath=(↓)− such that dd(F) = n, then

a) if F is a node expression then XP− ` F ≡ ∨i ψi for some (ψi)1≤i≤k ∈ N−n ;

b) if F is a path expression then XP− ` F ≡ ⋃i[ϕi]αi for some (αi)1≤i≤k ∈ P−n and
(ϕi)1≤i≤k ∈ N−n ; furthermore, if F is ε or starts with ↓, then XP− ` F ≡ ⋃i αi for
some (αi)1≤i≤k ∈ P−n .

Because of EqAx6, it is enough to prove the lemma for the fragment of XPath=(↓)− without
diamonds of the form 〈α〉. We proceed by induction on the complexity of F , denoted by
c, and defined for the specific purpose of this proof as follows:

c(a) = 1 c(ε) = 0
c(¬ϕ) = 1 + c(ϕ) c(↓) = 1

c(ϕ ∧ ψ) = 1 + c(ϕ) + c(ψ) c(αβ) = c(α) + c(β)
c(〈α = β〉) = 1 + c(α) + c(β) c(α ∪ β) = 1 + c(α) + c(β)

c([ϕ]) = 2 + c(ϕ)

Observe that the only node expressions of least complexity (namely, 1) are the labels a or
〈ε = ε〉, that the only path expressions of least complexity (namely, 0) are those of the
form ε . . . ε, and that the only path expressions of complexity 1 consist of one ↓ symbol
concatenated with any number of ε symbols at both sides (that number might be 0, leaving
the path expression ↓). Observe also that c(ϕ ∧ 〈α = β〉) < c(〈[ϕ]α = β〉).

2.3. AXIOMATIC SYSTEM FOR XPATH=(↓)− 105

Base case. If the complexity of F is 0 then it is the path expression ε . . . ε, which is
provably equivalent to ε by IsAx5. Since ε ∈ P−0 , b) is immediate. If the complexity of F
is 1 then F is either a node expression which consists of a single label or 〈ε = ε〉, or F is
the path expression ↓ (eventually concatenated with ε but those path expressions are all
provably equivalent to ↓ by EqAx6). If F = a (a ∈ A), then a) is immediate, since using
EqAx6 and Boolean reasoning we have XP− ` F ≡ a ∧ 〈ε = ε〉, so a ∧ 〈ε = ε〉 ∈ N−0 ,
and we finish by applying Lemma 99. If F = 〈ε = ε〉, then a) follows from EqAx6,
LbAx1, Boolean reasoning and Lemma 99. If F = ↓, by IsAx5, LbAx1 and PrAx2 we have
XP− ` F ≡ ↓[∨a∈A a]ε, and by PrAx3 and IsAx6, we conclude XP− ` F ≡ ⋃

a∈A ↓[a]ε
(observe that ↓[a]ε ≡ ↓[a ∧ 〈ε = ε〉]ε ∈ P−1).

Induction. If the complexity of F is greater than 1, then F involves some of the operators
¬,∧, 〈 〉,∪, [] or a concatenation different from the ones of complexity 1 mentioned above.
We will perform the inductive step for each of these operators.

If F = ϕ ∧ ψ or ¬ϕ, we reason as in the propositional case. If F = ϕ ∧ ψ, we use
the inductive hypothesis on ϕ and ψ to obtain that XP− ` F ≡ ∨

i ϕi ∧
∨
j ψj, where

ϕi ∈ N−dd(ϕ) for all i and ψj ∈ N−dd(ψ) for all j. Actually, we can assume that ϕi, ψj ∈ N−n for
all i, j by Lemma 99. We now use Boolean distributive laws to prove that F is equivalent
to
∨
i,j(ϕi ∧ ψj). We then use Lemma 96 plus the consistency of F to remove from that

expression redundant conjunctions (if ϕi = ψj, from ϕi∧ψj we just keep ϕi) and inconsistent
conjunctions (cases where ϕi 6= ψj).

If F = ¬ϕ, we have by inductive hypothesis that XP− ` ¬ϕ ≡ ¬∨1≤i≤m ϕi, and
we can again assume by Lemma 99 that ϕi ∈ N−n for all i. Expanding each ϕi into
ai ∧

∧
ρ∈Ci ρ ∧

∧
ρ∈D−n \Ci ¬ρ (where Ci ⊆ D−n) and then using Boolean algebra, we have

XP− ` ¬ϕ ≡ ∧1≤i≤m(¬ai ∨
∨
ρ∈Ci ¬ρ∨

∨
ρ∈D−n \Ci ρ). We now use Boolean distributive laws

to get XP− ` ¬ϕ ≡ ∨ω∈Ω

∧
1≤i≤m ω(i), where each ω(i) is either ¬ai, some ¬ρ for ρ ∈ Ci,

or some ρ ∈ D−n \ Ci, and where Ω contains all possible strings ω of length m formed in
that way. We now use LbAx1 to get XP− ` ¬ϕ ≡ ∨ω∈Ω

∨
a∈A a ∧

∧
1≤i≤m ω(i). Then, we

eliminate repetitions in conjunctions of node expressions, and use properties of Boolean
algebra to eliminate inconsistencies; also, as each disjunct has some positive occurrences
of some a ∈ A, we can use LbAx2 and eliminate the (redundant) occurrences of negation of
labels. So now we have that XP− ` ¬ϕ ≡ ∨ω∈Ω

∨
a∈A ψω,a, where each ψω,a is of the form

a∧∧ρ∈C ρ∧
∧
ρ∈D ¬ρ, with C,D ⊆ D−n and C∩D = ∅. However we do not necessarily have

D = D−n \C, so these conjunctions may not add up to be of the form of a node expression
in N−n : to add the conjunctions needed in order to get normal forms, we proceed as in the
proof of Lemma 98 to complete each a∧∧ρ∈C ρ∧

∧
ρ∈D ¬ρ into

∨
j(a∧

∧
ρ∈Cj ∧

∧
ρ∈D−n \Cj ¬ρ),

where C ⊆ Cj for all j. Finally, we have obtained a set (Ck)k∈K of subsets of D−n such that
XP− ` ¬ϕ ≡ ∨k∈K(ak ∧

∧
ρ∈Ck ρ ∧

∧
ρ∈D−n \Ck ¬ρ).

If F is of the form 〈α = β〉, we reason as follows. Since c(α) < c(〈α = β〉), by
inductive hypothesis, we have XP− ` α ≡ ⋃i[ϕi]αi for some αi ∈ P−n and ϕi ∈ N−n (We
may have to use also Lemma 99, PrAx3, IsAx6, and Der21 of Fact 90 if dd(α) < dd(〈α =
β〉)). Similarly, we can turn β into

⋃
j[ψj]βj. Using EqAx2, EqAx3, and EqAx1, we obtain

106 CHAPTER 2. AXIOMATIZATIONS

XP− ` F ≡ ∨i,j ϕi ∧ ψj ∧ 〈αi = βj〉. We then use LbAx1 and Boolean reasoning to get
XP− ` F ≡ ∨i,j ϕi ∧ ψj ∧ (

∨
a∈A a ∧ 〈αi = βj〉), and then distribute the ∧, use Lemma 98

over each a∧〈αi = βi〉, and eliminate inconsistencies using Lemma 96 to obtain our desired
result.

Suppose that F is a path expression. Without loss of generality, we can assume that
F 6= [ϕ] or F 6= α ∪ β because in those cases, there exist an equivalent expression of the
same complexity that is a concatenation ([ϕ]ε or (α∪β)ε respectively). Then we only need
to prove the result for the concatenation in order to conclude the proof. Also without loss
of generality we may assume that F does not start with ε, since in that case there exist
an equivalent expression of the same complexity that doesn’t start with ε. In case F is
a concatenation F = αβ that doesn’t start with ε, we split the proof in three different
cases according to the form of α (note that, by IsAx4, we can assume that α is not a
concatenation itself).

If F is of the form [ϕ]β then by IsAx5 we may suppose that β ends in ε and by Der21
of Fact 90 we may suppose that β is either ε or starts with ↓ (notice that ε does not count
in the complexity of a formula and that the expression in the left hand side of Der21
of Fact 90 has a complexity greater than the one in the right hand side). By inductive
hypothesis, ϕ is provably equivalent to

∨
i ϕi for some (ϕi)i ∈ N−n (We may have to use

Lemma 99 to increase the degree). Therefore, by PrAx3, [ϕ] is provably equivalent to⋃
i[ϕi]. By inductive hypothesis, β is provably equivalent to

⋃
j βj for some (βj)j ∈ P−n

(again, we may have to use Lemma 99). Hence F is provably equivalent to (
⋃
i[ϕi])(

⋃
j βj),

and by IsAx6 we conclude that F is provably equivalent to
⋃
i,j[ϕi]βj as we wanted to show.

If F is of the form ↓β, we use inductive hypothesis to show that β is provably equivalent
to
⋃
i[ϕi]βi for some (βi)i ∈ P−n−1 and (ϕi)i ∈ N−n−1. By IsAx6, we conclude that F is

provably equivalent to
⋃
i ↓[ϕi]βi, and ↓[ϕi]βi ∈ P−n as we wanted to show.

Finally, if F is of the form (γ∪ δ)β, then, by IsAx6, F ≡ (γβ)∪ (δβ). The result follows
from inductive hypothesis for γβ and δβ (as usual, we may have to use Lemma 99, PrAx3,
IsAx6, and Der21 of Fact 90 to increase the degree).

2.3.3 Completeness for node and path expressions

In this subsection we show that for node expressions ϕ and ψ of XPath=(↓)−, the equiv-
alence ϕ ≡ ψ is derivable from the axiom schemes of Table 2.1 if and only if ϕ is
XPath=(↓)−-semantically equivalent to ψ. We also show the same result for path ex-
pressions of XPath=(↓)−.

We first introduce the main lemma of this section, and then continue to its consequences;
as the proof of this lemma is very extensive, we postpone until we have proven Theorem 103.

Lemma 102. Any node expression ϕ ∈ N−n is satisfiable.

Based on the above lemma, we arrive to the next theorem, which is the main result of
this section:

Theorem 103 (Completeness of XPath=(↓)−).

2.3. AXIOMATIC SYSTEM FOR XPATH=(↓)− 107

1. Let ϕ and ψ be node expressions of XPath=(↓)−. Then XP− ` ϕ ≡ ψ iff |= ϕ ≡ ψ.

2. Let α and β be path expressions of XPath=(↓)−. Then XP− ` α ≡ β iff |= α ≡ β.

Proof. Let us show item 1. Soundness follows from Proposition 91.
For completeness, suppose |= ϕ ≡ ψ. Now assume that ϕ is consistent and ψ is not. On

the one hand, by Theorem 101, there is n such that ϕ is provably equivalent to
∨

1≤i≤k ϕi,
for ϕi ∈ N−n . By Lemma 102, to be proved next, we have that in particular ϕ1 (and hence ϕ)
is satisfiable. On the other hand, by Proposition 91, ψ is unsatisfiable, and this contradicts
the fact that |= ϕ ≡ ψ. This shows that if ϕ is consistent then so is ψ. Symmetrically, one
can show that if ψ is consistent, then so is ϕ. Therefore, either ϕ and ψ are consistent or
ϕ and ψ are inconsistent. In the latter case, we trivially have XP− ` ϕ ≡ ψ.

In case ϕ and ψ are consistent, by Theorem 101 and Lemma 99, there is n and node
expressions ϕ′ and ψ′ which are disjunctions of node expressions in N−n such that XP− `
ϕ ≡ ϕ′ and XP− ` ψ ≡ ψ′.

Suppose that ϕ′ contains a disjunct ϕ′′ which is not a disjunct of ψ′. By Lemma 102,
ϕ′′ is satisfiable in some data tree T . By Lemma 96, for any disjunct ψ′′ of ψ′ we have that
ϕ′′ ∧ ψ′′ is inconsistent, and by Proposition 91, unsatisfiable. Hence ψ′ is not satisfiable in
T , and so 6|= ϕ ≡ ψ, a contradiction. The case when ψ′ contains a disjunct which is not a
disjunct of ϕ′ is analogous.

Then ϕ′ and ψ′ are identical, modulo reordering of disjunctions, and so XP− ` ϕ′ ≡ ψ′

which implies XP− ` ϕ ≡ ψ.

For item 2, soundness follows from Proposition 91. For completeness, suppose |= α ≡ β.
Suppose that α is consistent and β is not. On the one hand, by Theorem 101, there

is n such that α is provably equivalent to
⋃

1≤i≤k[ϕi]αi, with αi ∈ P−n and ϕi ∈ N−n .
Furthermore, we can assume that [ϕ1]α1 is consistent (if it is not, we simply remove it
from the disjunction) and so 〈α1 = α1〉 is a conjunct of ϕ1 by Lemma 95. By Lemma 102,
the node expression ϕ1 is satisfiable. Then, since 〈α1 = α1〉 is a conjunct of ϕ1, the path
expression [ϕ1]α1 is satisfiable, and so α is satisfiable. On the other hand, by Proposition 91,
β is unsatisfiable, and this contradicts the fact that |= α ≡ β. This shows that if α is
consistent then so is β. Symmetrically, one can show that if β is consistent, then so is α.
Therefore, either α and β are consistent or α and β are inconsistent. In the latter case, we
trivially have XP− ` α ≡ β.

Suppose both α and β are consistent. By Theorem 101 plus Lemma 99 we have that
there is n and path expressions α1 . . . αk, β1 . . . β` in P−n and node expressions ϕ1 . . . ϕk,
ψ1 . . . ψ` ∈ N−n such that XP− ` α ≡ ⋃1≤i≤k[ϕi]αi and XP− ` β ≡ ⋃1≤j≤`[ψj]βj. Further-
more, we can assume that 〈αi = αi〉 is a conjunct of ϕi for i = 1 . . . k and 〈βj = βj〉 is a
conjunct of ψj for j = 1 . . . `.

Now, suppose that
[ϕi]αi /∈ {[ψ1]β1, . . . , [ψ`]β`} (18)

for some i. Since ϕi ∈ N−n , by Lemma 102, there is a data tree T = (T, π) with root r
such that T , r |= ϕi. Since 〈αi = αi〉 is a conjunct of ϕi, we have that there is y ∈ T such
that T , r, y |= αi.

108 CHAPTER 2. AXIOMATIZATIONS

Let us show that T , r, y 6|= [ψj]βj for any j ≤ `. Fix any j. By (18), we have that ϕi 6= ψj
or αi 6= βj. In the first case, T , r, y 6|= [ψj]βj follows from Lemma 96 and Proposition 91
(in particular T , r 6|= ψj). If ϕi = ψj, we have αi 6= βj and T , r, y 6|= [ψj]βj follows from
Lemma 97.

So we have that T , r, y |= α but T , r, y 6|= β, a contradiction with our hypothesis that
|= α ≡ β. Hence for any i there is j such that [ϕi]αi = [ψj]βj. Analogously one can show
that for any j there is i such that [ψj]βj = [ϕi]αi. Then

⋃
1≤i≤k[ϕi]αi and

⋃
1≤j≤`[ψj]βj are

identical, modulo reordering of unions, and so XP− ` α ≡ β.

All we need to complete the argument is to prove Lemma 102. Doing this involves the
rest of the section.

Canonical model

In order to prove Lemma 102, we construct, recursively in n and for every ϕ ∈ N−n , a data
tree T ϕ = (Tϕ, πϕ) such that ϕ is satisfiable in T ϕ.

For the base case, if ϕ ∈ N−0 and ϕ = a ∧ 〈ε = ε〉 with a ∈ A, simply define the data
tree T ϕ = (Tϕ, πϕ) where Tϕ is a tree which consists of the single node x with label a, and
πϕ = {{x}}.

Now let ϕ ∈ N−n+1. Since ϕ is a conjunction as in Definition 92, it is enough to
guarantee that the following conditions hold (we now observe that these conditions are
enough because of EqAx1, but we usually avoid these observations of symmetry):

(C1) If a ∈ A is a conjunct of ϕ, then the root rϕ of T ϕ has label a.

(C2) If 〈ε = ↓[ψ]α〉 is a conjunct of ϕ, then there is a child rv (where v = (ψ, α); we
will introduce this notation in time to formalize the construction) of the root rϕ of
T ϕ at which ψ is satisfied and a node xv with the same data value as rϕ such that
T ϕ, rv, xv |= α.

(C3) If 〈↓[ψ]α = ↓[ρ]β〉 is a conjunct of ϕ, then there are two children ru1 , ru2 of the root
rϕ of T ϕ at which ψ and ρ are satisfied respectively, and there are nodes xu and yu

with the same data value such that T ϕ, ru1 , xu |= α and T ϕ, ru2 , yu |= β.

(C4) If ¬〈ε = ↓[ψ]α〉 is a conjunct of ϕ, then for each child z of the root rϕ of T ϕ at
which ψ is satisfied, if x is a node such that T ϕ, z, x |= α, then the data value of x is
different than the one of rϕ.

(C5) If ¬〈↓[ψ]α = ↓[ρ]β〉 is a conjunct of ϕ, then for each children z1, z2 of the root
rϕ of T ϕ at which ψ and ρ are satisfied respectively, if w1, w2 are nodes such that
T ϕ, z1, w1 |= α and T ϕ, z2, w2 |= β, then the data values of w1 and w2 are different.

Since the construction of the canonical model requires some technical notation that
might hinder the understanding of the ideas behind it, we will begin with an intuitive
description of the construction.

2.3. AXIOMATIC SYSTEM FOR XPATH=(↓)− 109

Insight into the construction

The idea to achieve all the previous conditions is to incrementally build a tree such that it
satisfies at its root conditions (C1), (C4), and (C5), then also (C2) (without spoiling any
previous conditions), and finally also (C3).

First we start with a root rϕ labeled a, where a is the label present in ϕ (so that
condition (C1) is satisfied). At this point in the construction, as we only have one node,
conditions (C4) and (C5) are trivially satisfied. On the contrary, (C2) and (C3) might not
be satisfied, and require a positive action (i.e. changing the current model) to make them
true. We want to add witnesses that guarantee the satisfaction of (C2) and (C3), and
we will achieve this by the use of the inductive hypothesis to construct new trees that we
will hang as children of rϕ. However, adding witnesses jeopardizes the satisfaction of (C4)
and (C5), so we need to do it carefully enough.

First we add witnesses in order to satisfy condition (C2). If ψ ∈ N−n , by inductive
hypothesis, there exists a tree T ψ such that ψ is satisfied at T ψ. Also, if 〈ε = ↓[ψ]α〉 is a
conjunct of ϕ, by the consistency of ϕ, Lemma 95 and the inductive hypothesis, there is a
pair of nodes satisfying α in T ψ and starting at its root. In this case, we will hang a copy
of T ψ (or perhaps a slightly modified copy of it constructed in order not to spoil condition
(C4)) as a child of rϕ and merge the equivalence class of rϕ to the equivalence class of the
endpoint xv of a specially chosen pair of nodes satisfying α and beginning at the root of T ψ
(see Figure 22(a)). This is the only merging required; other classes in T ψ remain disjoint

↵

xv

r'

=

r'

 1 m

xv1 xvm

=
=

. . .

. . .

↵1 ↵m ↵

xv

r'

=

�

=

(a) (b) (c)

Figure 22: (a) A witness for 〈ε = ↓[ψ]α〉; (b) we repeat the process of (a) for each conjunct
〈ε = ↓[ψ1]α1〉, . . . , 〈ε = ↓[ψm]αm〉 of ϕ; (c) by adding a witness for 〈ε = ↓[ψ]α〉, we may be
creating an unwanted witness for 〈ε = ↓[ψ]β〉.

from the previous constructed part of T ϕ. In this way, we will guarantee condition (C2)
(see Figure 22(b)). Since the other equivalence classes of T ψ will remain disjoint from the
rest of the tree T ϕ all along the construction and since two different normal forms cannot
be satisfied at the same point (see Lemma 96 plus Proposition 91), the only way in which
this process could spoil condition (C4) is that there is β ∈ P−n such that ¬〈ε = ↓[ψ]β〉
is a conjunct of ϕ and a pair of nodes satisfying β in T ψ, starting at its root and ending
in a point with the same data value as xv (see Figure 22(c)). But Lemma 104 ensures
that (maybe with changes to T ψ) we can choose xv to avoid this situation. Then, since
we only add nodes to the equivalence class of the root rϕ by this process, the only way

110 CHAPTER 2. AXIOMATIZATIONS

in which we could spoil condition (C5) is if ϕ has conjuncts 〈ε = ↓[ψ]µ〉, 〈ε = ↓[ρ]δ〉 and
¬〈↓[ψ]µ = ↓[ρ]δ〉 for some ψ, ρ ∈ N−n , µ, δ ∈ P−n . But this is clearly unsatisfiable and so
our axioms should tell us that it is inconsistent (see EqAx7).

We now proceed to add witnesses in order to satisfy condition (C3). By an argument
similar to the one given for condition (C2), if 〈↓[ψ]α = ↓[ρ]β〉 is a conjunct of ϕ, there are,
by inductive hypothesis, trees T ψ and T ρ at which ψ and ρ are satisfied and pairs of nodes
satisfying α and β starting at their respective roots. We will hang a copy of each of those
trees (or perhaps slightly modified copies of them) as children of rϕ and we will merge the
equivalence classes (in T ψ and T ρ) of the ending points xu, yu of a specially chosen pair
of nodes satisfying α (and starting at the root of T ψ) and a specially chosen pair of nodes
satisfying β (and starting at the root of T ρ) as mentioned before (see Figure 23(a)). Note

↵

r'

=
�

yu

⇢

xu

r'

= =

. . .

. . .
xu1 xuk

yukyu1

 1 k ⇢k⇢1

↵1 ↵k�1 �k

(a) (b)

yu

↵
�

r'

 ⇢

xu
µ

�

=

=

=

(c)

Figure 23: (a) A witness for 〈↓[ψ]α = ↓[ρ]β〉; (b) we repeat the process of (a) for each conjunct
〈↓[ψ1]α1 = ↓[ρ1]β1〉, . . . , 〈↓[ψk]αk = ↓[ρk]βk〉 of ϕ; (c) by adding a witness for 〈↓[ψ]α = ↓[ρ]β〉, we
may be creating an unwanted witness for 〈↓[ψ]µ = ↓[ρ]δ〉.

that all the classes in T ψ and T ρ remain disjoint from the previous constructed part of T ϕ.
In this way, we guarantee condition (C3) (see Figure 23(b)). Since we are not adding any
nodes to the class of rϕ, it is clear that we cannot spoil condition (C2) by performing this
procedure. With a similar argument as the one given before, the only way in which we can
spoil condition (C5) is that there are ψ, ρ ∈ N−n , α, β, µ, δ ∈ P−n such that 〈↓[ψ]α = ↓[ρ]β〉
and ¬〈↓[ψ]µ = ↓[ρ]δ〉 are conjuncts of ϕ, a pair of nodes satisfying µ beginning at the
root of T ψ and ending in a point with the same data value as xu, and a pair of nodes
satisfying δ beginning at the root of T ρ and ending in a point with the same data value as
yu (see Figure 23(c)). But Lemma 104 ensures that we can choose xu and yu to avoid this
situation.

2.3. AXIOMATIC SYSTEM FOR XPATH=(↓)− 111

Formalization

In order to formalize the construction described above, we introduce the following key
lemma:

Lemma 104. Let ψ0 ∈ N−n , α, β1, . . . , βm ∈ P−n . Suppose that there exists a tree T ψ0 =
(Tψ0 , πψ0) with root rψ0 such that T ψ0 , rψ0 |= ψ0 and for all i = 1, . . . ,m there exists
γi ∈ P−n+1 such that 〈γi = ↓[ψ0]α〉 ∧ ¬〈γi = ↓[ψ0]βi〉 is consistent. Then there exists a tree

T̃ ψ0 = (T̃ψ0 , π̃ψ0) with root r̃ψ0 and a node x such that:

• T̃ ψ0 , r̃ψ0 |= ψ0,

• T̃ ψ0 , r̃ψ0 , x |= α, and

• [x]
π̃ψ0
6= [y]

π̃ψ0
for all y such that T̃ ψ0 , r̃ψ0 , y |= βi for some i = 1, . . . ,m.

Proof. Suppose that α = ↓[ψ1] . . . ↓[ψj0]ε, where ψk ∈ N−n−k for all k = 1, . . . , j0. If j0 = 0

(that is, α = ε), then it suffices to take T̃ ψ0 = T ψ0 and x = rψ0 . We only need to show
that then ¬〈ε = βi〉 is a conjunct of ψ0 for all i. Indeed, assuming instead that 〈ε = βi〉 is
a conjunct of ψ0 for some i, we have

〈γi = ↓[ψ0]α〉 ∧ ¬〈γi = ↓[ψ0]βi〉 ≡ 〈γi = ↓[ψ0 ∧ 〈ε = βi〉]〉 ∧ ¬〈γi = ↓[ψ0]βi〉
(Hypothesis 〈ε = βi〉 is a conjunct of ψ0)

≤ 〈γi = ↓[ψ0]βi〉 ∧ ¬〈γi = ↓[ψ0]βi〉
(Der21 (Fact 90) & EqAx8)

≡ false (Boolean)

which is a contradiction with our assumption that 〈γi = ↓[ψ0]α〉 ∧ ¬〈γi = ↓[ψ0]βi〉 is
consistent, by standard propositional reasoning.

If j0 > 0, to define T̃ ψ0 = (T̃ψ0 , π̃ψ0) we modify the tree T ψ0 = (Tψ0 , πψ0). From the
consistency of 〈γi = ↓[ψ0]α〉 for some i, by Lemma 95, we conclude that 〈α = α〉 is a
conjunct of ψ0. Hence there is z ∈ Tψ0 , z 6= rψ0 , such that T ψ0 , rψ0 , z |= α.

Before proceeding to complete the proof of this case, we give a sketch of it. We prove
that we cannot have a witness for βi with the same data value as z in the subtree Tψ0|z.
Intuitively this is because, in that case, α would be a prefix of βi, say βi = αδ, and 〈ε = δ〉
would be a conjunct of ψj0 . Then 〈γi = ↓[ψ0]α〉 ∧ ¬〈γi = ↓[ψ0]βi〉 would be unsatisfiable
(and thus it should be inconsistent) for any choice of γi which is a contradiction. But
our hypotheses are not enough to avoid having a witness for βi in the class of z outside
Tψ0|z; thus we need to change the tree in order to achieve the desired properties. We
replicate the subtree Tψ0|z but using fresh data values (different from any other data value
already present in T ψ0), see Figure 24. It is clear that in this way, the second and the third
conditions will be satisfied by the root of this new subtree. The first condition will also
remain true because the positive conjuncts will remain valid since we are not suppressing

112 CHAPTER 2. AXIOMATIZATIONS

any nodes, and the negative ones will not be affected either because every node we add
has a fresh data value.

Now we formalize the previous intuition. Call p the parent node of the aforementioned

z ∈ Tψ0 and define T̃ψ0 as Tψ0 t T x, where we define T x as Tψ0|z, and in T̃ψ0 the root of

T x is a child x of p. Define π̃ψ0 as πψ0 t πz; observe that the data values of T x differ from

all those of the rest of T̃ψ0 (see Figure 24).

z

↵

r 0

z

gT 0T 0

T 0�z T x

gr 0

x

T 0�z

p

Figure 24: T x = Tψ0 |z is a new subtree with disjoint data values to the rest of T̃ ψ0 . The new

node x satisfies T̃ ψ0 , r̃ψ0 , x |= α.

We now check that this new tree T̃ψ0 satisfies ψ0 at its root r̃ψ0 . We prove by induction

that xj, the j-th ancestor of x (namely xj
j→x, and we let x0 := x), satisfies T̃ ψ0 , xj |= ψj0−j.

This proves both that T̃ ψ0 , r̃ψ0 |= ψ0 and that T̃ ψ0 , r̃ψ0 , x |= α. For the base case j = 0,
the result is straightforward from Proposition 88: T x is a copy of Tψ0|z, with z satisfying
ψj0 . For the inductive case, assume that the result holds for x0, . . . , xj. We want to see
that it holds for xj+1. To do this, we verify that every conjunct of ψj0−j−1 is satisfied at
xj+1:

• If the conjunct is a label, it is clear that xj+1 still has that label in T̃ ψ0 , as it has not
been changed by the construction.

• If the conjunct is of the form 〈µ1 = µ2〉, then it must still hold in T̃ ψ0 by inductive
hypothesis plus the fact that our construction did not remove nodes.

• If the conjunct is of the form ¬〈µ1 = µ2〉, we observe that, by inductive hypothesis
plus the fact that the data classes of nodes in T x are disjoint with those of the

rest of T̃ ψ0 , then 〈µ1 = µ2〉 can only be true in xj+1 if there are witnesses y1, y2 in

the same equivalence class in the new subtree T x such that T̃ ψ0 , xj+1, y1 |= µ1 and

T̃ ψ0 , xj+1, y2 |= µ2. In that case, we have that

µ1 = ↓[ψj0−j]↓ . . . ↓[ψj0]µ̂1 and µ2 = ↓[ψj0−j]↓ . . . ↓[ψj0]µ̂2

for some µ̂1, µ̂2, and that T̃ ψ0 , x0, y1 |= µ̂1, T̃ ψ0 , x0, y2 |= µ̂2. Therefore, by Lemma 94,
〈µ̂1 = µ̂2〉 is a conjunct of ψj0 , and then T ψ0 , z |= 〈µ̂1 = µ̂2〉, a contradiction with
our assumption that ¬〈↓[ψj0−j]↓ . . . ↓[ψj0]µ̂1 = ↓[ψj0−j]↓ . . . ↓[ψj0]µ̂2〉 is a conjunct of
ψj0−(j+1) and T ψ0 , xj+1 |= ψj0−(j+1).

2.3. AXIOMATIC SYSTEM FOR XPATH=(↓)− 113

To conclude the proof, we only need to check that [x]
π̃ψ0
6= [y]

π̃ψ0
for all y such that

T̃ ψ0 , r̃ψ0 , y |= βi for some i = 1, . . . ,m. Suppose that βi = ↓[ρ1] . . . ↓[ρl0]ε. If l0 < j0 or
ρl 6= ψl for some l = 1, . . . , j0, then the result follows immediately from the construction.
Otherwise, l0 ≥ j0 and ρl = ψl for all l = 1, . . . , j0 and so, by hypothesis, there exists
γi ∈ P−n+1 such that

〈γi = ↓[ψ0]↓[ψ1]↓ . . . ↓[ψj0]ε〉 ∧ ¬〈γi = ↓[ψ0] . . . ↓[ψj0]↓[ρj0+1] . . . ↓[ρl0]ε〉

is consistent. We prove that ¬〈ε = ↓[ρj0+1] . . . ↓[ρl0]ε〉 is a conjunct of ψj0 , from which our

desired property follows immediately since we have proved that T̃ ψ0 , x |= ψj0 . Aiming for
a contradiction, suppose instead that 〈ε = ↓[ρj0+1] . . . ↓[ρl0]ε〉 is a conjunct of ψj0 . Then, as
α = ↓[ψ1] . . . ↓[ψj0]ε, we can derive that α ≡ α[〈ε = ↓[ρj0+1] . . . ↓[ρl0]ε〉] (Der21 (Fact 90)).
Also observe that XP− ` βi ≡ α↓[ρj0+1] . . . ↓[ρl0]ε, and then we have

〈γi = ↓[ψ0]α〉 ≡ 〈γi = ↓[ψ0]α[〈ε = ↓[ρj0+1] . . . ↓[ρl0]ε〉]〉 (Der21 (Fact 90))

≤ 〈γi = ↓[ψ0]α↓[ρj0+1] . . . ↓[ρl0]ε〉 (EqAx8)

≡ 〈γi = ↓[ψ0]βi〉

But using simple propositional reasoning, we have a contradiction with our hypothesis that
〈γi = ↓[ψ0]α〉 ∧ ¬〈γi = ↓[ψ0]βi〉 was consistent, a contradiction that came from assuming
that 〈ε = ↓[ρj0+1] . . . ↓[ρl0]ε〉 was a conjunct of ψj0 .

Now that we have proved this lemma, we proceed to the formal construction of T ϕ, for
ϕ ∈ N−n+1 (recall the base case at the beginning of our construction of the canonical model
in §2.3.3).

Consider the following sets:

V = {(ψ, α) | 〈ε = ↓[ψ]α〉 is a conjunct of ϕ}
U = {(ψ, α, ρ, β) | 〈↓[ψ]α = ↓[ρ]β〉 is a conjunct of ϕ}

Rule 1. Witnesses for v = (ψ,α) ∈ V . We define a data tree T v = (T v, πv) with
root rv. By inductive hypothesis, there exists a tree T ψ such that ψ is satisfiable in that
tree. In Lemma 104, consider

ψ0 := ψ

T ψ0 := T ψ
α := α

{β1, . . . , βm} := {β ∈ P−n | ¬〈ε = ↓[ψ]β〉 is a conjunct of ϕ}
γi := ε for all i = 1, . . . ,m

Then there exists T̃ ψ = (T̃ψ, π̃ψ) with root r̃ψ and a node x such that

• T̃ ψ, r̃ψ |= ψ,

114 CHAPTER 2. AXIOMATIZATIONS

• T̃ ψ, r̃ψ, x |= α,

• [x]
π̃ψ
6= [y]

π̃ψ
for all y such that there is β ∈ P−n with (ψ, β) 6∈ V, and T̃ ψ, r̃ψ, y |= β

Define T v as T̃ ψ, and xv as x. The root rv and the partition πv are the ones of T̃ ψ.

Rule 2. Witnesses for u = (ψ,α, ρ, β) ∈ U . We define data trees T u
1 = (Tu

1 , π
u
1)

and T u
2 = (Tu

2 , π
u
2) with roots ru1 , ru2 respectively. By inductive hypothesis, there exist trees

T ψ = (Tψ, πψ) (with root rψ) and T ρ = (T ρ, πρ) (with root rρ) such that ψ is satisfiable
in T ψ and ρ is satisfiable in T ρ. In Lemma 104, consider

ψ0 := ψ

T ψ0 := T ψ
α := α

{β1, . . . , βm} := {γ ∈ P−n | ¬〈↓[ρ]β = ↓[ψ]γ〉 is a conjunct of ϕ}
γi := ↓[ρ]β for all i = 1, . . . ,m

Then there exist T̃ ψ = (T̃ψ, π̃ψ) with root r̃ψ and a node x such that:

• T̃ ψ, r̃ψ |= ψ,

• T̃ ψ, r̃ψ, x |= α

• [x]
π̃ψ
6= [y]

π̃ψ
for all y such that there is γ ∈ P−n with T̃ ψ, r̃ψ, y |= γ and ¬〈↓[ρ]β =

↓[ψ]γ〉 is a conjunct of ϕ.

Define Tu
1 as T̃ψ, πu

1 as π̃ψ, ru1 as r̃ψ and xu = x ∈ Tu
1 . Now let

{µ1, . . . , µr} =
{
µ ∈ P−n | there exists y ∈ Tu

1 such that T u
1 , r

u
1 , y |= µ and [y]πu

1
= [xu]πu

1

}
.

Then it follows that 〈↓[ρ]β = ↓[ψ]µj〉 is a conjunct of ϕ for all j = 1, . . . , r. In Lemma 104,
consider

ψ0 := ρ

T ψ0 := T ρ
α := β

{β1, . . . , βm} := {δ ∈ P−n | ∃j = 1, . . . , r with ¬〈↓[ρ]δ = ↓[ψ]µj〉 is a conjunct of ϕ}
γi := ↓[ψ]µj for j = 1, . . . r such that 〈↓[ρ]βi = ↓[ψ]µj〉 is a conjunct of ϕ.

Then there exist a tree T̃ ρ = (T̃ ρ, π̃ρ) with root r̃ρ and a node y such that

• T̃ ρ, r̃ρ |= ρ,

2.3. AXIOMATIC SYSTEM FOR XPATH=(↓)− 115

• T̃ ρ, r̃ρ, y |= β,

• [y]π̃ρ 6= [z]π̃ρ for all z such that there is δ ∈ P−n and j = 1, . . . , r with T̃ ρ, r̃ρ, z |= δ
and ¬〈↓[ρ]δ = ↓[ψ]µj〉 is a conjunct of ϕ.

Define Tu
2 as T̃ ρ, πu

2 as π̃ρ, ru2 as r̃ρ and yu = y. Without loss of generality, we assume that
Tu

1 and Tu
2 are disjoint.

Now we define a partition πu over Tu
1 ∪ Tu

2 as

πu = πu
1 ∪ πu

2 ∪ {[xu]πu
1
∪ [yu]πu

2
} \ {[xu]πu

1
, [yu]πu

2
}.

In other words, the rooted data tree (Tu
1 , π

u|Tu
1 , r

u
1) is just a copy of (T̃ψ, π̃ψ, r̃ψ), with a

special node named xu which satisfies Tu
1 , π

u, ru1 , x
u |= α. Analogously, the pointed data

tree (Tu
2 , π

u|Tu
2 , r

u
2) is a copy of (T̃ ρ, π̃ρ, r̃ρ), with a special node named yu which satisfies

Tu
2 , π

u, ru2 , y
u |= β. Notice that the equivalence class ∼ induced by πu (defined over the

disjoint sets Tu
1 and Tu

2) is defined as z ∼ w iff w ∈ [z]
π̃ψ

or w ∈ [z]π̃ρ , or both w ∈ [xu]
π̃ψ

and z ∈ [yu]π̃ρ or both w ∈ [yu]π̃ρ and z ∈ [xu]
π̃ψ

. See Figure 25.

xu
yu

�
↵ =

Tu
1 = fT Tu

2 = fT ⇢

ru
1 = fr ru

2 = er⇢

Figure 25: The data trees T u
1 = (Tu

1 , π
u
1) and T u

2 = (Tu
2 , π

u
2) for some u ∈ U. πu1 and πu2 are

disjoint except that the equivalence class of xu is merged with the equivalence class of yu.

The following remark will be used later to prove that Rule 2 does not spoil condi-
tion (C5) (cf. Figure 23(c)):

Remark 105. Let (ψ, α, ρ, β) ∈ U. If ¬〈↓[ψ]µ = ↓[ρ]δ〉 is a conjunct of ϕ, then [yu]πu
2
6=

[y]πu
2

for all y such that T u
2 , r

u
2 , y |= δ or [xu]πu

1
6= [x]πu

1
for all x such that T u

1 , r
u
1 , x |= µ.

Proof. The result is immediate from Rule 2: If neither of the conditions is satisfied, then
µ = µj for some j = 1, . . . , r and so 〈↓[ρ]δ = ↓[ψ]µ〉 is a conjunct of ϕ which is a contra-
diction.

The rooted data tree (T ϕ, πϕ, rϕ). Now, using Rule 1 and Rule 2, we define Tϕ as
the tree which consists of a root rϕ with label a ∈ A if a is a conjunct of ϕ, and with
children

(T v)v∈V , (Tu
1)u∈U , (Tu

2)u∈U.

116 CHAPTER 2. AXIOMATIZATIONS

We assume that the nodes of all such trees are pairwise disjoint. Define πϕ over Tϕ by

πϕ =

(⋃

v∈V

πv \ {[xv]πv | v ∈ V}
)
∪
{
{rϕ} ∪

⋃

v∈V

[xv]πv

}
∪
⋃

u∈U

πu.

In other words, Tϕ has a root, named rϕ, and children (rv)v∈V, (ru1)u∈U, (ru2)u∈U. Each of
these children is the root of its corresponding tree inside Tϕ as defined above, i.e. for each
v ∈ V, rv is the root of T v, and for each u ∈ U, rui is the root of Tu

i (i = 1, 2). All these
subtrees are disjoint, and πϕ is defined as the disjoint union of partitions πv for v ∈ V,
and all πu for u ∈ U, with the exception that we put into the same class the nodes rϕ and
(xv)v∈V. See Figure 26.

rv1 rvm

xv1 xvm

ru1
1 ru1

2 ruk
1

xu1 xuk
yukyu1

.

r'

Tv1 Tvm Tu1
1 Tu1

2 Tuk
1 Tuk

2

ruk
2

=

= = ==

.

Figure 26: The data tree T ϕ, with root rϕ, when V = {v1, . . . ,vm} and U = {u1, . . . ,uk}.
Nodes rϕ, xv1 , . . . , xvm are in the same equivalence class, and for each i nodes xui and yui are in
the same equivalence class.

The following fact follows easily by construction:

Fact 106. The partition restricted to the trees T v for v ∈ V and the partition restricted
to the trees Tu

1 and Tu
2 for u ∈ U remains unchanged. More formally:

• For each v = (ψ, α) ∈ V, we have πϕ|Tv = πv.

• For each u = (ψ, α, ρ, β) ∈ U, we have πϕ|Tu
1 = πu

1 , and πϕ|Tu
2 = πu

2 .

We conclude from Proposition 88 and the construction that:

Fact 107. The validity of a formula in a child of rϕ is preserved in T ϕ. More formally:

• For each v ∈ V and x, y ∈ T v we have T ϕ, x ≡↓− T v, x and T ϕ, x, y ≡↓− T v, x, y.

• For each u ∈ U, i ∈ {1, 2} and x, y ∈ Tu
i we have T ϕ, x ≡↓− T u

i , x and T ϕ, x, y ≡↓−
T u
i , x, y.

It only remains to check that conditions (C1)–(C5) are satisfied:

2.3. AXIOMATIC SYSTEM FOR XPATH=(↓)− 117

Verification of (C1). This condition is trivially satisfied.

Verification of (C2). Suppose 〈ε = ↓[ψ]α〉 is a conjunct of ϕ. Then, by Rule 1, there
is xv ∈ Tϕ such that [rϕ]πϕ = [xv]πϕ , with v = (ψ, α). We also know by construction that
T v, rv |= ψ and T v, rv, xv |= α. By Fact 107 we conclude T ϕ, rϕ |= 〈ε = ↓[ψ]α〉.

Verification of (C3). Suppose 〈↓[ψ]α = ↓[ρ]β〉 is a conjunct of ϕ. Then, by Rule 2,
there are xu, yu ∈ T ϕ such that [xu]πϕ = [yu]πϕ , with u = (ψ, α, ρ, β). We also know on
the one hand that T u

1 , r
u
1 |= ψ and T u

2 , r
u
2 |= ρ, and on the other hand that T u

1 , r
u
1 , x

u |= α
and T u

2 , r
u
2 , y

u |= β. By Fact 107 we conclude T ϕ, rϕ |= 〈↓[ψ]α = ↓[ρ]β〉.

Verification of (C4). Suppose ¬〈ε = ↓[ψ]α〉 is a conjunct of ϕ. Aiming for a contra-
diction, suppose that T ϕ, rϕ |= 〈ε = ↓[ψ]α〉. Then there is a successor z of rϕ in which
ψ holds, and by construction plus Lemma 96, z is the root of some copy of a data tree

T̃ ψ. Moreover, there is x ∈ T̃ψ such that T ϕ, z, x |= α, with [x]πϕ = [rϕ]πϕ . In addition to
this, (ψ, α) 6∈ V and so, by Rule 1, [x]πϕ 6= [xv]πϕ for all v ∈ V. Then, by construction,
[x]πϕ 6= [rϕ]πϕ which is a contradiction.

Verification of (C5). Suppose ¬〈↓[ψ]α = ↓[ρ]β〉 is a conjunct of ϕ. Aiming for a
contradiction, suppose that T ϕ, rϕ |= 〈↓[ψ]α = ↓[ρ]β〉. Then there are successors z1 and z2

of rϕ in which ψ and ρ holds, respectively. Also, by construction and Lemma 96, z1 and z2

are the roots of some copies of data trees T̃ ψ and T̃ ρ (note that we are using the notation

T̃ ψ and T̃ ρ either if the tree is the one obtained by inductive hypothesis or a modified
version of it). Moreover, there are descendants w1 and w2 such that T ϕ, z1, w1 |= α,
T ϕ, z2, w2 |= β and [w1]πϕ = [w2]πϕ . We now have two cases to analyze:

• T̃ ψ = T̃ ρ: In this case, because of Lemma 96, ψ = ρ. And we have T̃ ψ, r̃ψ |= 〈α = β〉,
and as a consequence 〈α = β〉 has to be a conjunct of ψ (Lemma 94). We prove that
in this case 〈↓[ψ]α′ = ↓[ψ]α′〉 can not be a conjunct of ϕ for any α′ ∈ P−n : If this
were the case, 〈↓[ψ]α′ = ↓[ψ]α′〉 ∧ ¬〈↓[ψ]α = ↓[ρ]β〉 would be consistent, but:

〈↓[ψ]α′ = ↓[ψ]α′〉 ∧ ¬〈↓[ψ]α = ↓[ρ]β〉
≤ 〈↓[ψ]〉 ∧ ¬〈↓[ψ]α = ↓[ρ]β〉 (Der12 (Fact 90))

≡ 〈↓[ψ ∧ 〈α = β〉]〉 ∧ ¬〈↓[ψ]α = ↓[ρ]β〉 (〈α = β〉 is a conjunct of ψ)

≡ 〈↓[ψ][〈α = β〉]〉 ∧ ¬〈↓[ψ]α = ↓[ρ]β〉 (Der21 (Fact 90))

≤ 〈↓[ψ]α = ↓[ψ]β〉 ∧ ¬〈↓[ψ]α = ↓[ρ]β〉 (EqAx5)

≡ false (Boolean)

which is a contradiction.

Then, 〈↓[ψ]α′ = ↓[ψ]α′〉 is not a conjunct of ϕ and so, it follows easily from the
consistency of ϕ that (ψ, α′) 6∈ V for all α′ ∈ P−n . And also (ψ, α′, ρ′, β′) 6∈ U for all

118 CHAPTER 2. AXIOMATIZATIONS

α′, β′ ∈ P−n , ρ′ ∈ N−n . This gives a contradiction by construction because in this case

it would not be a copy of a tree T̃ ψ.

• T̃ ψ 6= T̃ ρ: In this case, there are two possibilities to consider:

– One possibility is that [w1]πϕ = [w2]πϕ because Rule 2 was applied (see Fig-
ure 27 (a)). Then there is u = (ψ, α′, ρ, β′) ∈ U (the symmetric case is analo-
gous). In this case we have T u

1 , r
u
1 , x

u |= α′ and T u
2 , r

u
2 , y

u |= β′. Furthermore,
since [w1]πϕ = [w2]πϕ , we have that [w1]πu

1
= [xu]πu

1
and [w2]πu

2
= [yu]πu

2
which is

a contradiction by Remark 105.

– The other possibility is that [w1]πϕ = [w2]πϕ because Rule 1 was applied twice
(see Figure 27(b)). Then there exist v1 = (ψ, α′), v2 = (ρ, β′) ∈ V. In this
case we have T v1 , rv1 , xv1 |= α′ and T v2 , rv2 , xv2 |= β′. Furthermore, since
[w1]πϕ = [w2]πϕ , we have that [w1]πv1 = [xv1]πv1 and [w2]πv2 = [yv2]πv2 . Then,
by Rule 1, (ψ, α) and (ρ, β) belong to V which gives a contradiction because of
the consistency of ϕ plus EqAx7.

r'

↵0
↵

w1 xu

�0
�

w2yu

z1 = fr = ru
2 z2 = er⇢ = ru

2

fT ⇢ = Tu
2

fT = Tu
1

= ==

r'

↵0
↵

w1

�0
�

w2

z1 = fr = rv1 z2 = er⇢ = rv2

fT = Tv1 fT ⇢ = Tv2

xv1 xv2

==

= =

(a) (b)

Figure 27: Nodes w1 and w2 are in the same equivalence class because (a) Rule 2 was applied
via u = (ψ, α′, ρ, β′) ∈ U, or (b) Rule 1 was applied twice via v1 = (ψ, α′), v2 = (ρ, β′) ∈ V.

2.4 Axiomatic System for XPath=(↓)
2.4.1 Axiomatization

In this subsection we introduce additional axiom schemes to handle inequalities. Axioms
schemes in Table 2.2 extend those from Table 2.1 to form a complete axiomatic system for
the full logic XPath=(↓). Observe that NeqAx1 – NeqAx5 are analogous to EqAx1 – EqAx5.

Let XP be the set of all instantiations of the axiom schemes from Table 2.1 plus the
ones from Table 2.2. In the scope of this section we will often say that a node expression
is consistent meaning that it is XP-consistent (as in Definition 89).

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 119

Node axiom schemes for inequality

NeqAx1 〈α 6= β〉 ≡ 〈β 6= α〉




Analogous to
EqAx1 – EqAx5
but with symbol
6= instead of =

NeqAx2 〈α ∪ β 6= γ〉 ≡ 〈α 6= γ〉 ∨ 〈β 6= γ〉
NeqAx3 ϕ ∧ 〈α 6= β〉 ≡ 〈[ϕ]α 6= β〉
NeqAx4 〈α 6= β〉 ≤ 〈α〉
NeqAx5 〈γ[〈α 6= β〉]〉 ≤ 〈γα 6= γβ〉
NeqAx6 〈α = γ〉 ∧ 〈β = η〉 ≤ 〈α = β〉 ∨ 〈γ 6= η〉
NeqAx7 〈α 6= γ〉 ∧ 〈β = η〉 ≤ 〈α 6= β〉 ∨ 〈γ 6= η〉
NeqAx8 〈γ = η[¬〈α = β〉 ∧ 〈α〉]β〉 ≤ 〈γ 6= ηα〉
NeqAx9 〈γ 6= η[¬〈α 6= β〉 ∧ 〈α〉]β〉 ≤ 〈γ 6= ηα〉
NeqAx10 〈γ = η[¬〈α 6= α〉 ∧ 〈α = β〉]α〉 ≤ 〈γ = ηβ〉

Table 2.2: Additional axiom schemes to allow for data inequality tests. The axiomatic system
XP consists of all the instantiations of this table, plus the ones of Table 2.1.

Sometimes we use NeqAx1 and NeqAx4 without explicitly mentioning them. We omit
such steps in order to make the proofs more readable. We also note that NeqAx2 and
NeqAx3 are necessary for the proof of Theorem 113, which is omitted; they have to be used
in the same way as EqAx2 and EqAx3 in the proof of Theorem 101.

It is not difficult to see that the axioms XP are sound for XPath=(↓):

Proposition 108 (Soundness of XPath=(↓)).

1. Let ϕ and ψ be node expressions of XPath=(↓). Then XP ` ϕ ≡ ψ implies |= ϕ ≡ ψ.

2. Let α and β be path expressions of XPath=(↓). Then XP ` α ≡ β implies |= α ≡ β.

2.4.2 Normal forms

We define the sets Pn and Nn, that contain the path and node expressions of XPath=(↓),
respectively, in normal form at level n:

Definition 109 (Normal form for XPath=(↓)).

P0 = {ε}
N0 = {a ∧ 〈ε = ε〉 ∧ ¬〈ε 6= ε〉 | a ∈ A}

Pn+1 = {ε} ∪ {↓[ψ]β | ψ ∈ Nn, β ∈ Pn}
Dn+1 = {〈α = β〉 | α, β ∈ Pn+1} ∪ {〈α 6= β〉 | α, β ∈ Pn+1}

Nn+1 =



a ∧

∧

ϕ∈C

ϕ ∧
∧

ϕ∈Dn+1\C

¬ϕ | C ⊆ Dn+1, a ∈ A



 ∩ConXP.

120 CHAPTER 2. AXIOMATIZATIONS

Normal forms are built using the same idea from §2.3.2, but considering also data-
aware diamonds with inequalities. Again, let us remark that it would suffice that N0

contains formulas of the form a, for a ∈ A, but we include instead formulas of the form
a ∧ 〈ε = ε〉 ∧ ¬〈ε 6= ε〉 (containing the tautologies 〈ε = ε〉 and ¬〈ε 6= ε〉) for technical
reasons. For instance, considering again two labels a and b, the node expressions of N0 are

ψ = a ∧ 〈ε = ε〉 ∧ ¬〈ε 6= ε〉 and θ = b ∧ 〈ε = ε〉 ∧ ¬〈ε 6= ε〉.
The sets P1 and D1 are as follows:

P1 = {↓[ψ]ε, ↓[θ]ε, ε}
D1 = {〈ε = ε〉, 〈↓[ψ]ε = ↓[θ]ε〉, 〈ε = ↓[ψ]ε〉, 〈ε = ↓[θ]ε〉, 〈↓[ψ]ε = ↓[ψ]ε〉, 〈↓[θ]ε = ↓[θ]ε〉,

〈ε 6= ε〉, 〈↓[ψ]ε 6= ↓[θ]ε〉, 〈ε 6= ↓[ψ]ε〉, 〈ε 6= ↓[θ]ε〉, 〈↓[ψ]ε 6= ↓[ψ]ε〉, 〈↓[θ]ε 6= ↓[θ]ε〉}
An example of a node expression in normal form at level 1, i.e. a node expression in N1, is

ϕ = a ∧ 〈ε = ε〉 ∧ ¬〈ε 6= ε〉 ∧ 〈↓[ψ]ε = ↓[θ]ε〉 ∧ 〈↓[ψ]ε = ↓[ψ]ε〉 ∧ 〈↓[θ]ε = ↓[θ]ε〉 ∧
∧〈ε 6= ↓[ψ]ε〉 ∧ 〈ε 6= ↓[θ]ε〉 ∧ 〈↓[ψ]ε 6= ↓[θ]ε〉 ∧ ¬〈ε = ↓[ψ]ε〉 ∧ ¬〈ε = ↓[θ]ε〉 ∧
∧〈↓[θ]ε 6= ↓[θ]ε〉 ∧ 〈↓[ψ]ε 6= ↓[ψ]ε〉.

Analogs of Lemmas 94, 95 and 96 hold in this case, with the same proofs as those given
for the case of XPath=(↓)−:

Lemma 110. Let ∗ ∈ {=, 6=}, ψ ∈ Nn and α, α′ ∈ Pn. Let T , u be a pointed data tree,
such that T , u |= ψ and T , u |= 〈α ∗ α′〉. Then 〈α ∗ α′〉 is a conjunct of ψ

Lemma 111. Let ψ ∈ Nn and α ∈ Pn. If [ψ]α is consistent then 〈α = α〉 is a conjunct
of ψ. As an immediate consequence, if 〈↓[ψ]α〉 is consistent then 〈α = α〉 is a conjunct
of ψ.

Lemma 112. For every pair of distinct elements ϕ, ψ ∈ Nn, ϕ ∧ ψ is inconsistent.

We omit the proof of the following theorem, since it is analogous to the one for XP−

(Theorem 101):

Theorem 113 (Normal form for XPath=(↓)). Let ϕ be a consistent node expression of
XPath=(↓) such that dd(ϕ) = n. Then XP ` ϕ ≡ ∨i ϕi for some (ϕi)1≤i≤k ∈ Nn. Let α be
a consistent path expression of XPath=(↓) such that dd(α) = n. Then XP ` α ≡ ⋃i[ϕi]αi
for some (αi)1≤i≤k ∈ Pn and (ϕi)1≤i≤k ∈ Nn. Furthermore, if α is ε or starting with ↓ then
XP ` α ≡ ⋃i αi for some (αi)1≤i≤k ∈ Pn.

The following two technical lemmas, whose proofs are deferred to §2.6, will be needed
for the construction of the canonical model:

Lemma 114. Let ∗ ∈ {=, 6=}, γ ∈ Pn, ψi ∈ Nn−i for i = 1, . . . , i0, α, β ∈ Pn−i0 such that

〈γ ∗ ↓[ψ1] . . . ↓[ψi0]α〉 ∧ ¬〈γ ∗ ↓[ψ1] . . . ↓[ψi0]β〉
is consistent and ¬〈α 6= α〉 is a conjunct of ψi0. Then ¬〈α = β〉 is a conjunct of ψi0.

Lemma 115. Let ψ ∈ Nn, α, β ∈ Pn such that 〈↓[ψ]α 6= ↓[ψ]α〉 ∧ ¬〈↓[ψ]γ 6= ↓[ψ]γ〉 is
consistent and ¬〈α 6= α〉 is a conjunct of ψ. Then ¬〈α = γ〉 is a conjunct of ψ.

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 121

2.4.3 Completeness for node and path expressions

In this subsection we show that for node expressions ϕ and ψ of XPath=(↓), the equivalence
ϕ ≡ ψ is derivable from the axiom schemes of Table 2.1 plus Table 2.2 if and only if ϕ is
XPath=(↓)-semantically equivalent to ψ. We also show the corresponding result for path
expressions of XPath=(↓).

Theorem 116 (Completeness of XPath=(↓)).

1. Let ϕ and ψ be node expressions of XPath=(↓). Then XP ` ϕ ≡ ψ iff |= ϕ ≡ ψ.

2. Let α and β be path expressions of XPath=(↓). Then XP ` α ≡ β iff |= α ≡ β.

The proof of the above theorem is analogous to that of Theorem 103. The critical part
of the argumentation is the analog of Lemma 102 for the more expressive logic XPath=(↓):

Lemma 117. Any node expression ϕ ∈ Nn is satisfiable.

The rest of this section is devoted to the proof of Lemma 117.

Canonical model

We construct, recursively in n and for every ϕ ∈ Nn, a data tree T ϕ = (Tϕ, πϕ) such that
ϕ is satisfiable in T ϕ.

For the base case, if ϕ ∈ N0 and ϕ = a ∧ 〈ε = ε〉 ∧ ¬〈ε 6= ε〉 with a ∈ A, we define the
data tree T ϕ = (Tϕ, πϕ) where Tϕ is a tree which consists of the single node x with label
a, and πϕ = {{x}}.

Now, let ϕ ∈ Nn+1. Since ϕ is a conjunction as in Definition 109, it is enough to
guarantee that the following conditions hold (observe that we are using EqAx1 and NeqAx1
but we usually avoid these observations of symmetry):

(C1) If a ∈ A is a conjunct of ϕ, then the root rϕ of T ϕ has label a.

(C2) If 〈ε = ↓[ψ]α〉 is a conjunct of ϕ, then there is a child rv of the root rϕ of T ϕ at which
ψ is satisfied, and a node xv with the same data value as rϕ such that T ϕ, rv, xv |= α.

(C3) If 〈ε 6= ↓[ψ]α〉 is a conjunct of ϕ, then there is a child rv of the root rϕ of T ϕ
at which ψ is satisfied, and a node xv with different data value than rϕ such that
T ϕ, rv, xv |= α.

(C4) If 〈↓[ψ]α = ↓[ρ]β〉 is a conjunct of ϕ, then there are two children ru1 , ru2 of the root
rϕ of T ϕ at which ψ and ρ are satisfied respectively, and there are nodes xu and yu

with the same data value such that T ϕ, ru1 , xu |= α and T ϕ, ru2 , yu |= β.

(C5) If 〈↓[ψ]α 6= ↓[ρ]β〉 is a conjunct of ϕ, then there are two children ru1 , ru2 of the root
rϕ of T ϕ at which ψ and ρ are satisfied respectively, and there are nodes xu and yu

with different data value such that T ϕ, ru1 , xu |= α and T ϕ, ru2 , yu |= β.

122 CHAPTER 2. AXIOMATIZATIONS

(C6) If ¬〈ε = ↓[ψ]α〉 is a conjunct of ϕ, then for each child z of the root rϕ of T ϕ at
which ψ is satisfied, if x is a node such that T ϕ, z, x |= α, then the data value of x is
different than the one of rϕ.

(C7) If ¬〈ε 6= ↓[ψ]α〉 is a conjunct of ϕ, then for each child z of the root rϕ of T ϕ at which
ψ is satisfied, if x is a node such that T ϕ, z, x |= α, then the data value of x is the
same as the one of rϕ.

(C8) If ¬〈↓[ψ]α = ↓[ρ]β〉 is a conjunct of ϕ, then for each children z1, z2 of the root
rϕ of T ϕ at which ψ and ρ are satisfied respectively, if w1, w2 are nodes such that
T ϕ, z1, w1 |= α and T ϕ, z2, w2 |= β, then the data values of w1 and w2 are different.

(C9) If ¬〈↓[ψ]α 6= ↓[ρ]β〉 is a conjunct of ϕ, then for each children z1, z2 of the root
rϕ of T ϕ at which ψ and ρ are satisfied respectively, if w1, w2 are nodes such that
T ϕ, z1, w1 |= α and T ϕ, z2, w2 |= β, then w1 and w2 have the same data value.

As in §2.3.3, we first give an intuitive description of the construction of the model, and
then proceed to formalize it:

Insight into the construction

The construction given in §2.3.3 has some similarities with the one we are about to present.
As before, we will hang, from a common root, copies of trees given by inductive hypothesis
to guarantee the satisfaction of some conjuncts of ϕ. Like in the previous case, we may
need to introduce some changes on those trees in order to avoid spoiling the satisfaction
of other conjuncts.

However, this construction is far more complex than the one for XPath=(↓)−. In the
previous case, when adding new witnesses with fresh data values, one only needed to
be careful enough to avoid putting in the same class nodes that should be in different
classes. Now, in addition to that (which is also harder to achieve, as witnessed by the
differences between Lemmas 104 and 126 explained at the end of the latter), one also
needs to guarantee conditions of the form ¬〈µ 6= δ〉 with µ, δ ∈ Pn+1 which force the
merging of classes of every witness of the kind of paths involved that could appear along
the construction.

Unlike the case of XPath=(↓)−, each pair of path expressions µ, δ in Pn+1 will occur in
two conjuncts of ϕ instead of one (we do not care about symmetric repetitions). Indeed, in
the case of XPath=(↓)−, for µ, δ in P−n+1, we either have 〈µ = δ〉 or ¬〈µ = δ〉 as a conjunct
of a node expression in N−n+1. Now we have four choices because we also have either 〈µ 6= δ〉
or ¬〈µ 6= δ〉, and hence two conjuncts containing µ and δ will occur in node expressions
of Nn+1. We cannot treat as separate from each other those two conjuncts in which the
same pair µ, δ appear, so we first split Pn+1 into four subsets to deal with diamonds that
compare against the constant empty path:

V=, 6= = {(ψ, α) | ψ ∈ Nn, α ∈ Pn, 〈ε = ↓[ψ]α〉 and 〈ε 6= ↓[ψ]α〉 are conjuncts of ϕ}

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 123

V=,¬6= = {(ψ, α) | ψ ∈ Nn, α ∈ Pn, 〈ε = ↓[ψ]α〉 and ¬〈ε 6= ↓[ψ]α〉 are conjuncts of ϕ}
V¬=, 6= = {(ψ, α) | ψ ∈ Nn, α ∈ Pn,¬〈ε = ↓[ψ]α〉 and 〈ε 6= ↓[ψ]α〉 are conjuncts of ϕ}

V¬=,¬6= = {(ψ, α) | ψ ∈ Nn, α ∈ Pn,¬〈ε = ↓[ψ]α〉 and ¬〈ε 6= ↓[ψ]α〉 are conjuncts of ϕ}

We make the following observations regarding the above definitions:

Observation 118. For (ψ, α) ∈ V¬=,¬6=, our axioms should tell us that either 〈α〉 is not
a conjunct of ψ or ↓[ψ]β does not appear in any other positive conjunct of ϕ. If this is not
the case, then ϕ would be clearly unsatisfiable and thus our axiomatic system would not be
complete. This assertion is a consequence of the following lemma plus Der12 of Fact 90.
It is important to remark that the axioms required for the proof can be easily proven sound.

Lemma 119. Let ψ ∈ Nn, α ∈ Pn, γ ∈ Pn+1. If ¬〈γ = ↓[ψ]α〉∧¬〈γ 6= ↓[ψ]α〉∧〈γ〉∧〈↓[ψ]〉
is consistent, then ¬〈α = α〉 is a conjunct of ψ.

Proof. See §2.6.

Then, by Lemma 112 plus the fact that we will construct our model by hanging from the
root the trees given by inductive hypothesis, we should not be worried about the satisfaction
of either ¬〈ε = ↓[ψ]α〉 nor ¬〈ε 6= ↓[ψ]α〉 because we will never create a pair of nodes
witnessing the path ↓[ψ]α.

Observation 120. For (ψ, α) ∈ V=,¬6=, our axioms should tell us that in a tree T ψ, any
pair of nodes satisfying α ends in a node in the same equivalence class, since we want to
put any such node in the class of the root rϕ. The following lemma has this property as an
immediate consequence.

Lemma 121. Let ∗ ∈ {=, 6=}, ψ ∈ Nn, α, β ∈ Pn, γ ∈ Pn+1. If 〈γ = ↓[ψ]α〉 ∧ ¬〈γ 6=
↓[ψ]α〉 ∧ ¬〈γ ∗ ↓[ψ]β〉 is consistent, then ¬〈α ∗ β〉 is a conjunct of ψ.

Proof. See §2.6.

Observation 122. For (ψ, α) ∈ V=,¬6= and (ψ, β) ∈ V¬=,6=, Lemma 121 also tells us that
in a tree T ψ, any pairs of nodes satisfying α and β end in points in different equivalence
classes; which is also necessary to be able to satisfy ϕ.

Observation 123. For (ψ, α) ∈ V=,6= and (ψ, β) ∈ V=,¬6=, in order to obtain a witness
for 〈ε 6= ↓[ψ]α〉, our axioms should tell us that in a tree T ψ we can find a pair of nodes
satisfying α starting from the root, and such that its ending node is in a different class
from that of the ending node of any pair of nodes satisfying β and beginning at the root of
that tree. The following lemma combined with Observation 120 has this as an immediate
consequence.

Lemma 124. Let ∗ ∈ {=, 6=}, ψ ∈ Nn, α, β ∈ Pn, γ ∈ Pn+1. If 〈γ = ↓[ψ]α〉 ∧ ¬〈γ 6=
↓[ψ]α〉 ∧ 〈γ ∗ ↓[ψ]β〉 is consistent, then 〈α ∗ β〉 is a conjunct of ψ.

Proof. See §2.6.

124 CHAPTER 2. AXIOMATIZATIONS

Observation 125. For (ψ, α) ∈ V=,6=, in order to obtain a witness for 〈ε = ↓[ψ]α〉, we
need a tree in which ψ is satisfied and a pair of nodes (beginning at the root of that tree)
satisfying α and ending in a node such that: it is in the class of the ending nodes of pairs
of nodes satisfying β for (ψ, β) ∈ V=,¬6=, but it is not in the class of any ending node of
a pair of nodes satisfying γ for (ψ, γ) ∈ V¬=,6=. In case there exists β ∈ Pn such that
(ψ, β) ∈ V=,¬6=, any tree at which ψ is satisfied will work by the previous observations and
lemmas. But in case (ψ, β) 6∈ V=,¬6= for all β ∈ Pn, we will have to make use of Lemma 126
(the analogous of Lemma 104 for this case).

Processing data-aware diamonds of the form (¬)〈ε ∗ ↓[ψ]α〉. Having all these
observations at hand, we begin by analyzing the following (non-disjoint) cases to construct
our tree T ϕ:

(Case 1) For (ψ, α) ∈ V=, 6=, we add two witnesses. One for 〈ε = ↓[ψ]α〉 from which we
merge the class of the ending point xv1 of a pair of nodes satisfying α as in
Observation 125 with the class of rϕ. We add another witness for 〈ε 6= ↓[ψ]α〉
(remember Observation 123). See Figure 28(a).

(Case 2) For (ψ, α) ∈ V=,¬6=, we add one witness for 〈ε = ↓[ψ]α〉 (see Figure 28(b)) and,
at the end of the construction, we will merge the class of any node x such that
rϕ, x |= ↓[ψ]α with the class of rϕ (remember Observation 120).

(Case 3) For (ψ, α) ∈ V¬=, 6=, we add one witness for 〈ε 6= ↓[ψ]α〉 (See Figure 28(c)). Note
that 〈ε 6= ↓[ψ]α〉 ∧ ¬〈ε = ↓[ψ]α〉 will be satisfied by Observations 122 and 125.

↵

r'

 =

↵

xv1

↵

r'

=

↵

r'

(a) (b) (c)

Figure 28: (a) Witnesses for 〈ε = ↓[ψ]α〉 and 〈ε 6= ↓[ψ]α〉 for (ψ, α) ∈ V=,6=; (b) A witness for
〈ε = ↓[ψ]α〉 for (ψ, α) ∈ V=,¬6=; (c) A witness for 〈ε 6= ↓[ψ]α〉 for (ψ, α) ∈ V¬=,6=.

Processing data-aware diamonds of the form (¬)〈↓[ψ]α∗↓[ρ]β〉. For conjuncts
of ϕ the form (¬)〈↓[ψ]α∗↓[ρ]β〉 that do not involve comparison with the constant path ε, we
have that, depending on which of the sets V=,6=,V=,¬6=,V¬=,6=,V¬=,¬6= do (ψ, α) and (ρ, β)
belong to, many of the four possible combinations (〈↓[ψ]α = ↓[ρ]β〉 and 〈↓[ψ]α 6= ↓[ρ]β〉,
〈↓[ψ]α = ↓[ρ]β〉 and ¬〈↓[ψ]α 6= ↓[ρ]β〉, etc.) are not possible as conjuncts for a consistent
ϕ. More specifically:

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 125

(Case 4) If we have 〈↓[ψ]α = ↓[ρ]β〉 and ¬〈↓[ψ]α 6= ↓[ρ]β〉 as conjuncts of ϕ, then all
the following cases should be impossible since, in that case, ϕ would be clearly
unsatisfiable and thus it should be inconsistent: (ψ, α) or (ρ, β) in V=,6=, (ψ, α)
or (ρ, β) in V¬=,¬6=, one in V=,¬6= and the other in V¬=, 6=. Besides, if both belong
to V=,¬6=, since we merge the class of any node x such that rϕ, x |= ↓[ψ]α or
rϕ, x |= ↓[ρ]β, those conjuncts 〈↓[ψ]α = ↓[ρ]β〉 and ¬〈↓[ψ]α 6= ↓[ρ]β〉 will be
satisfied. If both belong to V¬=,6=, we need to force these conjuncts by merging
the class of any node x such that rϕ, x |= ↓[ψ]α or rϕ, x |= ↓[ρ]β (note that we
have such nodes by (Case 3)). It is important to notice that this process does
not add nodes to the class of the root since such nodes x are never in the same
equivalence class than any xv1 from (Case 1) nor in the same equivalence class of
a witness of 〈↓[µ]δ〉 for (µ, δ) ∈ V=,¬6=.

(Case 5) If we have 〈↓[ψ]α = ↓[ρ]β〉 and 〈↓[ψ]α 6= ↓[ρ]β〉 as conjuncts of ϕ, then it cannot
be the case that (ψ, α) or (ρ, β) belong to V¬=,¬6=. Neither is possible that both
of them belong to V=,¬6= or one to V=,¬6= and the other to V¬=,6=. Besides, if
(ψ, α), (ρ, β) belong to V=, 6=, then 〈↓[ψ]α = ↓[ρ]β〉 and 〈↓[ψ]α 6= ↓[ρ]β〉 are already
satisfied: 〈↓[ψ]α = ↓[ρ]β〉 by the witnesses for 〈ε = ↓[ψ]α〉 and 〈ε = ↓[ρ]β〉 (see
Figure 29(a)), 〈↓[ψ]α 6= ↓[ρ]β〉 by the witnesses for 〈ε = ↓[ψ]α〉 and 〈ε 6= ↓[ρ]β〉
(see Figure 29(b) and remember Observation 123). In case one belongs to V=,6=
and the other to V=,¬6=, the argument is similar. If one belongs to V=, 6= and
the other to V¬=, 6= or both to V¬=,6=, 〈↓[ψ]α 6= ↓[ρ]β〉 will be satisfied using
arguments similar to the previous ones; but we need to add witnesses to guarantee
the satisfaction of 〈↓[ψ]α = ↓[ρ]β〉 (see Figure 29(c)). In some cases, the merging
performed in (Case 4), would have already merged the classes of a witness for
〈↓[ψ]α〉 and a witness for 〈↓[ρ]β〉, in the remaining cases, we will need to force
that merging carefully enough not to spoil conditions (C6) and (C8) (we will use
Lemma 126 to achieve that).

↵

r'

 =

�

⇢
=

xv1 xv0
1

↵

r'

 =

�

⇢

↵

r'

= �

⇢

(a) (b) (c)

Figure 29: (a) Witnesses for 〈ε = ↓[ψ]α〉 and 〈ε = ↓[ρ]β〉 for (ψ, α) ∈ V=,6=, (ρ, β) ∈ V=,¬6= end
up in the same equivalence class; (b) Witnesses for 〈ε = ↓[ψ]α〉 for (ψ, α) ∈ V=,¬6= and 〈ε 6= ↓[ρ]β〉
for (ρ, β) ∈ V¬=, 6= end up in different equivalence classes; (c) Witnesses for 〈↓[ψ]α = ↓[ρ]β〉 for
(ψ, α) ∈ V=, 6=, (ρ, β) ∈ V¬=, 6= or (ψ, α), (ρ, β) ∈ V¬=,6=.

Finally, these last two cases are satisfied automatically:

126 CHAPTER 2. AXIOMATIZATIONS

(Case 6) If we have ¬〈↓[ψ]α = ↓[ρ]β〉 and 〈↓[ψ]α 6= ↓[ρ]β〉 as conjuncts of ϕ, then all the
following cases should be impossible: (ψ, α) or (ρ, β) in V¬=,¬6=, both in V=,6= or
V=,¬6=. Besides, if one belongs to V=,¬6= and the other to V¬=,6= or if one belongs
to V=, 6= and the other to V¬=,6= or if they both belong to V¬=, 6=, ¬〈↓[ψ]α = ↓[ρ]β〉
and 〈↓[ψ]α 6= ↓[ρ]β〉 will be satisfied automatically —the last two cases may not
be as intuitive as others but are also true and we will give a detailed proof in time.

(Case 7) If we have ¬〈↓[ψ]α = ↓[ρ]β〉 and ¬〈↓[ψ]α 6= ↓[ρ]β〉 as conjuncts of ϕ, then the
only case that should not lead to an inconsistency is when at least one of (ψ, α)
and (ρ, β) is in V¬=,¬6= and, in this case, ¬〈↓[ψ]α = ↓[ρ]β〉 and ¬〈↓[ψ]α 6= ↓[ρ]β〉
will be satisfied automatically.

Formalization

In order to formalize the construction described above, we introduce the following lemma,
which is key to guarantee conditions (C2) and (C4) without spoiling conditions (C6)
and (C8):

Lemma 126. Let ψ0 ∈ Nn, α, β1, . . . , βm ∈ Pn. Suppose that there exists a tree T ψ0 =
(Tψ0 , πψ0) with root rψ0 such that T ψ0 , rψ0 |= ψ0 and for all i = 1, . . . ,m there exists
γi ∈ Pn+1 such that 〈γi = ↓[ψ0]α〉 ∧ ¬〈γi = ↓[ψ0]βi〉 is consistent. Then there exists a tree

T̃ ψ0 = (T̃ψ0 , π̃ψ0) with root r̃ψ0 and a node x such that:

• T̃ ψ0 , r̃ψ0 |= ψ0,

• T̃ ψ0 , r̃ψ0 , x |= α, and

• [x]
π̃ψ0
6= [y]

π̃ψ0
for all y such that T̃ ψ0 , r̃ψ0 , y |= βi for some i = 1, . . . ,m.

Proof. Suppose α = ↓[ψ1] . . . ↓[ψj0]ε where ψk ∈ Nn−k for all k = 1, . . . , j0 and let

k0 = min
0≤k≤j0

{k | ¬〈↓[ψk+1] . . . ↓[ψj0]ε 6= ↓[ψk+1] . . . ↓[ψj0]ε〉 is a conjunct of ψk} .

In case k0 = 0 (i.e. ¬〈α 6= α〉), by Lemma 114 , ¬〈α = βi〉 is a conjunct of ψ0 for all

i = 1, . . . ,m. Then T̃ ψ0 = (Tψ0 , πψ0) satisfies the desired properties. The intuitive idea
behind this application of Lemma 114 is that in case every ending point of a pair of nodes
satisfying α is in the same equivalence class, then there cannot be pairs of nodes satisfying α
and βi ending in points with the same data value, because in that case 〈γi = ↓[ψ0]α〉∧¬〈γi =
↓[ψ0]βi〉 would be unsatisfiable and thus inconsistent, which is a contradiction with our
hypothesis.

In case k0 6= 0, by consistency, there are z′, x′ ∈ Tψ0 such that T ψ0 , rψ0 , z′ |= ↓[ψ1] . . . ↓[ψk0]
and T ψ0 , z′, x′ |= ↓[ψk0+1] . . . ↓[ψj0]. Before proceeding to complete the proof of this case,
we give an intuitive idea. We prove that we cannot have a witness for βi with the same

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 127

data value than x′ in the subtree Tψ0|z′. Intuitively this is because, in that case, α and βi
would have a common prefix. Let us say that

β = ↓[ψ1] . . . ↓[ψk0]↓[ρk0+1] . . . ↓[ρl0]ε and 〈↓[ψk0+1] . . . ↓[ψj0]ε = ↓[ρk0+1] . . . ↓[ρl0]ε〉

is a conjunct of ψk0 . Then, since ¬〈↓[ψk0+1] . . . ↓[ψj0]ε 6= ↓[ψk0+1] . . . ↓[ψj0]ε〉 is also a con-
junct of ψk0 , 〈γi = ↓[ψ0]α〉 ∧¬〈γi = ↓[ψ0]βi〉 would be unsatisfiable (and thus inconsistent)
for any choice of γi, which is a contradiction. But our hypotheses do not guarantee that we
would not have a witness for βi in the class of x′ outside Tψ0|z′, and therefore we need to
change the tree in order to achieve the desired properties. We replicate the subtree Tψ0|z′
but using a fresh data value (different from any other data value already present in T ψ0)
for the class of the companion of x′ that we call x; see Figure 30. It is clear that in this
way, the second and the third conditions will be satisfied by x. The first condition will also
remain true because, intuitively, the positive conjuncts will remain valid since we are not
suppressing any nodes, and the negative ones that compare by equality will not be affected
because every new node has either the same data value than its companion or a fresh data
value. The argument for negative conjuncts that compare by inequality is based on the
way in which we have chosen k0 (see a detailed proof below).

Now we formalize the previous intuition. Let p be the parent of z′ (k0 > 0). As we did

in the proof of Lemma 104, we define T̃ ψ0 by adding a new child z of p and a data tree
T = (T, π) hanging from z. This tree T is a copy of Tψ0|z, and we call x to the companion

of x′. π̃ψ0 is defined as πψ0 with the exception that the class of x is new (the classes of the
other nodes of T are merged with the classes of their companions) (see Figure 30).

r 0

gT 0T 0

gr 0

z0
p

zz0

xx0 x0

TT 0�z0 T 0�z0

Figure 30: T = Tψ0 |z is a new subtree with a special node x such that its class of data values

is disjoint to the rest of T̃ ψ0 and T̃ ψ0 , r̃ψ0 , x |= α.

We first prove by induction that zj, the j-th ancestor of z (namely zj
j→z, and we let

z0 := z), satisfies T̃ ψ0 , zj |= ψk0−j. This will prove both that T̃ ψ0 , r̃ψ0 |= ψ0 and that

T̃ ψ0 , r̃ψ0 , x |= α. By Proposition 88, it is straightforward from the construction that ψk0
is satisfied at z (the companion of z′) which proves the base case. For the inductive case,
assume the result holds for z0, . . . , zj. We want to see that it holds for zj+1. To do this,
we check that every conjunct of ψk0−j−1 is satisfied at zj+1:

• If the conjunct is a label, it is clear that zj+1 has that label in T̃ ψ0 , as it has not been
changed by the construction.

128 CHAPTER 2. AXIOMATIZATIONS

• If the conjunct is of the form 〈µ1 = µ2〉 or 〈µ1 6= µ2〉, then it must still hold in T̃ ψ0

by inductive hypothesis and the fact that our construction did not remove nodes.

• If the conjunct is of the form ¬〈µ1 = µ2〉, we observe that, by inductive hypothesis

plus the way in which we have constructed T̃ ψ0 , we have that: If T̃ ψ0 , zj+1 |= 〈µ1 =
µ2〉 then T ψ0 , zj+1 |= 〈µ1 = µ2〉 (for a complete proof of this assertion, one can use
arguments similar to the ones used in Lemma 104) which is a contradiction with the

fact that T ψ0 , zj+1 |= ψk0−(j+1). Then T̃ ψ0 , zj+1 |= ¬〈µ1 = µ2〉.

• If the conjunct is of the form ¬〈µ1 6= µ2〉, by inductive hypothesis plus the way

in which we have constructed T̃ ψ0 , 〈µ1 6= µ2〉 can only be true in zj+1 if there

are witnesses y1, y2 in distinct equivalence classes such that T̃ ψ0 , zj+1, y1 |= µ1,

T̃ ψ0 , zj+1, y2 |= µ2 and at least one of them is in the new subtree T . In that
case, without loss of generality, we have that µ1 = ↓[ψk0−j] . . . ↓[ψk0]µ̂1. Then, by
definition of k0, 〈↓[ψk0−j] . . . ↓[ψj0]ε 6= ↓[ψk0−j] . . . ↓[ψj0]ε〉 is a conjunct of ψk0−j−1.
Therefore, by consistency and NeqAx7, 〈↓[ψk0−j] . . . ↓[ψj0]ε 6= µ2〉 or ¬〈µ2 = µ2〉 is
also a conjunct of ψk0−j−1. If the latter occurs, we have a contradiction by the pre-
vious item. If 〈↓[ψk0−j] . . . ↓[ψj0]ε 6= µ2〉 is a conjunct of ψk0−j−1, by Lemma 114
¬〈↓[ψk0+1] . . . ↓[ψj0]ε = µ̂1〉 is a conjunct of ψk0 . Then, by construction, the class of

y1 in T̃ ψ0 is equal to the class of its companion and so we can assume that y1 6∈ T .
Analogously we can assume that y2 6∈ T but, as we have already said, by inductive

hypothesis plus the way in which we have constructed T̃ ψ0 , 〈µ1 6= µ2〉 cannot be
satisfied at zj+1 by witnesses y1, y2 if neither of them is in the new subtree T .

To conclude the proof, we only need to check that [x]
π̃ψ0
6= [y]

π̃ψ0
for all y such that

T̃ ψ0 , r̃ψ0 , y |= βi for some i = 1, . . . ,m. Suppose that βi = ↓[ρ1] . . . ↓[ρl0]ε. If l0 < k0

or ρl 6= ψl for some l = 1, . . . , k0, then the result follows immediately from construc-
tion. If not, by hypothesis, there exists γi ∈ Pn+1 such that 〈γi = ↓[ψ0] . . . ↓[ψj0]ε〉∧¬〈γi =
↓[ψ0] . . . ↓[ψk0]↓[ρk0+1] . . . ↓[ρl0]ε〉 is consistent and ¬〈↓[ψk0+1] . . . ↓[ψj0]ε 6= ↓[ψk0+1] . . . ↓[ψj0]ε〉
is a conjunct of ψk0 . Then, by Lemma 114, ¬〈↓[ψk0+1] . . . ↓[ψj0]ε = ↓[ρk0+1] . . . ↓[ρl0] ε〉 is
a conjunct of ψk0 . This together with the fact that the class of x is disjoint with the part

of T̃ψ0 outside of T , shows that [x]
π̃ψ0
6= [y]

π̃ψ0
if y is such that T̃ ψ0 , r̃ψ0 , y |= βi, which

concludes the proof.

It might be useful to remark on the differences between Lemmas 126 and 104, as they
are one of the reasons why the completeness result for XPath=(↓) is more complicated than
for XPath=(↓)−. The main differences between those two lemmas are:

• In Lemma 126, if we would replicate the subtree hanging from a witness of 〈α〉 then,
due to the fact that we are working with the complete fragment (with inequality
tests also), we would not be able to prove that each ancestor of that node satisfies
the desired formulas. So we are forced to find that minimum k0 that tells us which
subtree we should replicate.

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 129

• In Lemma 104, we can use new data for every new node since, again, we are not
working with inequality tests. But when it comes to the complete fragment, we need

to be more careful in the way we define the partition in T̃ ψ0 changing only the class
of the new witness of 〈α〉.

Now that we have this key lemma, we proceed to the formal construction of T ϕ. We define
some special sets of quadruples (ψ, α, ρ, β) with ψ, ρ ∈ Nn, α, β ∈ Pn:

• U is the set of quadruples (ψ, α, ρ, β) such that one of the following holds:

– (ψ, α), (ρ, β) ∈ V¬=, 6=, and 〈↓[ψ]α = ↓[ρ]β〉, 〈↓[ψ]α 6= ↓[ρ]β〉 are conjuncts of ϕ,
or

– (ψ, α) ∈ V=, 6=, (ρ, β) ∈ V¬=,6=, and 〈↓[ψ]α = ↓[ρ]β〉, 〈↓[ψ]α 6= ↓[ρ]β〉 are
conjuncts of ϕ.

cf. (Case 5).

• Z is the set of all quadruples (ψ, α, ρ, β) such that (ψ, α), (ρ, β) ∈ V¬=,6=, and
〈↓[ψ]α = ↓[ρ]β〉, ¬〈↓[ψ]α 6= ↓[ρ]β〉 are conjuncts of ϕ.

cf. (Case 4).

The following lemma states that the relation between the elements of V¬=, 6= defined
by the set Z is transitive, a fact which will be needed to prove that ϕ is indeed satisfied in
the constructed tree:

Lemma 127. If (ψ, α, ρ, β), (ρ, β, θ, γ) ∈ Z, then (ψ, α, θ, γ) ∈ Z.

Proof. By NeqAx7 and the consistency of ϕ, ¬〈↓[ψ]α 6= ↓[θ]γ〉 is a conjunct of ϕ. Then,
by consistency of ϕ plus NeqAx6, 〈↓[ψ]α = ↓[θ]γ〉 is also a conjunct of ϕ which concludes
the proof.

Now that we have these lemmas, we proceed to construct T ϕ as follows:

Rule 1. Witnesses for v1 = (ψ,α) ∈ V=,6=. (cf. (Case 1)) We define data trees
T v1

1 = (T v1
1 , πv1

1) and T v1
2 = (T v1

2 , πv1
2) with roots rv1

1 and rv1
2 respectively. In order

to choose appropriate witnesses for 〈ε = ↓[ψ]α〉 and 〈ε 6= ↓[ψ]α〉, we need the following
lemma:

Lemma 128. Let v1 = (ψ, α) ∈ V=,6=. Then there exist T̃ ψ = (T̃ψ, π̃ψ) with root r̃ψ and
a node x such that:

• T̃ ψ, r̃ψ |= ψ,

• T̃ ψ, r̃ψ, x |= α,

130 CHAPTER 2. AXIOMATIZATIONS

• [x]
π̃ψ

= [y]
π̃ψ

for all y such that there is β ∈ Pn with (ψ, β) ∈ V=,¬6= and T̃ ψ, r̃ψ, y |=
β,

• [x]
π̃ψ
6= [z]

π̃ψ
for all z such that there is γ ∈ Pn with (ψ, γ) ∈ V¬=, 6= and T̃ ψ, r̃ψ, z |= γ.

Proof. We first analyze the case that there exists β ∈ Pn such that (ψ, β) ∈ V=,¬6=. Then,
by Lemmas 121 and 124, the result is immediate from the fact that we are assuming there
is a tree T ψ satisfying ψ at its root. The idea is that by inductive hypothesis, there exists
T ψ = (Tψ, πψ) satisfying ψ at is root. Then, Lemma 121 guarantees that every witness
of some β as described before belongs to the same class in πψ and that every witness of
some γ as described before does not belong to this class. Finally, Lemma 124 shows the
existence of the desired node x.

To conclude the proof, suppose that (ψ, β) 6∈ V=,¬6= for all β ∈ Pn. Then the result
follows from Lemma 126.

Using Lemma 128, define T v1
1 as T̃ψ, πv1

1 as π̃ψ, rv1
1 as r̃ψ and xv1 = x ∈ T v1

1 . Also, by
inductive hypothesis, there exists a tree T ψ = (Tψ, πψ) with root rψ such that T ψ, rψ |= ψ.
Define T v1

2 as Tψ, πv1
2 as πψ and rv1

2 as rψ. Without loss of generality, we assume that T v1
1

and T v1
2 are disjoint. In other words, the rooted data tree (T v1

1 , πv1
1 , rv1

1) is just a copy of

(T̃ψ, π̃ψ, r̃ψ) with a special node named xv1 and (T v1
2 , πv1

2 , rv1
2) is just a copy of (Tψ, πψ)

disjoint with (T v1
1 , πv1

1 , rv1
1). See Figure 31(a).

yu
�

↵ =

xv1

rv1
1 = fr rv1

2 = r

Tv1
1 = fT Tv1

2 = T
z

↵

rv2 = r

Tv2 = T
z

↵

rv3 = r

Tv3 = T

(a) (b) (c)

=

ru1 = r ru2 = r⇢

Tu
1 = T Tu

2 = T ⇢

xu
yu

�
↵ =

ru
1 = fr

Tu
1 = fT

ru
2 = er⇢

Tu
2 = fT ⇢

(d) (e)

Figure 31: Witnesses for (a) v1 = (ψ, α) ∈ V=, 6=; (b) v2 = (ψ, α) ∈ V=,¬6=;
(c) v3 = (ψ, α) ∈ V¬=, 6=; (d) u = (ψ, α, ρ, β) ∈ U1; (e) u = (ψ, α, ρ, β) ∈ U2.

Rule 2. Witnesses for v2 = (ψ,α) ∈ V=,¬6=. (cf. (Case 2)) We define a data tree
T v2 = (T v2 , πv2) with root rv2 . By inductive hypothesis, there exists T ψ = (Tψ, πψ), with

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 131

root rψ such that T ψ, rψ |= ψ. Define T v2 as Tψ, πv2 as πψ, and rv2 as rψ. In other words,
the rooted data tree (T v2 , πv2 , rv2) is just a copy of (Tψ, πψ, rψ). See Figure 31(b).

Rule 3. Witnesses for v3 = (ψ,α) ∈ V¬=,6=. (cf. (Case 3)) We define a data tree
T v3 = (T v3 , πv3) with root rv3 . By inductive hypothesis, there exists T ψ = (Tψ, πψ), with
root rψ such that T ψ, rψ |= ψ. Define T v3 as Tψ, πv3 as πψ, and rv3 as rψ. In other words,
the rooted data tree (T v3 , πv3 , rv3) is just a copy of (Tψ, πψ, rψ). See Figure 31(c).

Rule 4. Witnesses for u = (ψ,α, ρ, β) ∈ U. (cf. (Case 5)) We define data trees
T u

1 = (Tu
1 , π

u
1) and T u

2 = (Tu
2 , π

u
2) with roots ru1 , ru2 respectively.

By inductive hypothesis, there exist trees T ψ = (Tψ, πψ) (with root rψ) and T ρ =
(T ρ, πρ) (with root rρ) such that T ψ, rψ |= ψ and T ρ, rρ |= ρ.

Now, in order to consider the information given by U and its interaction with Z, we
split U into two different subsets:

• U1 is the set of (ψ, α, ρ, β) ∈ U for which there are γ, δ ∈ Pn such that:

– (ψ, γ, ρ, δ) ∈ Z,

– 〈γ = α〉 is a conjunct of ψ,

– 〈δ = β〉 is a conjunct of ρ.

• U2 = U \U1

For u = (ψ, α, ρ, β) ∈ U1, define Tu
1 as Tψ, πu

1 as πψ, ru1 as rψ and define Tu
2 as T ρ, πu

2

as πρ, ru2 as rρ. Without loss of generality, we assume that Tu
1 and Tu

2 are disjoint.
In other words, the rooted data tree (Tu

1 , π
u
1 , r

u
1) is just a copy of (Tψ, πψ, rψ) and the

pointed data tree (Tu
2 , π

u
2 , r

u
2) is a copy of (T ρ, πρ, rρ). See Figure 31(d). Note that these

are the cases in which the satisfaction of 〈↓[ψ]α = ↓[ρ]β〉 will be guaranteed by the merging
described in (Case 4).

For u = (ψ, α, ρ, β) ∈ U2, in Lemma 126 consider

ψ0 := ψ

T ψ0 := T ψ
α := α

{β1, . . . , βm} := {γ ∈ Pn | ¬〈↓[ρ]β = ↓[ψ]γ〉 is a conjunct of ϕ}
γi := ↓[ρ]β for all i = 1, . . . ,m

Then there exist T̃ ψ = (T̃ψ, π̃ψ) with root r̃ψ and a node x such that:

• T̃ ψ, r̃ψ |= ψ,

• T̃ ψ, r̃ψ, x |= α

132 CHAPTER 2. AXIOMATIZATIONS

• [x]
π̃ψ
6= [y]

π̃ψ
for all y such that there is γ ∈ Pn with T̃ ψ, r̃ψ, y |= γ and ¬〈↓[ρ]β =

↓[ψ]γ〉 is a conjunct of ϕ.

Define Tu
1 as T̃ψ, πu

1 as π̃ψ, ru1 as r̃ψ and xu = x ∈ Tu
1 . Now let

{µ1, . . . , µr} =
{
µ ∈ Pn | there exists y ∈ Tu

1 such that T u
1 , r

u
1 , y |= µ and [y]πu

1
= [xu]πu

1

}
.

Then it follows that 〈↓[ρ]β = ↓[ψ]µj〉 is a conjunct of ϕ for all j = 1, . . . , r.
In Lemma 126, consider

ψ0 := ρ

T ψ0 := T ρ
α := β

{β1, . . . , βm} := {δ ∈ Pn | ∃j = 1, . . . , r with ¬〈↓[ρ]δ = ↓[ψ]µj〉 is a conjunct of ϕ}
γi := ↓[ψ]µj for j = 1, . . . r such that 〈↓[ρ]βi = ↓[ψ]µj〉 is a conjunct of ϕ

Then there exist a tree T̃ ρ = (T̃ ρ, π̃ρ) with root r̃ρ and a node y such that

• T̃ ρ, r̃ρ |= ρ,

• T̃ ρ, r̃ρ, y |= β,

• [y]π̃ρ 6= [z]π̃ρ for all z such that there is δ ∈ Pn and j = 1, . . . , r with T̃ ρ, r̃ρ, z |= δ
and ¬〈↓[ρ]δ = ↓[ψ]µj〉 is a conjunct of ϕ.

Define Tu
2 as T̃ ρ, πu

2 as π̃ρ, ru2 as r̃ρ and yu = y. Without loss of generality, we assume that
Tu

1 and Tu
2 are disjoint.

In other words, the rooted data tree (Tu
1 , π

u|Tu
1 , r

u
1) is just a copy of (T̃ψ, π̃ψ, r̃ψ), with

a special node named xu which satisfies T u
1 , r

u
1 , x

u |= α. Analogously, the pointed data

tree (Tu
2 , π

u|Tu
2 , r

u
2) is a copy of (T̃ ρ, π̃ρ, r̃ρ), with a special node named yu which satisfies

T u
2 , r

u
2 , y

u |= β. See Figure 31(e).
Notice that this rule differs from Rule 2 of §2.3.3 in the fact that we do not merge the

classes of xu and yu yet. We will perform that merging only at the end of the construction.
This is not really important and we could have merged the classes at this step; the reason
for doing it at the end is only a technical issue. The proof of Fact 134 will be easier to
understand this way.

The following remark will be used later to prove that ϕ is indeed satisfied in the
constructed tree. Its proof is omitted since it is analogous to the proof of Remark 105:

Remark 129. Let (ψ, α, ρ, β) ∈ U2. If ¬〈↓[ψ]µ = ↓[ρ]δ〉 is a conjunct of ϕ, then [yu]πu
2
6=

[y]πu
2

for all y such that T u
2 , r

u
2 , y |= δ or [xu]πu

1
6= [x]πu

1
for all x such that T u

1 , r
u
1 , x |= µ.

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 133

The rooted data tree (T ϕ, πϕ, rϕ). As shown in Figure 32, now we define Tϕ, using
our Rules, as the tree which consists of a root rϕ with label a ∈ A if a is a conjunct of ϕ,
and with children

(T v1
1)v1∈V=,6= , (T

v1
2)v1∈V=,6= , (T

v2)v2∈V=,¬6= , (T
v3)v3∈V¬=,6= , (T

u
1)u∈U, (T

u
2)u∈U.

As a first step we provisionally define π̃ϕ over Tϕ by

π̃ϕ = {{rϕ}} ∪
⋃

v1∈V=, 6=

(πv1
1 ∪ πv1

2) ∪
⋃

v2∈V=,¬6=

πv2 ∪
⋃

v3∈V¬=,6=

πv3 ∪
⋃

u∈U

(πu
1 ∪ πu

2)

It is important to notice that, up to this point in the construction, the tree hanging from

yu

�

ru2
2

Tu2
2

xu

ru2
1

↵

Tu2
1

=

ru1
2

Tu1
2

z

↵

ru1
1

Tu1
1

z

↵
z

↵

Tv3

rv3

z

↵

Tv2

rv2rv1
2

yu

�
↵ =

rv1
1

Tv1
1

xv1

r'

Tv1
2

Figure 32: The tree Tϕ (without any partition yet).

each child of the root preserves its original partition.
In order to consider the information given by Z (cf. (Case 4)), we split V¬=,6= into two

subsets:

V′¬=, 6= = {(ψ, α) ∈ V¬=, 6= | for all (ρ, β) ∈ V¬=, 6=, (ψ, α, ρ, β) 6∈ Z} ,
V′′¬=, 6= = V¬=, 6= \V′¬=, 6=.

The following property of the set V′′¬=,6= will be used to prove that ϕ is indeed satisfied at
the constructed tree:

Lemma 130. Let (θ, δ), (θ, δ′) ∈ V¬=,6=. Suppose that (θ, δ) ∈ V′′¬=,6= and ¬〈δ′ 6= δ′〉 and
〈δ = δ′〉 are conjuncts of θ. Then (θ, δ, θ, δ′) ∈ Z.

Proof. By NeqAx7, ¬〈↓[θ]δ 6= ↓[θ]δ〉 is a conjunct of ϕ. By EqAx5 plus Der21 of Fact 90,
〈↓[θ]δ = ↓[θ]δ′〉 is a conjunct of ϕ. If we suppose that 〈↓[θ]δ′ 6= ↓[θ]δ′〉 is a conjunct of ϕ, by
Lemma 115 , we have that ¬〈δ = δ′〉 is a conjunct of θ which is a contradiction. Then we
can assume that ¬〈↓[θ]δ′ 6= ↓[θ]δ′〉 is a conjunct of ϕ and so we can conclude from NeqAx7
that ¬〈↓[θ]δ 6= ↓[θ]δ′〉 is a conjunct of ϕ. Then we have that (θ, δ, θ, δ′) ∈ Z.

As a particular case of Lemma 130, we have:

134 CHAPTER 2. AXIOMATIZATIONS

Remark 131. Let (θ, δ), (θ, δ′) ∈ V¬=,6=. Suppose that (θ, δ), (θ, δ′) ∈ V′′¬=,6= and 〈δ = δ′〉
is a conjunct of θ. Then (θ, δ, θ, δ′) ∈ Z.

Proof. Use NeqAx5 plus Der21 of Fact 90 and NeqAx7.

We classify the elements of V′′¬=,6= according to the following equivalence relation:

[(ψ, α)] = [(ρ, β)] iff (ψ, α, ρ, β) ∈ Z.

Observe that this relation is reflexive by NeqAx7, it is clearly symmetric and it is transitive
by Lemma 127. We name the equivalence classes A1, . . . , Am. We define π̂ϕ over Tϕ taking
into account the information given by V=,6=,V=,¬6= and Z. π̂ϕ is the smallest equivalence
relation containing π̃ϕ such that:

• [xv1]π̂ϕ = [rϕ]π̂ϕ for all v1 ∈ V=,6=,

• [x]π̂ϕ = [rϕ]π̂ϕ for all x ∈M ,

• For all i = 1, . . . ,m [x]π̂ϕ = [y]π̂ϕ for all x, y ∈ Li

where

M = {x | there exists (ψ, α) ∈ V=,¬6= and a child z of rϕ such that

Tϕ, π̃ϕ, z |= ψ and Tϕ, π̃ϕ, z, x |= α}
Li = {x | there exists (ψ, α) ∈ Ai and a child z of rϕ such that

Tϕ, π̃ϕ, z |= ψ and Tϕ, π̃ϕ, z, x |= α}

for all i = 1, . . . ,m.
In the previous “gluing”, we forced our model to satisfy all diamonds of the form

〈ε = ↓[ψ]α〉, ¬〈ε 6= ↓[ψ]α〉 and ¬〈↓[ψ]α 6= ↓[ρ]β〉 that need to be forced.

It is important to notice that, up to here, the tree hanging from each child of the root
still preserves its partition:

Fact 132. The partition restricted to the trees T v1
1 , T v1

2 for v1 ∈ V=,6=, the partition
restricted to the trees T v2 for v2 ∈ V=,¬6=, the partition restricted to the trees T v3 for
v3 ∈ V¬=, 6= and the partition restricted to the trees Tu

1 and Tu
2 for u ∈ U remain un-

changed. More formally:

• For each v1 = (ψ, α) ∈ V=, 6= and i ∈ {1, 2}, we have π̂ϕ|Tv1
i = πv1

i .

• For each v2 = (ψ, α) ∈ V=,¬6=, we have π̂ϕ|Tv2 = πv2.

• For each v3 = (ψ, α) ∈ V¬=, 6=, we have π̂ϕ|Tv3 = πv3.

• For each u = (ψ, α, ρ, β) ∈ U and i ∈ {1, 2}, we have π̂ϕ|Tu
i = πu

i .

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 135

Proof. We give a sketch of the proof, omitting the details.If we think we have three kinds of
“gluings”, root=, 6=-kind, root=,¬6=-kind and Z-kind, then the way in which two equivalence
classes in the same subtree can (hypothetically) be glued together is by a sequence of these
gluings. The examples displayed in Figure 33 shows that in (a), the classes of nodes x and
y were glued together by a sequence of the form root=, 6=-root=,¬6=; in (b), the classes of
nodes x and y were glued together by a sequence of the form root=,6=-root=,¬6=-Z.

=x y

root=, 6= root=,¬6=

=x y Z

root=, 6= root=,¬6=

(a) (b)

Figure 33: Examples of (hypothetical) “gluings”.

We give a list of the ingredients for the complete proof.

• By Rule 1, every witness for 〈↓[ψ]α〉 with (ψ, α) ∈ V¬=,6= in T v1
1 is in a different

class (according to π̃ϕ) than xv1 for all v1 ∈ V=,6=. Thus we do not have sequences
containing root=, 6=-Z or Z-root=, 6=.

• Lemma 121 implies that every witness for 〈↓[ψ]α〉 with (ψ, α) ∈ V=,¬6= and every
witness for 〈↓[ψ]β〉 with (ψ, β) ∈ V¬=,6= in the same subtree belong to different classes
in that subtree. As a particular case, every x ∈ M and y ∈ Li in the same subtree
belong to different classes. Thus we do not have sequences containing root=,¬6=-Z or
Z-root=,¬6=.

• Since we use a different copy at each application of Rule 1, we do not have sequences
starting and ending with root=,6=.

• Lemma 121 implies that every witness for 〈↓[ψ]α〉 with (ψ, α) ∈ V=,¬6= in the same
subtree belong to the same equivalence class in that subtree. Thus we do not have
to worry about sequences starting and ending with root=,¬6= because this kind of
sequences do not glue different classes.

• By Rule 1, every xv1 is in the same class that every witness in the same subtree of
〈↓[ψ]α〉 with (ψ, α) ∈ V=,¬6=. Thus we do not have to worry about sequences starting
with root=, 6= and ending with root=,¬6= (or vice versa) because this kind of sequences
do not glue different classes.

Combining the previous items, it only remains to consider sequences of only Z-kind
gluings.

136 CHAPTER 2. AXIOMATIZATIONS

• If x, x′ ∈ Li in the same subtree, a very simple derivation involving NeqAx5, shows
that [x]π̃ϕ = [x′]π̃ϕ . Thus we do not have to worry about sequences of the form Z
(just one Z-kind gluing).

• By Lemma 133 below, we do not have to worry about longer sequences of all Z-kind
gluings.

This concludes the proof of the Fact.

Lemma 133. Let ψ, θ0, . . . , θm ∈ Nn, α, β, δ0, δ
′
0, . . . , δm, δ

′
m ∈ Pn, x, x′, y, y′ ∈ Tψ, x0, y0 ∈

T θ0 , . . . , xm, ym ∈ T θm such that (see Figure 34):

• [x]πψ = [x′]πψ , [y]πψ = [y′]πψ , Tψ, rψ, x′ |= α, Tψ, rψ, y′ |= β,

• [xi]πθi = [yi]πθi , T
θi , rθi , xi |= δi, T

θi , rθi , yi |= δ′i for i = 0 . . .m, and

• (θ0, δ0, ψ, α) ∈ Z, (θi, δi, θi−1, δ
′
i−1) ∈ Z for i = 1 . . .m, (θm, δ

′
m, ψ, β) ∈ Z.

Then [x]πψ = [y]πψ .
(Notation: For ρ ∈ Nn, we use T ρ = (T ρ, πρ) with root rρ to denote any tree in which

ρ is satisfiable, namely the one given by inductive hypothesis, or the modified one T̃ ρ.)

�↵

r

�0 �00

r✓0 r✓1

�1 �01 �0m�m

r✓m

T T ✓0 T ✓1 T ✓m

. . .

. . .
Z Z Z

Z

x x0 y y0 x0 y0 x1 y1 xm ym

Figure 34: The hypothesis of Lemma 133.

Proof. Observe that, by Lemma 130 plus Lemma 127, (ψ, α, ψ, β) ∈ Z. Then, by NeqAx7
plus Lemma 121, ¬〈α 6= β〉 is a conjunct of ψ and so [x]πψ = [y]πψ .

Finally, define πϕ over Tϕ by

πϕ =
(
π̂ϕ \ ({[xu]π̂ϕ}u∈U2 ∪ {[yu]π̂ϕ}u∈U2)

)
∪
⋃

u∈U2

{[xu]π̂ϕ ∪ [yu]π̂ϕ}.

In other words, Tϕ has a root, named rϕ, and children

(T v1
1)v1∈V=, 6= , (T

v1
2)v1∈V=,6= , (T

v2)v2∈V=,¬6= , (T
v3)v3∈V¬=,6= , (T

u
1)u∈U, (T

u
2)u∈U.

Each of these children is the root of its corresponding tree inside Tϕ as defined above. All
these subtrees are disjoint, and πϕ is defined as the disjoint union of the partitions with
the exception that we put into the same class:

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 137

• the nodes rϕ, (xv1)v1∈V=,6= and every witness of 〈↓[ψ]α〉 with (ψ, α) ∈ V=,¬6=,

• a witness for 〈↓[ψ]α〉 and a witness for 〈↓[ρ]β〉 if (ψ, α, ρ, β) ∈ U2,

• every pair of witnesses of 〈↓[ψ]α〉 and 〈↓[ρ]β〉 respectively with (ψ, α, ρ, β) ∈ Z.

In the previous gluing, we forced our model to satisfy all diamonds of the form 〈↓[ψ]α =
↓[ρ]β〉 that need to be forced.

The following Fact is key to prove that ϕ is satisfied in T ϕ:

Fact 134. The partition restricted to the trees T v1
1 , T v1

2 for v1 ∈ V=,6=, the partition
restricted to the trees T v2 for v2 ∈ V=,¬6=, the partition restricted to the trees T v3 for
v3 ∈ V¬=, 6= and the partition restricted to the trees Tu

1 and Tu
2 for u ∈ U remain un-

changed. More formally:

• For each v1 = (ψ, α) ∈ V=, 6= and i ∈ {1, 2}, we have πϕ|Tv1
i = πv1

i .

• For each v2 = (ψ, α) ∈ V=,¬6=, we have πϕ|Tv2 = πv2.

• For each v3 = (ψ, α) ∈ V¬=, 6=, we have πϕ|Tv3 = πv3.

• For each u = (ψ, α, ρ, β) ∈ U and i ∈ {1, 2}, we have πϕ|Tu
i = πu

i .

Proof. We give a guide for the proof, omitting the details.
Now think that we have four kinds of “gluings”, root=,6=-kind, root=,¬6=-kind, Z-kind

and U2-kind, then the way in which two equivalence classes in the same subtree can (hy-
pothetically) be glued together is by a sequence of these gluings. In the example displayed
in Figure 35 the classes of nodes x and y were glued together by a sequence of the form
Z-Z-U2.

=x y

Z Z

U2

Figure 35: Example of (hypothetical) “gluing”.

We give a list of the ingredients for the complete proof.

• We have already observed that the same assertions hold if we change πϕ for π̂ϕ so
we are only interested in sequences that involve some gluing of kind U2. Moreover,
we can assume all the observations made in the proof of Fact 132.

138 CHAPTER 2. AXIOMATIZATIONS

• The fact that xv1 and xu (or yu) are always in different subtrees tells us that we do
not have sequences containing root=,6=-U2 or U2-root=,6=.

• Lemma 121 implies that every witness for 〈↓[ψ]α〉 with (ψ, α) ∈ V=,¬6= and every
witness for 〈↓[ψ]β〉 with (ψ, β) ∈ V¬=,6= in the same subtree belong to different
classes in that subtree. Thus we do not have sequences containing root=,¬6=-U2 or
U2-root=,¬6= coming from u = (ψ, α, ρ, β) ∈ U2 with (ψ, α), (ρ, β) ∈ V¬=,6=. Besides,
suppose that we have one of those sequences coming from u = (ψ, α, ρ, β) ∈ U2 with
(ψ, α) ∈ V=, 6=, (ρ, β) ∈ V¬=, 6= (the symmetric case is analogous) and (ψ, µ) ∈ V=,¬6=.
Then, by the consistency of ϕ plus NeqAx6, we can conclude that ¬〈↓[ψ]µ = ↓[ρ]β〉
is a conjunct of ϕ. This gives us a contradiction by Remark 129. Thus we do not
have sequences containing root=,¬6=-U2 or U2- emphroot=,¬6= at all.

• By Lemma 130 plus Lemma 127, we can reduce sequences with two consecutive
Z-kind gluings to sequences not having two consecutive Z-kind gluings.

• Since we use new subtrees for each u ∈ U2, we cannot have sequences containing
U2-U2 neither sequences starting and ending with U2.

• By Lemma 135 below, we cannot have sequences that alternate Z-kind gluings with
U2-kind gluings.

• One can think that the gluing of the classes [xu]π̂ϕ and [yu]π̂ϕ is made one at a time
since they are finite.

This concludes the proof of the Fact.

Lemma 135. Let ψ, θ0, . . . , θm ∈ Nn, α, β, δ0, δ
′
0, . . . , δm, δ

′
m ∈ Pn, x, x′, y, y′ ∈ Tψ, x0, y0 ∈

T θ0 , . . . , xm, ym ∈ T θm. The following conditions (see Figure 36) cannot be satisfied all at
the same time:

• [x]πψ = [x′]πψ , [y]πψ = [y′]πψ , Tψ, rψ, x′ |= α, Tψ, rψ, y′ |= β,

• [xi]πθi = [yi]πθi , T
θi , rθi , xi |= δi, T

θi , rθi , yi |= δ′i for i = 0 . . .m,

• (θ0, δ0, ψ, α) ∈ Z,

• for i = 1 . . .m, (θi, δi, θi−1, δ
′
i−1) ∈

{
U2 if i is odd

Z otherwise

• (θm, δ
′
m, ψ, β) ∈

{
Z if m is odd

U2 otherwise

(Notation: For ρ ∈ Nn, we use T ρ = (T ρ, πρ) with root rρ to denote any tree in which

ρ is satisfiable, namely the one given by inductive hypothesis, or the modified one T̃ ρ.)

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 139

�↵

r

�0 �00

r✓0 r✓1

�1 �01 �0m�m

r✓m

T T ✓0 T ✓1 T ✓m

. . .

. . .
Z

x x0 y y0 x0 y0 x1 y1 xm ym

U2

Z(U2) if m is odd (even)

U2(Z)Z

Figure 36: The hypothesis of Lemma 135.

Proof. We proceed by induction on m:

• Case m = 0 (see Figure 37(a)):

Since (ψ, β, θ0, δ
′
0) ∈ U2, (ψ, α, θ0, δ0) ∈ Z and 〈δ0 = δ′0〉 is a conjunct of θ0, we have

that ¬〈α = β〉 is a conjunct of ψ. But, on the other hand, by Remark 129, we know
that 〈↓[ψ]β = ↓[θ0]δ0〉 is a conjunct of ϕ which implies, by Lemma 124, that 〈α = β〉
is a conjunct of ψ, a contradiction.

�↵

r

�0 �00

r✓0

T T ✓0

Z

x x0 y y0 x0 y0

U2

�↵

r

�0 �00

r✓0 r✓1

�1 �01

T T ✓0 T ✓1

Z

x x0 y y0 x0 y0 x1 y1

U2

Z

(a) (b)

Figure 37: Proof of Lemma 135. (a) case m = 0. (b) case m = 1.

• If m = 1 (see Figure 37(b)):

By Remark 129, 〈↓[θ0]δ0 = ↓[θ1]δ′1〉 is a conjunct of ϕ and then, by NeqAx7, (θ0, δ0, θ1, δ
′
1) ∈

Z. This gives a contradiction with the fact that (θ0, δ
′
0, θ1, δ1) ∈ U2 plus the fact that

〈δ0 = δ′0〉 is a conjunct of θ0 and 〈δ1 = δ′1〉 is a conjunct of θ1.

• For the induction, suppose m ≥ 2:

In case m is odd, by Remark 129, 〈↓[θm−1]δm−1 = ↓[θm]δ′m〉 is a conjunct of ϕ and
then, by NeqAx7, (θm−1, δm−1, θm, δ

′
m) ∈ Z. By Lemma 127, (ψ, β, θm−2, δ

′
m−2) ∈ Z

and the result follows from inductive hypothesis for m− 2.

In case m is even, by Remark 129, 〈↓[θ0]δ0 = ↓[θ1]δ′1〉 is a conjunct of ϕ and then, by
NeqAx7 plus NeqAx7, (θ0, δ0, θ1, δ

′
1) ∈ Z. By Lemma 127, (ψ, α, θ2, δ2) ∈ Z and the

result follows from inductive hypothesis for m− 2.

This concludes the proof.

140 CHAPTER 2. AXIOMATIZATIONS

We conclude from Proposition 88 and the construction that:

Fact 136. The validity of a formula in a child of rϕ is preserved in T ϕ. More formally:

• For each v1 ∈ V=, 6=, i ∈ {1, 2} and x, y ∈ T v1
i we have T ϕ, x ≡↓ T v1

i , x and
T ϕ, x, y ≡↓ T v1

i , x, y.

• For each v2 ∈ V=,¬6= and x, y ∈ T v2 we have T ϕ, x ≡↓ T v2 , x and T ϕ, x, y ≡↓
T v2 , x, y.

• For each v3 ∈ V¬=, 6= and x, y ∈ T v3 we have T ϕ, x ≡↓ T v3 , x and T ϕ, x, y ≡↓
T v3 , x, y.

• For each u ∈ U, i ∈ {1, 2} and x, y ∈ Tu
i we have T ϕ, x ≡↓ T u

i , x and T ϕ, x, y ≡↓
T u
i , x, y.

It only remains to prove that the conditions (C1) – (C9) from the beginning of §2.4.3
are satisfied in the tree we have constructed:

Verification of (C1). This condition is trivially satisfied.

Verification of (C2). Suppose 〈ε = ↓[ψ]α〉 is a conjunct of ϕ. Then there are two
possibilities, (ψ, α) ∈ V=, 6= or (ψ, α) ∈ V=,¬6=.

• In the first case, by Rule 1 and construction, there exists xv1 ∈ Tϕ such that
[rϕ]πϕ = [xv1]πϕ with v1 = (ψ, α). By construction, we also know T v1

1 , rv1
1 |= ψ and

T v1
1 , rv1

1 , xv1 |= α. Then, by Fact 136, T ϕ, rϕ |= 〈ε = ↓[ψ]α〉.
• In the second case, 〈↓[ψ]α〉 is consistent. Then, by construction plus Lemma 111,

there is x ∈ Tϕ such that T v2 , rv2 |= ψ, T v2 , rv2 , x |= α and [rϕ]πϕ = [x]πϕ with
v2 = (ψ, α). Then, by Fact 136, T ϕ, rϕ |= 〈ε = ↓[ψ]α〉.

Verification of (C3). Suppose 〈ε 6= ↓[ψ]α〉 is a conjunct of ϕ. Then there are two
possibilities, (ψ, α) ∈ V=, 6= or (ψ, α) ∈ V¬=, 6=.

• In the first case, by Rule 1 plus Lemmas 111, 121 and 124, there is x ∈ Tϕ such that
(for v1 = (ψ, α)) T v1

2 , rv1
2 , x |= α and x 6∈ [z]πϕ for all z such that T v1

2 , rv1
2 , z |= β

for some (ψ, β) ∈ V=,¬6= (The argument is similar to the ones used in the proof of
Fact 132 to make conclusions from Lemma 121). We also know by construction that
T v1

2 , rv1
2 |= ψ. In order to conclude from Fact 136 that T ϕ, rϕ |= 〈ε 6= ↓[ψ]α〉, it

only remains to observe that [rϕ]πϕ 6= [x]πϕ (for a sketch of the proof see Sketch 138
in §2.6).

• In the second case, by Rule 3 plus Lemma 111, there exists x ∈ Tϕ such that (for
v3 = (ψ, α)) T v3 , rv3 , x |= α. We also know by construction that T v3 , rv3 |= ψ. In
order to conclude from Fact 136 that T ϕ, rϕ |= 〈ε 6= ↓[ψ]α〉, it only remains to observe
that [rϕ]πϕ 6= [x]πϕ (the proof follows the same sketch than the previous case).

2.4. AXIOMATIC SYSTEM FOR XPATH=(↓) 141

Verification of (C4). Suppose 〈↓[ψ]α = ↓[ρ]β〉 is a conjunct of ϕ. By the consistency
of ϕ plus NeqAx6, neither (ψ, α) nor (ρ, β) can be in V¬=,¬6=. By the consistency of ϕ plus
NeqAx6, it cannot be the case that one of them belongs to V=,¬6= and the other one to
V¬=, 6=. Then there are five possibilities to consider (we are omitting symmetric cases):

• If (ψ, α) ∈ V=, 6= and (ρ, β) ∈ V=,6=, by construction, there is xv1 ∈ Tϕ such that
T v1

1 , rv1
1 |= ψ, T v1

1 , rv1
1 , xv1 |= α and [rϕ]πϕ = [xv1]πϕ , with v1 = (ψ, α). Since the

same happens with (ρ, β), we can conclude from Fact 136 that T ϕ, rϕ |= 〈↓[ψ]α =
↓[ρ]β〉.

• If (ψ, α) ∈ V=, 6= and (ρ, β) ∈ V=,¬6=, by construction, there is xv1 ∈ Tϕ such
that T v1

1 , rv1
1 |= ψ, T v1

1 , rv1
1 , xv1 |= α and [rϕ]πϕ = [xv1]πϕ , with v1 = (ψ, α). By

Lemma 111 plus Rule 2, there is x ∈ T v2 (with v2 = (ρ, β)) such that T v2 , rv2 |= ρ
and T v2 , rv2 , x |= β. Then, by construction, [rϕ]πϕ = [x]πϕ and so [xv1]πϕ = [x]πϕ .
We conclude from Fact 136 that T ϕ, rϕ |= 〈↓[ψ]α = ↓[ρ]β〉.

• If (ψ, α) ∈ V=, 6= and (ρ, β) ∈ V¬=,6=, by the consistency of ϕ plus NeqAx6, (ψ, α, ρ, β) =
u ∈ U. Then, by construction, there are xu ∈ Tu

1 , yu ∈ Tu
2 such that T u

1 , r
u
1 |= ψ,

T u
2 , r

u
2 |= ρ, T u

1 , r
u
1 , x

u |= α, T u
2 , r

u
2 , y

u |= β and [xu]πϕ = [yu]πϕ (If u ∈ U2 the asser-
tion is straightforward and if u ∈ U1 these nodes exist because of the gluing related
to the set Z). Then, we conclude from Fact 136 that T ϕ, rϕ |= 〈↓[ψ]α = ↓[ρ]β〉.

• If (ψ, α) ∈ V=,¬6= and (ρ, β) ∈ V=,¬6=, by Rule 2 plus Lemma 111, there are x ∈
T v2 (with v2 = (ψ, α)) and y ∈ T v′2 (with v′2 = (ρ, β)) such that T v2 , rv2 |= ψ,
T v2 , rv2 , x |= α, T v′2 , rv

′
2 |= ρ and T v′2 , rv

′
2 , y |= β. By construction, [x]πϕ = [rϕ]πϕ =

[y]πϕ and so, we conclude from Fact 136 that T ϕ, rϕ |= 〈↓[ψ]α = ↓[ρ]β〉.

• If (ψ, α) ∈ V¬=, 6= and (ρ, β) ∈ V¬=,6=, then (ψ, α, ρ, β) = u ∈ U or (ψ, α, ρ, β) =
z ∈ Z. In the first case, the proof is exactly the same given for the case that
(ψ, α) ∈ V=, 6= and (ρ, β) ∈ V¬=, 6=. In the other case, by Rule 3 plus Lemma 111, there
are x ∈ T v3 (with v3 = (ψ, α)), y ∈ T v′3 (with v′3 = (ρ, β)) such that T v3 , rv3 |= ψ,
T v3 , rv3 , x |= α, T v′3 , rv

′
3 |= ρ and T v′3 , rv

′
3 , y |= β. Observe that [x]πϕ = [y]πϕ because

of the way in which we have defined the partition πϕ. Then we conclude from Fact 136
that T ϕ, rϕ |= 〈↓[ψ]α = ↓[ρ]β〉.

Verification of (C5). Suppose 〈↓[ψ]α 6= ↓[ρ]β〉 is a conjunct of ϕ. By the consistency
of ϕ plus NeqAx6, neither (ψ, α) nor (ρ, β) can be in V¬=,¬6=. By the consistency of ϕ
plus NeqAx7, it cannot be the case that they both belong to V=,¬6=. Then there are five
possibilities to consider:

• If (ψ, α) ∈ V=, 6= and (ρ, β) ∈ V=,6=, by items (C2) and (C3), there exist x, y ∈ Tϕ,
such that T ϕ, rϕ, x |= ↓[ψ]α, T ϕ, rϕ, y |= ↓[ρ]β, [rϕ]πϕ = [x]πϕ and [rϕ]πϕ 6= [y]πϕ .
Then we conclude that T ϕ, rϕ |= 〈↓[ψ]α 6= ↓[ρ]β〉.

142 CHAPTER 2. AXIOMATIZATIONS

• If (ψ, α) ∈ V=, 6= and (ρ, β) ∈ V=,¬6=, or (ψ, α) ∈ V=,6= and (ρ, β) ∈ V¬=, 6= or
(ψ, α) ∈ V=,¬6= and (ρ, β) ∈ V¬=,6=, the proof is analogous to the previous one.

• If (ψ, α) = v3 ∈ V¬=, 6= and (ρ, β) = v′3 ∈ V¬=,6=.

– In case (ψ, α) 6= (ρ, β): If 〈α 6= α〉 is a conjunct of ψ (if 〈β 6= β〉 is a conjunct
of ρ, the proof is analogous), by Lemma 111, Rule 3 and Fact 134 there exist
x, y ∈ T v3 , z ∈ T v′3 such that T v3 , rv3 |= ψ, T v3 , rv3 , x |= α, T v3 , rv3 , y |= α,
T v′3 , rv

′
3 |= ρ, T v′3 , rv

′
3 , z |= β and [x]πϕ 6= [y]πϕ . Then we conclude from Fact 136

that T ϕ, rϕ |= 〈↓[ψ]α 6= ↓[ρ]β〉 (either x or y is not in [z]πϕ).

Suppose then that ¬〈α 6= α〉 is a conjunct of ψ and ¬〈β 6= β〉 is a conjunct
of ρ. Then, as before, there exist x ∈ T v3 , z ∈ T v′3 such that T v3 , rv3 |= ψ,
T v3 , rv3 , x |= α, T v′3 , rv

′
3 |= ρ, T v′3 , rv

′
3 , z |= β. To conclude the proof, it only

remains to observe that, in this case, [x]πϕ 6= [z]πϕ (for a sketch of the proof see
Sketch 139 in §2.6). Then we conclude from Fact 136 that T ϕ, rϕ |= 〈↓[ψ]α 6=
↓[ρ]β〉.

– In case (ψ, α) = (ρ, β), by consistency of ϕ, we have that (ψ, α, ψ, α) = u ∈ U.
If 〈α 6= α〉 is a conjunct of ψ, by Lemma 111, Rule 3 and Fact 134 there
exist x, y ∈ T v3 such that T v3 , rv3 |= ψ, T v3 , rv3 , x |= α, T v3 , rv3 , y |= α and
[x]πϕ 6= [y]πϕ . Then we conclude from Fact 136 that T ϕ, rϕ |= 〈↓[ψ]α 6= ↓[ψ]α〉.
Suppose then that ¬〈α 6= α〉 is a conjunct of ψ. Then, as before, there exist x ∈
T v3 , z ∈ Tu

1 such that T v3 , rv3 |= ψ, T v3 , rv3 , x |= α, T u
1 , r

u
1 |= ψ, T u

1 , r
u
1 , z |= α.

To conclude the proof, it only remains to observe that, in this case, [x]πϕ 6= [z]πϕ
(for a sketch of the proof see Sketch 140 in §2.6). Then we conclude from Fact 136
that T ϕ, rϕ |= 〈↓[ψ]α 6= ↓[ρ]β〉.

Verification of (C6). Suppose ¬〈ε = ↓[ψ]α〉 is a conjunct of ϕ. Aiming for a contra-
diction, suppose that T ϕ, rϕ |= 〈ε = ↓[ψ]α〉. Then there is a successor z of rϕ in which
ψ holds, and, by construction plus Lemma 112, z is the root of some copy of the tree

T ψ, i.e. z = rψ (it might be T̃ ψ and r̃ψ but, in that case, the argument is the same).
Moreover, there is x ∈ Tψ such that T ψ, rψ, x |= α, with [x]πϕ = [rϕ]πϕ . In addition to
this, (ψ, α) ∈ V¬=, 6= or (ψ, α) ∈ V¬=,¬6=. If the latter occurs, by construction of T ϕ plus
Lemma 119 and Lemma 112, we have that ¬〈α = α〉 is a conjunct of ψ which is a contra-
diction. In the former, observe that [x]πϕ 6= [rϕ]πϕ (for a sketch of the proof see Sketch 141
in §2.6) which is a contradiction.

Verification of (C7). Suppose ¬〈ε 6= ↓[ψ]α〉 is a conjunct of ϕ. Aiming for a contra-
diction, suppose that T ϕ, rϕ |= 〈ε 6= ↓[ψ]α〉. Then there is a successor z of rϕ in which ψ
holds, and by construction and Lemma 112, z is the root of some copy of the tree T ψ, i.e.

z = rψ (it might be T̃ ψ and r̃ψ but, in that case, the argument is the same). Moreover,
there is x ∈ Tψ such that T ψ, rψ, x |= α, with [x]πϕ 6= [rϕ]πϕ . Then, by construction,
(ψ, α) 6∈ V=,¬6=. Since ¬〈ε 6= ↓[ψ]α〉 is a conjunct of ϕ, the only remaining possibility

2.5. BOUNDED TREE MODEL PROPERTY 143

is that (ψ, α) ∈ V¬=,¬6= but this is a contradiction by construction plus Lemma 119 and
Lemma 112.

Verification of (C8). Suppose ¬〈↓[ψ]α = ↓[ρ]β〉 is a conjunct of ϕ. By the consistency
of ϕ plus NeqAx6, it cannot be the case that both (ψ, α), (ρ, β) are in V=, 6= ∪V=,¬6=. In
case (ψ, α) ∈ V¬=,¬6= (if (ρ, β) ∈ V¬=,¬6=, the proof is analogous), suppose that T ϕ, rϕ |=
〈↓[ψ]α = ↓[ρ]β〉. In particular, there is a successor of rϕ, z and a descendant w such
that T ϕ, z, w |= [ψ]α. But this is a contradiction by construction plus Lemma 119 and
Lemma 112. Then T ϕ, rϕ |= ¬〈↓[ψ]α = ↓[ρ]β〉. We then have three remaining cases to
analyze:

• If (ψ, α) ∈ V=,¬6= and (ρ, β) ∈ V¬=,6=, then, by items (C6) and (C7), we have the
result.

• If (ψ, α) ∈ V=, 6= and (ρ, β) ∈ V¬=, 6= or (ψ, α), (ρ, β) ∈ V¬=,6=. In order to conclude
that T ϕ, rϕ |= ¬〈↓[ψ]α = ↓[ρ]β〉, one only have to observe that, if x, y ∈ Tϕ are such
that T ϕ, rϕ, x |= ↓[ψ]α and T ϕ, rϕ, y |= ↓[ρ]β, then [x]πϕ 6= [y]πϕ (for a sketch of the
proof see Sketch 142 in §2.6).

Verification of (C9). Suppose ¬〈↓[ψ]α 6= ↓[ρ]β〉 is a conjunct of ϕ. By the consistency
of ϕ plus NeqAx6, it cannot be the case that one of (ψ, α), (ρ, β) is from V=, 6= and the other
from V=,¬6=, neither can one be from V=,6= and the other from V¬=, 6=, or one from V=,¬6=
and the other from V¬=, 6=, or both from V=,6=. In case (ψ, α) ∈ V¬=,¬6= (if (ρ, β) ∈ V¬=,¬6=,
the proof is analogous), suppose that T ϕ, rϕ |= 〈↓[ψ]α 6= ↓[ρ]β〉. In particular, there is a
successor z of rϕ and a descendant w such that T ϕ, z, w |= [ψ]α. But this is a contradiction
by construction plus Lemma 119 and Lemma 112. We then have two remaining cases to
analyze:

• If (ψ, α), (ρ, β) ∈ V=,¬6=, by item (C7), we have the result.

• If (ψ, α), (ρ, β) ∈ V¬=, 6=, by the consistency of ϕ plus NeqAx6, (ψ, α, ρ, β) ∈ Z and
the result follows immediately from the construction of the model.

2.5 Bounded tree model property

The addition of an equivalence relation on top of a tree-like Kripke model, and the ability
of the language to compare if two nodes at the end of path expressions are in the same or
in different equivalence classes has proved to change remarkably the canonical model con-
struction of the basic modal logic. When the language has only comparisons by ‘equality’,
the situation is somewhat simpler, based on the fact that ‘equality’ is a transitive relation.
Also notice that while

“all pairs of paths with certain properties end in different equivalence classes” (19)

144 CHAPTER 2. AXIOMATIZATIONS

is expressible when tests by equality are present,

“all pairs of paths with certain properties end in the same equivalence classes” (20)

is only expressible when tests by inequality are also present. Both properties are universal.
However, in the construction of the canonical model, (19) is compatible with adding many
disjoint copies of subtrees with disjoint partitions, while (20) is not. The axiomatization
for the fragment containing both the operators of ‘equality’ and ‘inequality’ proved to be
much more involved than the one containing only ‘equality’, as witnessed by the large
amount of axioms reflecting the intricate relationships between both binary operators.

In this chapter we have considered XPath=(↓) over arbitrary data trees. Although in
the database community it may make no sense to consider infinite data trees (an XML
document is always finite), we allow for that possibility. Furthermore, XPath=(↓) is also
suitable for reasoning about (finite or infinite) data graphs, as it is done in [77, 1]. In
either of the alternatives (finite vs. infinite data trees vs. data graphs) it can be shown
that XPath=(↓) is also axiomatizable by the system given in this chapter —notice there
are no specific axioms of an underlying tree topology. Since our construction of canonical
models gives us a recursively bounded finite data tree, we conclude:

Corollary 137 (Bounded tree model property). There is a primitive recursive function f
such that any satisfiable node or path expression ϕ of XPath=(↓) of size n over the class
of finite/arbitrary data trees/data graphs is satisfiable in a data tree of size at most f(n).

This already shows that the satisfiability problem of XPath=(↓) is decidable over any
of the classes of models stated above. Of course, this result —at least for XPath=(↓) over
finite data trees— is not new, as mentioned in the introduction [42]. However, the canonical
model construction may gives us new insight to obtain sequent calculus axiomatizations,
as done in [10], which might be useful for obtaining alternative proofs of complexity for
the satisfiability problem of fragments or extensions of XPath=(↓).

2.6 Technical material

Lema 114. Let ∗ ∈ {=, 6=}, γ ∈ Pn, ψi ∈ Nn−i for i = 1, . . . , i0, α, β ∈ Pn−i0 such that

〈γ ∗ ↓[ψ1] . . . ↓[ψi0]α〉 ∧ ¬〈γ ∗ ↓[ψ1] . . . ↓[ψi0]β〉

is consistent and ¬〈α 6= α〉 is a conjunct of ψi0. Then ¬〈α = β〉 is a conjunct of ψi0.

Proof. Let us start with the case of ∗ being 6=. Aiming for a contradiction, suppose that
〈γ 6= ↓[ψ1] . . . ↓[ψi0]α〉 ∧ ¬〈γ 6= ↓[ψ1] . . . ↓[ψi0]β〉 is consistent and that both ¬〈α 6= α〉 and
〈α = β〉 are conjuncts of ψi0 .

First, let us prove some facts that will be useful in the rest of the proof:

2.6. TECHNICAL MATERIAL 145

1. The following derivation:

〈γ 6= ↓[ψ1] . . . ↓[ψi0]α〉 ≤ 〈↓[ψ1] . . . ↓[ψi0]α〉 (NeqAx4)

≤ 〈↓[ψ1] . . . ↓[ψi0]〉 (Der12 Fact 90)

≤ 〈↓[ψ1] . . . ↓[ψi0]α = ↓[ψ1] . . . ↓[ψi0]β〉
(EqAx5 & Der21 (Fact 90))

≤ 〈↓[ψ1] . . . ↓[ψi0]β〉 (EqAx4)

In particular, by Der13 (Fact 90), we have that 〈↓[ψi0]β〉 is consistent and so 〈β = β〉
is a conjunct of ψi0 (by Lemma 111).

2. From the second line of Item 1, we have that 〈↓[ψ1] . . . ↓[ψi0]〉 is consistent, and then,
by Der13 (Fact 90), ψi0 is consistent.

3. Aiming for a contradiction, let us suppose that 〈β 6= β〉 is a conjunct of ψi0 . Then

〈γ 6= ↓[ψ1] . . . ↓[ψi0]α〉 ∧ ¬〈γ 6= ↓[ψ1] . . . ↓[ψi0]β〉
≤ 〈γ〉 ∧ 〈↓[ψ1] . . . ↓[ψi0]〉 ∧ ¬〈γ 6= ↓[ψ1] . . . ↓[ψi0]β〉 (NeqAx4 & Item 1)

≤ 〈γ〉 ∧ 〈↓[ψ1] . . . ↓[ψi0]β 6= ↓[ψ1] . . . ↓[ψi0]β〉 ∧ ¬〈γ 6= ↓[ψ1] . . . ↓[ψi0]β〉
(NeqAx5 & Der21 (Fact 90))

≡ 〈γ 6= ↓[ψ1] . . . ↓[ψi0]β〉 ∧ ¬〈γ 6= ↓[ψ1] . . . ↓[ψi0]β〉 (NeqAx7)

≡ false (Boolean)

which is a contradiction. Then ¬〈β 6= β〉 is a conjunct of ψi0 .

4. Because ψi0 is consistent (Item 2), by the previous Item plus NeqAx7, ¬〈α 6= β〉 is a
conjunct of ψi0 .

Then we have

〈γ 6=↓[ψ1] . . . ↓[ψi0]α〉 ∧ ¬〈γ 6=↓[ψ1] . . . ↓[ψi0]β〉
≤ 〈γ 6=↓[ψ1] . . . ↓[ψi0]β〉 ∧ ¬〈γ 6=↓[ψ1] . . . ↓[ψi0]β〉

(Items 1 and 4 & NeqAx9 & Der21 (Fact 90))

≡ false (Boolean)

which is contradiction, from the assumption that 〈α = β〉 was a conjunct of ψi0 . Therefore,
¬〈α = β〉 is a conjunct of ψi0 .

For the case of ∗ being =, use NeqAx10 plus Der21 of Fact 90.

Lema 115. Let ψ ∈ Nn, α, β ∈ Pn such that 〈↓[ψ]α 6= ↓[ψ]α〉 ∧ ¬〈↓[ψ]γ 6= ↓[ψ]γ〉 is
consistent and ¬〈α 6= α〉 is a conjunct of ψ. Then ¬〈α = γ〉 is a conjunct of ψ.

Proof. Aiming for a contradiction, suppose that 〈↓[ψ]α 6= ↓[ψ]α〉 ∧ ¬〈↓[ψ]γ 6= ↓[ψ]γ〉 is
consistent and both ¬〈α 6= α〉 and 〈α = γ〉 are conjuncts of ψ.

Let us prove some facts that will be useful in the rest of the proof:

146 CHAPTER 2. AXIOMATIZATIONS

1. The following derivation:

〈↓[ψ]α 6= ↓[ψ]α〉 ≤ 〈↓[ψ]α〉 (NeqAx4)

≤ 〈↓[ψ]〉 (Der12 (Fact 90))

≤ 〈↓[ψ]α = ↓[ψ]γ〉 (EqAx5 & Der21(Fact 90))

≤ 〈↓[ψ]γ〉 (EqAx4)

In particular, we have that 〈γ = γ〉 is a conjunct of ψ (by Lemma 111).

2. From the second line of Item 1, we have that 〈↓[ψ]〉 is consistent, and by Der13
(Fact 90), ψ is consistent.

3. Aiming for a contradiction, let us suppose that 〈γ 6= γ〉 is a conjunct of ψ. Then

〈↓[ψ]α 6= ↓[ψ]α〉 ∧ ¬〈↓[ψ]γ 6= ↓[ψ]γ〉
≤ 〈↓[ψ]〉 ∧ ¬〈↓[ψ]γ 6= ↓[ψ]γ〉 (Item 1)

≤ 〈↓[ψ]γ 6= ↓[ψ]γ〉 ∧ ¬〈↓[ψ]γ 6= ↓[ψ]γ〉 (NeqAx5 & Der21 (Fact 90))

≡ false (Boolean)

which is a contradiction. Then ¬〈γ 6= γ〉 is a conjunct of ψ.

4. Because ψ is consistent (Item 2), by the previous item plus NeqAx7, ¬〈α 6= γ〉 is a
conjunct of ψ.

Then we have

〈↓[ψ]α 6= ↓[ψ]α〉 ∧ ¬〈↓[ψ]γ 6= ↓[ψ]γ〉
≤ 〈↓[ψ]γ〉 ∧ 〈↓[ψ]α 6= ↓[ψ]α〉 ∧ ¬〈↓[ψ]γ 6= ↓[ψ]γ〉 (Item 1)

≤ 〈↓[ψ]α 6= ↓[ψ]γ〉 ∧ ¬〈↓[ψ]γ 6= ↓[ψ]γ〉 (NeqAx7)

≤ 〈↓[ψ]γ 6= ↓[ψ]γ〉 ∧ ¬〈↓[ψ]γ 6= ↓[ψ]γ〉 (Items 1 and 4, & NeqAx9 & Der21 (Fact 90))

≡ false (Boolean)

which is contradiction, from the assumption that 〈α = γ〉 was a conjunct of ψ. Therefore,
¬〈α = γ〉 is a conjunct of ψ.

Lema 119. Let ψ ∈ Nn, α ∈ Pn, γ ∈ Pn+1. If ¬〈γ = ↓[ψ]α〉∧¬〈γ 6= ↓[ψ]α〉∧ 〈γ〉∧ 〈↓[ψ]〉
is consistent, then ¬〈α = α〉 is a conjunct of ψ.

Proof. Aiming for a contradiction, suppose that 〈α = α〉 is a conjunct of ψ. Then

¬〈γ = ↓[ψ]α〉 ∧ ¬〈γ 6= ↓[ψ]α〉 ∧ 〈γ〉 ∧ 〈↓[ψ]〉
≤ ¬〈γ = ↓[ψ]α〉 ∧ ¬〈γ 6= ↓[ψ]α〉 ∧ 〈γ〉 ∧ 〈↓[ψ]α = ↓[ψ]α〉 (EqAx5 & Der21 (Fact 90))

≡ ¬〈γ〉 ∧ 〈γ〉 (NeqAx6)

≡ false (Boolean)

and this concludes the proof.

2.6. TECHNICAL MATERIAL 147

Lema 121. Let ∗ ∈ {=, 6=}, ψ ∈ Nn, α, β ∈ Pn, γ ∈ Pn+1. If 〈γ = ↓[ψ]α〉 ∧ ¬〈γ 6=
↓[ψ]α〉 ∧ ¬〈γ ∗ ↓[ψ]β〉 is consistent, then ¬〈α ∗ β〉 is a conjunct of ψ.

Proof. Let us first prove the case for ∗ being 6=. Suppose that 〈γ = ↓[ψ]α〉 ∧ ¬〈γ 6=
↓[ψ]α〉 ∧ ¬〈γ 6= ↓[ψ]β〉 is consistent. Aiming for a contradiction, suppose that 〈α 6= β〉 is
a conjunct of ψ. Then

〈γ = ↓[ψ]α〉 ∧ ¬〈γ 6= ↓[ψ]α〉 ∧ ¬〈γ 6= ↓[ψ]β〉
≡ 〈γ = ↓[ψ ∧ 〈α 6= β〉]α〉 ∧ ¬〈γ 6= ↓[ψ]α〉 ∧ ¬〈γ 6= ↓[ψ]β〉 (Hypothesis)

≤ 〈γ〉 ∧ 〈↓[ψ ∧ 〈α 6= β〉]α〉 ∧ ¬〈γ 6= ↓[ψ]α〉 ∧ ¬〈γ 6= ↓[ψ]β〉 (EqAx1 & EqAx4)

≤ 〈γ〉 ∧ 〈↓[ψ ∧ 〈α 6= β〉]〉 ∧ ¬〈γ 6= ↓[ψ]α〉 ∧ ¬〈γ 6= ↓[ψ]β〉 (Der12 (Fact 90))

≤ 〈γ〉 ∧ 〈↓[ψ]α 6= ↓[ψ]β〉 ∧ ¬〈γ 6= ↓[ψ]α〉 ∧ ¬〈γ 6= ↓[ψ]β〉 (NeqAx5 & Der21 (Fact 90))

≤ 〈γ 6= ↓[ψ]β〉 ∧ ¬〈γ 6= ↓[ψ]β〉 (NeqAx7)

≡ false (Boolean)

which is a contradiction. Then 〈α 6= β〉 is a conjunct of ψ. For the case in which ∗ is =,
the proof is similar but instead of NeqAx5 we use EqAx5 and instead of NeqAx7 we use
NeqAx6.

Lema 124. Let ∗ ∈ {=, 6=}, ψ ∈ Nn, α, β ∈ Pn, γ ∈ Pn+1. If 〈γ = ↓[ψ]α〉 ∧ ¬〈γ 6=
↓[ψ]α〉 ∧ 〈γ ∗ ↓[ψ]β〉 is consistent, then 〈α ∗ β〉 is a conjunct of ψ.

Proof. Let us first prove the case for ∗ being =. Suppose that 〈γ = ↓[ψ]α〉 ∧ ¬〈γ 6=
↓[ψ]α〉 ∧ 〈γ = ↓[ψ]β〉 is consistent. Aiming for a contradiction, suppose that ¬〈α = β〉 is a
conjunct of ψ. Also, since 〈↓[ψ]α〉 is consistent (by EqAx4), then by Lemma 111 〈α = α〉
is a conjunct of ψ. Then

〈γ = ↓[ψ]α〉∧¬〈γ 6= ↓[ψ]α〉∧〈γ = ↓[ψ]β〉
≤ ¬〈γ 6= ↓[ψ]α〉 ∧ 〈γ = ↓[ψ∧¬〈α = β〉∧〈α〉]β〉 (EqAx6)

≤ ¬〈γ 6= ↓[ψ]α〉 ∧ 〈γ 6= ↓[ψ]α〉 (NeqAx8 & Der21 (Fact 90))

≡ false (Boolean)

which is a contradiction. Then 〈α = β〉 is a conjunct of ψ. For the case in which ∗ is 6=,
the proof is similar but using NeqAx9 instead of NeqAx8.

Sketch 138. Thinking in terms of sequences as in the proofs of Facts 132 and 134, one
only has to observe that:

• [x]πv1
2
6= [z]πv1

2
for all z ∈ T v1

2 in a class that was glued to the class of the root via a
root=,¬6=-kind gluing.

• root=, 6=-kind gluings are made in different subtrees.

148 CHAPTER 2. AXIOMATIZATIONS

• By the same arguments given in the proofs of Facts 132 and 134, we can’t have a
sequence containing any of the following:

– root=, 6=-Z, – Z-root=,6=, – root=,¬6=-Z,
– Z-root=,¬6=, – root=, 6=-U2, – U2-root=,6=,
– root=,¬6=-U2, – U2-root=,¬6=.

Sketch 139. Thinking in terms of sequences as in the proofs of Facts 132 and 134, one
only has to observe that:

• [x]πv3 6= [y]πv3 for all y ∈ T v3 in a class that was glued to the class of the root via a
root=,¬6=-kind gluing (Use Lemma 121).

• [z]
πv′3
6= [y]

πv′3
for all y ∈ T v′3 in a class that was glued to the class of the root via a

root=,¬6=-kind gluing (Use Lemma 121).

• root=, 6=-kind gluings are made in different subtrees.

• [x]πv3 and [z]
πv′3

can not be glued together by a sequence of all Z-kind gluings because
of the consistency of ϕ plus Lemmas 130 and 127.

• [x]πv3 and [z]
πv′3

can not be glued together by a sequence that begins or ends with a
U2-kind gluing because we use new subtrees for that kind of gluings.

• By the same arguments given in the proofs of Facts 132 and 134, we can’t have a
sequence containing any of the following:

– root=, 6=-Z, – Z-root=,6=, – root=,¬6=-Z,
– Z-root=,¬6=, – root=, 6=-U2, – U2-root=,6=,
– root=,¬6=-U2, – U2-root=,¬6=.

• By the same arguments given in the proof of Fact 134, we can reduce sequences with
two consecutive Z-kind gluings to sequences that not have two consecutive Z-kind
gluings.

• By the same arguments given in the proof of Fact 134, we can’t have sequences con-
taining U2- U2.

• One can prove that [x]πv3 and [z]
πv′3

are not glued together by a sequence that alter-
nates Z-kind gluings and U2-kind gluings (starting and ending with Z) by induction
with arguments similar to the ones used in Lemma 135.

Sketch 140. Thinking in terms of sequences as in the proofs of Facts 132 and 134, one
only has to observe that:

2.6. TECHNICAL MATERIAL 149

• [x]πv3 6= [y]πv3 for all y ∈ T v3 in a class that was glued to the class of the root via a
root=,¬6=-kind gluing (Use Lemma 121).

• [z]πu
1
6= [y]πu

1
for all y ∈ Tu

1 in a class that was glued to the class of the root via a
root=,¬6=-kind gluing (Use Lemma 121).

• root=, 6=-kind gluings are made in different subtrees.

• [x]πv3 and [z]πu
1

can not be glued together by a sequence that begins with a U2-kind
gluing because we use new subtrees for that kind of gluings.

• [x]πv3 and [z]πu
1

can not be glued together by a sequence that begins with a Z-kind
gluing because of the consistency of ϕ plus NeqAx7 and Lemma 115.

Sketch 141. Thinking in terms of sequences as in the proofs of Facts 132 and 134, one
only has to observe that:

• [x]πψ 6= [y]πψ for all y ∈ Tψ in a class that was glued to the class of the root via a
root=,¬6=-kind gluing (Use Lemma 121).

• [x]πψ 6= [y]πψ for all y ∈ Tψ in a class that was glued to the class of the root via a
root=, 6=-kind gluing (Rule 1).

• By the same arguments given in the proofs of Facts 132 and 134, we can’t have a
sequence containing any of the following:

– root=, 6=-Z, – Z-root=,6=, – root=,¬6=-Z,
– Z-root=,¬6=, – root=, 6=-U2, – U2-root=,6=,
– root=,¬6=-U2, – U2-root=,¬6=.

Sketch 142. Thinking in terms of sequences as in the proofs of Facts 132 and 134, one
only has to observe that:

• In case ψ = ρ, by consistency of ϕ plus EqAx5 and Der21 of Fact 90, ¬〈α = β〉 is
a conjunct of ψ.

• [x]πψ and [y]πρ can not be glued together by a sequence of all Z-kind gluings because
of the consistency of ϕ plus Lemmas 130 and 127.

• By Lemma 121 plus construction of T ϕ, [y]πρ 6= [z]πρ for all z ∈ T ρ in a class that
was glued to the root via a root=,¬6=-kind gluing.

• By Rule 1, [y]πρ 6= [z]πρ for all z ∈ T ρ in a class that was glued to the root via a
root=, 6=-kind gluing.

• By the same arguments given in the proofs of Facts 132 and 134, we can’t have a
sequence containing any of the following:

150 CHAPTER 2. AXIOMATIZATIONS

– root=, 6=-Z, – Z-root=,6=, – root=,¬6=-Z,
– Z-root=,¬6=, – root=, 6=-U2, – U2-root=,6=,
– root=,¬6=-U2, – U2-root=,¬6=.

• By the same arguments given in the proof of Fact 134, we can reduce sequences with
two consecutive Z-kind gluings to sequences that not have two consecutive Z-kind
gluings.

• By the same arguments given in the proof of Fact 134, we can’t have sequences con-
taining U2-U2.

• One can prove by induction that [x]πψ and [y]πρ are not glued together by a sequence
that alternates Z-kind gluings and U2-kind gluings (neither starting with Z or with
U2) with arguments similar to the ones used in Lemma 135.

(Notation: For ψ, ρ ∈ Nn, we use the notation T ψ = (Tψ, πψ), T ρ = (T ρ, πρ) with roots
rψ, rρ respectively to denote any tree in which ψ, ρ, respectively, are satisfiable.)

Part B

Computational aspects

151

Chapter 3

Bisimulations on data graphs

“They looked so different that I
couldn’t even consider them my
own kind, but in the end their
monstrous appearance was just a
bluff.”

From the New World
Yusuke Kishi

3.1 Introduction

In this chapter, we move from the domain of possibly infinite data trees into the study of
bisimulations in the domain of finite data graphs. Our main focus is calculating the algo-
rithmic complexity of finding bisimilarities, so our restriction to finite structures is natural.
Regarding the expansion into graphs, it is partially motivated by data models that have
become increasingly important with the continuous growth of the Web and Internet-related
applications. It is true that, on the one hand, Web information is usually stored in hierarchi-
cal structures, such as the XML format, that can be modeled as tree-structured databases.
But on the other hand, vast amounts of information are associated with new applications
whose underlying data model is described by (finite) graph-structured databases, such as
in the cases of social networks, the Semantic Web, biological systems, network analysis
tasks, or crime detection applications.

Semi-structured databases are usually seen as edge-labeled graphs or trees, nodes can
be seen as ‘entities’, containing the actual data (e.g., the name and address in a social
network), whereas labeled edges represent ‘relations’ between these entities (e.g., ‘befriends’
or ‘likes’). Many of the applications making use of this data model have two features in
common: on the one hand the underlying data model is described by a graph or a tree,
and on the other hand, in querying such graph-structured data, the topology of the graph
is as important as the data itself.

153

154 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

When L is the basic modal logic, the notion of indistinguishability is captured by the
bisimulation relation [104], and the classes of equivalence corresponding to this relation
can be computed efficiently [8]. Querying graph databases, in general, requires the ability
to test properties relative to their topology, reachability and subgraph patterns. One
basic query language used for these types of queries is the Regular Path Query, or RPQ,
which selects nodes connected by a path described by a regular language over the labeling
alphabet [26]. Extensions of this basic query language, such as Propositional Dynamic
Logic, have a bisimulation notion akin to that of the basic modal logic and they are thus
also amenable to efficient computation of the indistinguishability relation.

However, in many scenarios, these query languages fall short of expressive power, since
the actual data contained inside the nodes is completely abstracted away. One standard
way of adding data is through the use of a logic such as XPath. XPath has been originally
conceived for selecting nodes from XML documents (essentially trees), but its simplicity
and modal behavior adapt perfectly to graphs with data, and indeed it has been already
studied [78] and used [22] in this scenario.

In this chapter we expand our focus from the universe of data trees into the universe
of data graphs. We also transition from our node-labeled logic XPath=(↓) to the edge-
labeled XPath=(↓a), but we remark that both formalism are intertranslatable, and thus the
choice between node-labeled or edge-labeled is not essential. We show that previous results
for XPath=(↓) over node-labeled data trees extend to XPath=(↓a) over edge-labeled data
graphs. We study the computational complexity of the bisimulation notion of XPath= on
(finite) semistructured databases; during this chapter, we restrict ourselves to the domain
of finite data graphs. For this study to be thorough, we vary, on the one hand, the types
of finite structures of the data we analyze: graph, tree, or DAG. On the other hand,
we study two different modalities that the logic can have, focusing on the XPath=(↓a)
fragment and then extending our results to XPath=(↑a↓a), which adds the possibility of
inverse navigation. Finally, we also consider some syntactical restrictions on the formulas,
yielding better computational results.

3.1.1 Related work

As we mentioned in §I.1.1, the problem of bisimulation can be solved in PTime for the
data-oblivious BML, and it is also polynomially solvable for some fragments of first-order
logic where the universe consists of relational models with unary and binary relation sym-
bols (i.e., labeled graphs) [8]. One of the reasons that explains the PTime complexity for
these problems is that the respective bisimulation notions are local; in BML, this refers
to the fact that Zig and Zag conditions for a pair (u, u′) are defined in terms of nodes
which are adjacent to u and u′, respectively. However, such locality is no longer present
in “data-aware” XPath=, as the Zig= and Zag= conditions are defined in terms of arbi-
trarily long paths (i.e., in a non-local way). As it turns out, this makes the problem of
computing XPath=- bisimulations intractable. It is worth noticing that this is in line with
the intractability of other non-local notions of bisimulations, such as the fair bisimulations

3.1. INTRODUCTION 155

studied in verification [71]. An important point of departure, though, is that such notions
are defined with respect to infinite paths in transition systems, while our notion considers
finite paths only.

Other place where the complexity of calculating bisimulations has been studied is in
[51], in the context of relational models and with the aim of generating short referring
expressions. We remark that, even though efficient algorithms for computing bisimulation
have been developed in the literature (see, e.g., [39, 62, 91, 61]), we found no available,
off-the-shelf tools that can deal with data-aware logics.

Applications

In Chapter 1, we used data-aware bisimulations to study the expressive power of XPath=(↓)
on data trees. When interpreted over data graphs, there are other potential applications
for bisimulations:

Indexing. Finding bisimilar nodes over graph-structured data is the first step in many
approaches to building indexing data structures for efficient query evaluation of purely
navigational languages [87, 41]. Roughly speaking, these approaches are based on the
following idea: If x and y are bisimilar and x is in the output of a query, we know that y
is also in the output. Extending this to “data-aware” bisimulations might then serve as a
building-block over which index structures for XPath=(↓a) expressions can be constructed.

Clustering. Another motivation stems from the task of clustering for mining data graphs
[55], that is, the division of data into groups of similar objects. As it pointed out in [14],
“representing the data by fewer clusters necessarily loses certain fine details, but achieves
simplification. From a machine learning perspective clusters correspond to hidden patterns,
the search for clusters is unsupervised learning, and the resulting system represents a data
concept”. Now, one of the most basic analysis one can do on semi-structured databases
is the clustering of entities, grouping entities which are “similar”. One way to define
similarity on data graphs is based on observational indistinguishability, that is, grouping
together elements x, y that cannot be distinguished through a data-aware logic L: x ≡L y.
For the logic XPath=(↓a) this notion corresponds to “data-aware” bisimilarity. Further, in
cases when the previous notion is too strict, it might prove useful to compute a degree of
similarity, where more similar elements are elements that are distinguished through more
complex formulas. This degree of similiarity can be defined, in turn, by restricting suitable
parameters in the definition of “data-aware” bisimulations (e.g., the amount of non-locality
allowed, as studied in this chapter).

Referring expressions generation. A basic and very active task in natural language
generation is referring expressions generation (REG, see e.g., [51], where referring ex-
pressions are generated in the process of calculating bisimulations), which can be stated
as follows: given a scene and a target element in that context, generate a grammati-
cally correct expression, called referring expression (RE), in a given natural language that

156 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

Person
ID: 5774

Person
ID: 8750

Account
ID: 48719

Account
ID: 99843

Bank
ID: 56

Bank
ID: 18

Person
ID: 3348

Account
ID: 85994

Account
ID: 44769

Account
ID: 37619

Account
ID: 83420

A B C

has has has has has has

in in in in in in

Figure 38: A scene with people, accounts, and banks.

uniquely represents the element. In the early stages, the problem of REG was stated
and studied based on a very simple kind of knowledge representation: a purely proposi-
tional point of view [27]: given a finite domain of objects (like people in a room) with
attributes (like gender, eye color, profession), and a target object or referent, find a
set of pairs 〈attribute, value〉 whose conjunction is true only of the target (for instance
{〈gender,F〉, 〈profession, doctor〉, 〈eye color, brown〉}, which can be later realized as “the
woman who is a doctor and has brown eyes”). In [69] it is proposed to use labeled directed
graphs for representing the scene, and [7] resort to description logics (DLs) as a formalism
for representing a RE. Then, in [8] it is shown that this last approach can be efficiently
implemented using the notion of bisimulation. In some cases, though, a scene for the REG
problem can be better modeled as a data graph. However, adding data to the models
does not mean that we allow data values as constitutive terms of the referring expression.
Returning to our example of persons in a room, it is not reasonable to designate the target
as “the woman whose ID is 284755” or even “the person whose ID is 284755”, even when
data of person’s ID is present in the graph. At the logical level, this means that we do not
have at our disposal data values as terms in the language. However, the presence of data
in the graph can still be relevant for constructing referring expressions which are more
expressive than the ones considered in the work of [7]. Imagine, e.g., a scene modeling
clients, accounts, and banks, as the one in Figure 38. Each object has an ID. Suppose
we look for a RE for target B. One can see that it is impossible to distinguish nodes
A and B using Modal Logic or the DLs used in previous works, since they are bisimilar
(assuming, of course, that IDs are not part of the language). However, the RE “the person
who has accounts in different banks” can be formalized in XPath=(↓a)15. Extending [8],
“data-aware” bisimulations might then be an efficient tool for REG in cases when REs are
expressed in the language of XPath=(↓a).

15The labels ‘Person’, ‘Account’, and ‘Bank’ can be omitted in the data graph representation of this
scene. In the resulting edge-labeled data graph, the desired expression is: 〈↓has↓in 6= ↓has↓in〉.

3.1. INTRODUCTION 157

3.1.2 Contributions

In this chapter we transition from our node-labeled logic XPath=(↓) to the equivalent edge-
labeled XPath=(↓a), We also transition from the universe of data trees to that of data
graphs, and we show that the bisimulation notion for XPath=(↓) can be easily adapted
to work on this wider context of XPath=(↓a) over data graphs. As it has been recently
shown in the context of data trees, XPath=(↓) allows for a Hennessy-Milner’s style charac-
terization in terms of a natural class of “data-aware” bisimulations [45]. We notice in this
chapter that such characterization extends in a straightforward way to the class of data
graphs.

Our main contribution is an in-depth study of the complexity of computing “data-
aware” bisimulations by fine-tuning on the level of non-locality allowed. This non-locality
is measured in terms of (a) the lengths of the paths considered in the definition of bisimu-
lation, and (b) the classes of models over which bisimulations are computed. In particular,
we show the following:

• In its full generality, the decision problem of whether two data graphs are “data-
aware” bisimilar is PSpace-complete. This is obtained by showing that our prob-
lem is polynomially equivalent to equivalence of nondeterministic finite automata,
which is known to be PSpace-complete [83]. We obtain, in particular, that there
are cases in which the smallest witness (π1, π2) to the fact that two data graphs are
not bisimilar is a pair of paths of exponential size.

• The previous observation naturally calls for a restriction on the length of paths to
be inspected in the definition of “data-aware” bisimulation (restriction (a) above).
We start by considering paths of polynomial length only. While this decreases the
complexity of the problem to the class Co-NP, we show that it still does not yield
tractability.

We thus restrict to paths of constant length only and show that this condition does
guarantee tractability. Interestingly, this restricted notion of bisimulation character-
izes an important fragment of the XPath=(↓a) language; namely, the one of bounded
length. This fragment restricts the length of expressions α1 and α2 in formulas of the
form 〈α1 = α2〉 and 〈α1 6= α2〉 only (it allows for arbitrary long path expressions α
in purely navigational expressions 〈α〉).

• We then switch to study how the underlying graphs affect the complexity of comput-
ing bisimulations (restriction (b) above), and concentrate on the two most important
classes of acyclic graphs: trees and DAGs. We show that checking “data-aware”
bisimilarity is in polynomial time for the former and Co-NP-complete for the lat-
ter. Thus, acyclicity yields tractability in this case, but only if defined at the level of
the underlying undirected graphs.

• Finally, we look at XPath=(↑a↓a), which allows to traverse edges in both directions.
We show that the problem of checking “data aware” bisimilarity in this context

158 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

remains PSpace-complete. While the upper bound follows easily, for the lower
bound we need a new proof. As before, the restriction to paths of polynomial length
yields a Co-NP bound, and for paths of constant length we obtain tractability.

3.1.3 Organization

While the notion of extending XPath=(↓) to edge-labeled data graphs has been mentioned
in §I.1.2, we give the proper definition of XPath=(↓a)-bisimulations in §3.2, where we also
mention how results for XPath=(↓) naturally extend to this framework.

The complexity of XPath=(↓a)-bisimulations is studied in §3.3, where we give tight
upper bounds on the complexity of the XPath=(↓a)-bisimilarity and the XPath=(↓a)-
similarity decision problems. Restrictions on the paths considered in the conditions of
XPath=(↓a)-bisimulations are presented in §3.4, where we give a notion of function-bounded
bisimulations which can only compare data values that are at most at a certain depth de-
termined by the chosen function and the size of the graphs. Restrictions on the (finite)
data models are considered in §3.5, where we analyze the effects on restricting the mod-
els to acyclic graphs and to trees. The two-way XPath=(↑a↓a) is studied in §3.6, where
we indicate how the previous results for XPath=(↓a) can help to solve the corresponding
problems for this fragment that is provided with inverse navigation.

3.2 Bisimulations on data graphs

As we mentioned in §I.2, the notion of (bi)simulation for XPath= over node-labeled data
trees was developed in [44] and later extended in [2]. In this chapter, we will make three
changes to that framework:

• First, the change from XPath=(↓) into the edge-labeled logic XPath=(↓a). Now the
nodes only contain data values (or their equivalence classes), but each edge also
includes a single label. To make this information accessible, we exchange the ↓
symbol and each label symbol a for ↓a, which indicates that we descend from the
current node to a children via an edge labeled a. The formal syntax and semantics
were stated in §I.1.2. In Remark 143 we indicate that this edge-labeled formalism is
equivalent to the node-labeled one.

• Second, we expand into the universe of data graphs. While this expansion could
require fundamental changes in the nature of bisimulation (in order to conserve the
results of Hennessy-Milner-style characterization), this is not really the case: the
notion is robust and extends in a straightforward way to data graphs (for both
XPath=(↓) and XPath=(↓a)).

• Third, since we are interested in complexity analysis for bisimilarity between data
graphs, we restrict ourselves to finite data graphs.

3.2. BISIMULATIONS ON DATA GRAPHS 159

Remark 143. Each node-labeled data graph G can be represented as an edge-labeled data
graph G ′ in a bisimilarity-preserving way, and vice versa.

Proof. For the node-labeled to edge-labeled direction we proceed as follows: If a node x
in G is labeled a and has outgoing edges, we label all such outgoing edges with a in G ′.
Else, if node x does not have outgoing edges, we simply add a fresh node x′ and an edge
labeled a from x to x′. We also set data(x) = data(x′). It can be proved that bisimilarity
is invariant under this translation. More formally, nodes x1 and x2 in node-labeled graphs
G1 and G2 are XPath=(↓)-bisimilar if and only if they are bisimilar in their edge-labeled
representations G ′1 and G ′2 in terms of the definition of XPath=(↓a)-bisimulation given below
in Definition 144.

For the edge-labeled to node-labeled direction, we proceed as follows: For each edge
label x

a→y, we add an additional node z between x and y, such that x→z→y, and z is
labeled with a. All these additional nodes have the same data value, which is fresh respect
to the data values of the original graph. Finally, we label all the nodes of the original
graph with a fresh label c. Again, this translation preserves bisimilarity or non-bisimilarity
between the notions.

See Figure 39 for a graphical representation of these translations between the edge-
labeled and node-labeled frameworks.

a, 1 b, 3

b, 2

1 3 3

2

a b

a b

c, 1 c, 1a, 3

b, 3b, 3

c, 2

a

b b

1 1

2

Figure 39: Examples of how to change from a node-labeled graph to an edge-labeled graph, and
vice versa.

We now proceed to give the definitions of simulation and bisimulation for XPath=(↓a):

Definition 144 (XPath=(↓a)-(bi)simulations). Let G and G ′ be (finite or infinite) data
graphs over A. A relation Z ⊆ G×G′ is said to be an XPath=(↓a)-bisimulation if for
all (x, x′) ∈ G×G′ such that xZx′ we have:

• (Zig=) For every pair of paths in G of the form

π1 = x
e1→x1

e2→ . . .
en→xn and π2 = x

d1→y1
d2→ . . .

dm→ym, where ei, dj ∈ A,

160 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

there are paths in G ′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m,

such that the following holds:

1. xiZx
′
i for all 1 ≤ i ≤ n, and yjZy

′
j for all 1 ≤ j ≤ m.

2. data(xn) = data(ym)⇔ data(x′n) = data(y′m).

• (Zag=) For every paths in G ′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m, where ei, dj ∈ A,

there are paths in G of the form

π1 = x
e1→x1

e2→ . . .
en→xn and π2 = x

d1→y1
d2→ . . .

dm→ym

such that conditions 1 and 2 above are verified.

Furthermore, a XPath=(↓a)-simulation is a relation Z ⊆ G × G′ such that for all
(x, x′) ∈ G×G′ such that xZx′, it is the case that condition Zig= above is verified.

Observe that this notion of bisimulation lacks the Harmony clause that was present in
XPath=(↓)-bisimulation. The reason is that the function of that condition is now subsumed
into Zig= and Zag=, as they also check for the correct mirroring of the labels in the edges.
Another remark is that in the universe of data graphs Zig= and Zag= must necessarily
specify the whole paths, unlike the case for XPath=(↓) over data trees, where it was enough
to indicate the starting and the ending nodes of the paths.

We now define when u ∈ G and u′ ∈ G′ are said to be XPath=(↓a)-similar and
XPath=(↓a)-bisimilar, respectively notated G, u→↓a Gg′, u′ and G, u↔↓a G ′, u′:

G, u→↓a [↔↓a]G ′, u′ def⇔ there is an XPath=(↓a)-[bi]simulation Z such that (u, u′) ∈ Z.

We remark that XPath=(↓a)-(bi)simulations are closed under union: if Z1 ⊆ G × G′
and Z2 ⊆ G × G′ are XPath=(↓a)-(bi)simulations between u ∈ G and u′ ∈ G, then so is
Z1 ∪ Z2. This immediately implies the following:

Proposition 145. If there is an XPath=(↓a)-[bi]simulation between u ∈ G and u′ ∈ G,
then there is a maximal such XPath=(↓a)-[bi]simulation.

The characterization. One can verify that the following theorem, originally stated
in terms of data trees, holds also in the general case of data graphs. It establishes the
desired, Hennessy-Milner-style characterization of the notion of logical indistinguishability
for XPath=(↓a) in terms of XPath=(↓a)-(bi)simulations.

3.2. BISIMULATIONS ON DATA GRAPHS 161

Before stating the theorem, we give for our logic XPath=(↓a) the expected definitions
of equivalence (notated ≡↓a), and its partial, one-direction version (notatedV↓a). Recall
that a node expression is said to be positive if it contains no negation.

G, u ≡↓a G ′, u′ def⇔ for any XPath=(↓a)-node expression ϕ, G, u |= ϕ iff G ′, u′ |= ϕ.

G, uV↓a G ′, u′ def⇔ for any positive XPath=(↓a)-node expression ϕ, if G, u |= ϕ then G′, u′ |= ϕ.

Theorem 146. Let G and G ′ be (finite) data graphs over the same alphabet A, and u and u′

nodes in G and G′, respectively. Then G, u ≡↓a G ′, u′ iff G, u↔↓a G ′, u′, and G, uV↓a G ′, u′
iff G, u→↓a G ′, u′.

Proof. We only prove the theorem for the case of bisimulation, as for simulation the proof
is analogous. The idea is to reduce the case of data graphs to data trees by unravelling,
and then use the result of [45].

Let G be a data graph and u a node in G. We define G̃u as the data graph that
corresponds to the unraveling of G from node u. The idea is that nodes of G̃u are finite
sequences of nodes from G representing paths of G starting at u. Formally, the set of nodes
of G̃u corresponds to the least subset G̃u of G∗ such that (i) u ∈ G̃u, and (ii) for any σ ∈ G∗
and x, y ∈ G it is the case that

σxy ∈ G̃u ⇐⇒ σx ∈ G̃u and x
a→y is an edge of G, for some label a ∈ A.

The set of edges of G̃u is defined as follows: For x, y ∈ G, σ ∈ G∗, and a label a we have

σx
a→σxy ∈ G̃u ⇐⇒ σx ∈ G̃u and x

a→y ∈ G.

Finally, the data value of a node σx in G̃u is the data value of x in G. Observe that the
unraveling of a data graph is thus a possibly infinite (but finitely branching) data tree.

It can be seen that G, u↔↓a G̃u, u; in particular, that the relation that contains all pairs
of the form (x, σx) ∈ G× G̃u is an XPath=(↓a)-bisimulation between u in G and u in G̃u.
On the other hand, it can also be proved that G, u ≡↓a G̃u, u. In fact, one can show that
G, u |= ϕ iff G̃u, σu |= ϕ for every formula ϕ in XPath=(↓a). The proof goes by induction
on the structural complexity of ϕ. The key points are the following:

• Let x0
e1→x1

e2→ . . .
en→xn be a path in G such that x0 is reachable form u. Then from

every σ0 ∈ G̃u whose last symbol is x0 there is a path σ0
e1→σ1

e2→ . . .
en→σn in G̃u such

that the data value of xi coincides with that of σi, for each 0 ≤ i ≤ n.

• Analogously, for any path σ0
e1→σ1

e2→ . . .
en→σn in G̃u there is a path x0

e1→x1
e2→ . . .

en→xn
in G, where x0 (reachable from u) is the last symbol of σ0, and such that the data
value of xi coincides with that of σi for each 0 ≤ i ≤ n.

162 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

To obtain the desired result, we lift our data trees G, u and G ′, u′ to their correspond-
ing unravelings and then use Theorem 8 in [45], which states the coincidence of logical
equivalence and bisimulation over possibly infinite but finitely branching data trees.

It is worth remarking that adding the transitive reflexive closure ↓∗a of ↓a to XPath=(↓a)
does not change the notion of (bi)simulation, and, in particular, Theorem 146 continues to
hold (when ≡↓a and V↓a are replaced with the corresponding indistinguishability notion
in the extended language).

3.3 Computing XPath=(↓a)-bisimulations

When dealing with (bi)simulations in a practical context, a fundamental problem is that
of checking whether a pair of nodes is (bi)similar. In this section we study the complexity
of such problem for XPath=(↓a)-(bi)simulations and show it to be PSpace-complete.
This establishes an important difference with the problem of computing bisimulations in
the absence of data, which can be solved in polynomial time, as it is essentially equal to
computing bisimulations for the basic modal logic.

Formally, we study the following problems:

XPath=(↓a)-[Bi]Similarity problem

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
OUTPUT : ‘Yes’ iff G, u→↓a G′, u′ [iff G, u↔↓a G′, u′, resp.]

Our main result establishes the following:

Theorem 147. The problems of XPath=(↓a)-Bisimilarity and XPath=(↓a)-Similarity
are PSpace-complete.

The proof of this theorem is given later, and comprises Subsection 3.3.1, where we
show that the problem is PSpace, and Subsection 3.3.2, where we demonstrate PSpace-
hardness. Before starting with this proof, we first make some observations related with
this theorem and its consequences.

From Theorem 147 and Theorem 146 we obtain:

Corollary 148. The problem of checking G, u ≡↓a G ′, u′ or G, u V↓a G ′, u′, given data
graphs G and G ′ and nodes u ∈ G and u′ ∈ G′, is PSpace-complete.

Furthermore, the proof of Theorem 147 will imply that the PSpace lower bound is
quite resilient, as it holds even when checking indistinguishability for the restricted class
of formulas of the form 〈ε = ↓e1 . . . ↓en〉, for e1 . . . en ∈ A. These formulas simply check
if starting from a node u it is possible to follow a path labeled e1 . . . en and reach a node
with the same data value as u. Formally, let us call XPathpaths

= (↓a) the fragment that only

contains formulas of the type 〈ε = ↓e1 . . . ↓en〉. We then say that G, u ≡↓apaths G ′, u′ if G, u
and G ′, u′ are indistinguishable with respect to XPathpaths

= (↓a); that is:

3.3. COMPUTING XPATH=(↓A)-BISIMULATIONS 163

G, u ≡↓apaths G ′, u′
def⇔ for every e1, . . . , en ∈ A:

G, u |= 〈ε = ↓e1 . . . ↓en〉 iff G ′, u′ |= 〈ε = ↓e1 . . . ↓en〉.
Analogously, we define G, uV↓apaths G ′, u′. We then obtain the following:

Corollary 149. Checking G, u ≡↓apaths G ′, u′ or G, uV↓apaths G ′, u′ is PSpace-complete.

The proof of Theorem 147 shows that (essentially) XPath=(↓a)-[Bi]similarity is
polynomially equivalent to the containment problem [resp., equivalence problem] for non-
deterministic finite automata (NFAs). Although the proof is not very involved, both di-
rections are non-trivial, and, in particular, the reduction from containment to bisimilarity
requires a clever encoding. Below, we briefly recall basic notions on NFA and its contain-
ment and equivalence problems.

Basics on finite automata. Recall that an NFA over a finite alphabet A is given as a
tuple A = (Q, q0, F, δ), where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states, and δ ⊆ Q × A × Q is the transition relation. A word w ∈ A∗ is
accepted by A if there is an accepting run of A over w that respects the transition relation
δ. Formally, if w = a1 . . . an, where each ai is a symbol in A, an accepting run of A over
w is a sequence q0 . . . qn of states in Q such that (i) (qi, ai+1, qi+1) ∈ δ for each 0 ≤ i < n,
and (ii) qn ∈ F . (Notice that the first state of this accepting run corresponds to the initial
state of A). The set of words in A∗ that are accepted by A is the language of A, denoted
with L(A).

The containment problem for NFAs is defined as follows: Given NFAs A1 and A2

over A, is L(A1) ⊆ L(A2)? Respectively, we define the equivalence problem for NFAs,
but this time we ask whether L(A1) = L(A2). Both containment and equivalence of NFAs
are PSpace-complete [83]. We prove Theorem 147 below by reductions to and from
these problems.

3.3.1 Upper bound

We start by explaining how to obtain a PSpace upper bound for XPath=(↓a)-similarity.
The algorithm receives a pair of graphs G,G ′ and a pair of nodes u, u′, it guesses a candidate
relation Z ⊆ G×G′ containing (u, u′), and then checks that Z satisfies the Zig= property.
Since Z is of polynomial size and PSpace = NPSpace from Savitch’s Theorem [98],
i.e., PSpace is closed under non-determinism, we only need to show that the latter can
be checked in PSpace. This is done by reducing the problem in polynomial time to
containment of NFAs. Since NFA containment is in PSpace the result follows (as PSpace-
computable functions are closed under composition).

Let us explain now the reduction to containment of NFAs. Given a node x ∈ G, we
construct (details below) in polynomial time an NFA AG,x over the alphabet A×G∪{=, 6=}
that accepts precisely the language L of words of the form:

(e1, x1) . . . (en, xn) ? (f1, y1) . . . (fm, ym), (21)

164 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

for (ei, xi), (fj, yj) ∈ A×G and ? ∈ {=, 6=}, such that G contains paths:

x
e1→x1

e2→ . . .
en→xn and x

f1→y1
f2→ . . .

fm→ym

for which data(xn) ? data(ym).
We also construct (details below) an NFA AG,ZG′,x′ over the alphabet A×G∪{=, 6=} that

accepts precisely the language L′ of words of the form (21) such that G ′ contains paths:

x′
e1→x′1

e2→ . . .
en→x′n and x′

d1→y′1
d2→ . . .

dm→y′m,

and the following holds:

• xiZx′i for each 1 ≤ i ≤ n, and yjZy
′
j for each 1 ≤ j ≤ m.

• data(x′n) ? data(y′m).

Finally, we verify (details below) that

Z satisfies Zig= ⇐⇒ L(AG,x) ⊆ L(AG,ZG′,x), for each (x, x′) ∈ Z. (22)

Since Z is of polynomial size, Equation (22) tells us that in order to check whether Zig=

holds we only need to check containment for a polynomial number of pairs of NFAs. This
establishes the upper bound since each such containment can be checked in PSpace.

The proof for bisimilarity is analogous. In fact, Z satisfies Zig= and Zag= if and only
if for each (x, x′) ∈ Z it is the case that:

L(AG,x) ⊆ L(AG,ZG′,x′) and L(AG′,x′) ⊆ L(AG′,Z−1

G,x).

This can clearly be checked in PSpace.
In what follows, we give the definitions of AG,x and AG,ZG′,x′ , and the verification that (22)

holds.

Definition of AG,x. The set of states of AG,x is defined by:

{y, y=
d , y

6=
d | y ∈ G and d is the data value of some node in G}.

The initial state is x and the set of final states corresponds to:

{y=
d | data(y) = d} ∪ {y 6=d | data(y) 6= d}.

Finally, the transition relation of AG,x corresponds to the union of the following sets:

1. {(y, (e, z) , z) | (y
e→z) is an edge in G}.

2. {(y=
d , (e, z) , z=

d) | (y
e→z) is an edge in G and d is a data value in G}.

3. {(y 6=d , (e, z) , z 6=d) | (y
e→z) is an edge in G and d is a data value in G}.

3.3. COMPUTING XPATH=(↓A)-BISIMULATIONS 165

4. {(y, (=) , x=
d) | data(y) = d}.

5. {(y, (6=) , x6=d) | data(y) = d}.
Clearly, AG,x can be constructed in polynomial time from G. We prove next that L(AG,x) =
L, where L is the language defined above.

Notice first that any accepting run of AG,x must be a sequence of states of the form:

x x1 . . . xn x
?
d (y1)?d . . . (ym)?d.

By definition, the word w accepted by this run is of the form:

(e1, x1) . . . (en, xn) ? (f1, y1) . . . (fm, ym),

for ei, fj ∈ A and ? ∈ {=, 6=}, and it is the case that G contains paths

x
e1→x1

e2→ . . .
en→xn and x

f1→y1
f2→ . . .

fm→ym
such that data(xn) = d if and only if ? corresponds to the symbol =. Since (ym)?d is an
accepting state, it must be the case then that

data(xn) = data(ym) ⇐⇒ ? corresponds to the symbol =.

We conclude that data(xn) ? data(ym), and therefore that w ∈ L. This tells us that
L(AG,x) ⊆ L since w was chosen arbitrarily.

On the other hand, consider a word w in L of the form:

(e1, x1) . . . (en, xn) ? (f1, y1) . . . (fm, ym).

By definition, G contains paths:

x
e1→x1

e2→ . . .
en→xn and x

f1→y1
f2→ . . .

fm→ym
for which data(xn) ? data(ym). It is easy to see then that

x x1 . . . xn x
?
d (y1)?d . . . (ym)?d,

for d = data(xn), is an accepting run of AG,x over w. Thus, w ∈ L(AG,x), and, therefore,
L(AG,x) ⊆ L since w was chosen arbitrarily.

Definition of AG,ZG′,x′. The set of states of AG,ZG′,x′ is defined by:

{(y, y′), (y, y′)=
d , (y, y′)6=d | (y, y′) ∈ G×G′ and d is the data value of some node in G ′}.

The initial state is (x, x′) and the set of final states corresponds to:

{(y, y′)=
d | data(y′) = d} ∪ {(y, y′) 6=d | data(y′) 6= d}.

Finally, the transition relation of AG,ZG′,x′ corresponds to the union of the following sets:

166 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

1. {
(
(y, y′), (e, z), (z, z′)

)
| (y

e→z) is an edge in G, (y′
e→z′) is an edge in G ′, and zZz′}.

2. {
(
(y, y′)=

d , (e, z) , (z, z′)=
d

)
| (y

e→z) is an edge in G, (y′
e→z′) is an edge in G ′,

zZz′, and d is a data value in G ′}.

3. {
(
(y, y′)6=d , (e, z) , (z, z′) 6=d

)
| (y

e→z) is an edge in G, (y′
e→z′) is an edge in G ′,

zZz′, and d is a data value in G ′}.

4. {
(
(y, y′), (=) , (x, x′)=

d

)
| data(y′) = d}.

5. {
(
(y, y′), (6=) , (x, x′)6=d

)
| data(y′) = d}.

Clearly, AG,ZG′,x′ can be constructed in polynomial time from G. It is also quite easy to prove

that L(AG,ZG′,x′) = L′

Verification. Note that Z satisfies Zig= if and only if for every (x, x′) ∈ Z and paths in
G of the form

π1 = x
e1→x1

e2→ . . .
en→xn and π2 = x

d1→y1
d2→ . . .

dm→ym, where ei, dj ∈ A,

there are paths in G ′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m,

such that the following holds:

1. xiZx
′
i for all 1 ≤ i ≤ n, and yjZy

′
j for all 1 ≤ j ≤ m.

2. data(xn) = data(ym)⇔ data(x′n) = data(y′m).

In other words, Z satisfies Zig= if and only if for every (x, x′) ∈ Z and word over A×G∪ {=
, 6=} of the form (21) such that G contains paths:

x
e1→x1

e2→ . . .
en→xn and x

f1→y1
f2→ . . .

fm→ym

for which data(xn) ? data(ym), it is the case that G ′ contains paths:

x′
e1→x′1

e2→ . . .
en→x′n and x′

d1→y′1
d2→ . . .

dm→y′m,

for which the following holds:

• xiZx′i for each 1 ≤ i ≤ n, and yjZy
′
j for each 1 ≤ j ≤ m.

• data(x′n) ? data(y′m).

That is, Z satisfies Zig= if and only if for every (x, x′) ∈ Z it is the case that every word
in L(AG,x) is also in L(AG,ZG′,x′), i.e., L(AG,x) ⊆ L(AG,ZG′,x′).

3.3. COMPUTING XPATH=(↓A)-BISIMULATIONS 167

3.3.2 Lower bound

We start by showing the lower bound for XPath=(↓a)-similarity. We proceed by
constructing a polynomial time reduction from containment of NFAs to XPath=(↓a)-
similarity. Let Ai = (Qi, qi, Fi, δi) be NFAs over alphabet A, for i = 1, 2. Here, Qi is
the finite set of states of Ai, qi is the initial state, Fi ⊆ Qi is the set of final states, and
δi ⊆ Qi × A × Qi is its transition relation. We assume, without loss of generality, that
qi has no incoming transitions and Fi consists of a single state fi 6= qi without outgoing
transitions. Furthermore, we assume that fi (for i = 1, 2) is reachable from every state
in Qi and that Q1 ∩ Q2 = ∅. It is easy to see that containment of NFAs continues being
PSpace-hard even under such restrictions.

Let u1, u2, v1, v2, w1, w2 be fresh elements that do not belong to Q1 ∪ Q2. For i = 1, 2,
we define a data graph Gi = (Gi, Ei, data i) as follows (see Figure 40):

1. Gi = Qi ∪ {ui, vi, wi}.

2. (x, a, y) ∈ Ei if and only if one of the following holds:

• (x, a, y) ∈ δi
• x ∈ Qi \ {qi, fi} and y ∈ {ui, vi, wi}
• x = qi and y = ui

• x = ui and y ∈ {ui, vi, wi}

3. data i(q) =





1 if q ∈ {qi} ∪ Fi,
2 if q ∈ {ui} ∪Qi \ {qi, fi},
3 if q = vi,

4 if q = wi.

Clearly, Gi can be constructed in polynomial time from Ai, for i = 1, 2. We show next
that:

L(A1) ⊆ L(A2) ⇐⇒ G1, q1 →↓a G2, q2.

We start with the right-to-left direction. Take an arbitrary word e1 . . . en ∈ L(A1). There-
fore, n > 0 since A1 does not accept the empty word. Let ϕ := 〈ε = ↓e1 . . . ↓en〉. Then
by construction G1, q1 |= ϕ (as there is a path from q1 to f1 in G1 labeled e1 . . . en and
data1(q1) = data1(f1)). Hence, since G1, q1 →↓a G2, q2 and ϕ is a positive node XPath=

expression, Theorem 146 tells us that G2, q2 |= ϕ. That is, there exists a path

π = q2
e1→u1 . . .

en→un in G2 such that data2(q2) = data2(un).

Since n > 0, the node un can only be f2. By construction, then, all internal nodes of π
must belong to Q2 \ {q2, f2} (as there is no path linking nodes u2, v2, w2 with f2). This
implies that e1 . . . en ∈ L(A2).

For the left-to-right direction, let us define Z ⊆ G1 × G2 as follows (see Figure 40):
xZy iff one of the following holds:

168 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

q1

u1

v1 w1

1

2

1

2

3 4

A1

Q1 \ {q1, f1}

1

2

1 3 4

Q2 \ {q2, f2}

q2 A2

u2

v2 w2

G1 G2

Z

Z

Zf1 f2

2

Figure 40: The data graphs Gi = (Gi, Ei, datai) (i = 1, 2), constructed from NFAs A1 and A2,
and the bisimulation Z ⊆ G1 ×G2 used in the left-to-right direction of the reduction. All nodes
inside a dotted area on G1 are related to all nodes inside a dotted on G2 area via Z.

1. x = q1 and y = q2.

2. x ∈ {u1} ∪Q1 \ {q1, f1} and y ∈ {u2} ∪Q2 \ {q2, f2}.

3. x ∈ {v1, w1, f1} and y ∈ {v2, w2, f2}.

We show next that Z satisfies the Zig= clause for any pair (x1, x2) ∈ G1 × G2 such that
x1Zx2. We do this by cases:

1. If x1 ∈ {f1, v1, w1} and x2 ∈ {f2, v2, w2}, then Zig= holds trivially as there are no
outgoing paths from f1, v1 or w1.

2. If x1 ∈ Q1\{q1, f1}∪{u1} and x2 ∈ Q2\{q2, f2}∪{u2}, let α, β be two paths starting
in x1. Suppose first that α = x1 (i.e. the empty path starting at x1) and

β = x1
e1→y2

e2→ . . .
em−1→ ym

em→z [resp. x1
e1→y2

e2→ . . .
em−1→ ym],

where the yi’s are in (Q1\{q1, f1})∪{u1} and z ∈ {f1, v1, w1}. Then the corresponding
β′ in G2 is

x2
e1→u2

e2→ . . .
em−1→ u2

em→v2 [resp., x2
e1→u2

e2→ . . .
em−1→ u2],

where there are m− 1 occurrences of u2. If both α and β have length greater than 0,
then the procedure is similar, but one path may end in w2 if the data values of the
endpoints of α, β are different elements in {1, 3, 4}.

3. Finally, if x1 = q1 and x2 = q2, there are two main cases for the type of paths α, β
in G1 to be replicated in G2 while respecting the Zig= condition with respect to Z.

3.4. RESTRICTING PATHS IN BISIMULATIONS 169

If both α and β are of length greater than 0, then copying them is straightforward
using the nodes u2, v2, w2. If both are of length 0 the result is trivial. Suppose one
of them is length 0 and the other one is of length greater than 0, say α = q1 and

β = q1
e1→y2

e2→ . . .
en−1→ yn

en→z.

We need to find paths α′ and β′ in G2, both starting in q2, which “copy” α and β
respectively. Clearly α′ is just q2, as it has to have length 0. The definition of β′

depends on z. If z ∈ Q1 \ {q1, f1} ∪ {u1, v1, w1}, then β′ is of the form

β′ = q2
e1→y′2

e2→ . . .
en−1→ y′n

en→z′, (23)

where y′i = u2 (i = 2 . . . n) and z′ is either u2, v2, or w2 if z is u1, v1, or w1,
respectively. If z = f1, then the endpoints of α and β have both data value 1. Since
the word e1 . . . en ∈ L(A1) and by hypothesis L(A1) ⊆ L(A2), we conclude that
e1 . . . en is accepted by A2. This means that there is a path of the form (23) where
y′i ∈ Q \ {q2, f2, u2, v2, w2} and z′ = f2. This path satisfies the required condition of
Zig=, as the condition on Z is verified and the data value of q2 and f2 (the endpoints
of α′ and β′) are equal, namely have data value 1.

For XPath=(↓a)-bisimilarity the proof is analogous, but using this time a reduc-
tion from NFA equivalence. In fact, it can be easily checked that with exactly the same
construction shown above we obtain that:

L(A1) = L(A2) ⇐⇒ G1, q1 ↔↓a G2, q2.

Notice that this construction also immediately implies Corollary 149. In fact, for the
right-to-left direction of the reduction to hold we only require invariance of (G2, q2) with
respect to (G1, q1) referred to those formulas of the form 〈ε = ↓e1 . . . ↓en〉, for e1 . . . en ∈ A.

In other words, we only require (G1, q1)V↓apaths (G2, q2) or (G1, q1) ≡↓apaths (G2, q2) depending
on whether we are reducing from containment or equivalence of NFAs, respectively.

3.4 Restricting paths in bisimulations

The smallest witness to the fact that two NFAs are not equivalent (resp., one NFA is
not contained in another one) might be a path of exponential length [83]. As a corollary
to the proof of Theorem 147, we obtain then that the smallest witness to the fact that
a given relation Z ⊆ G × G′ does not satisfy the Zig= condition might also be a pair
(π1, π2) of paths of exponential length. This naturally calls for a restriction on the length
of paths considered in the definition of XPath=(↓a)-(bi)simulation as a way to obtain better
complexity bounds. We consider this restriction natural for the following reasons:

• Long witnesses correspond to large distinguishing formulas in XPath=(↓a). But rarely
will users be interested in checking if nodes are distinguishable by formulas that they

170 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

cannot even write. Thus, the restriction to shorter paths can be seen as an approx-
imation to the notion of XPath=(↓a)-(bi)similarity based on user-understandable
formulas.

• In practice, algorithms for computing (bi)simulations in the absence of data stop
after a few iterations [81, 80]. This tells us that when nodes in real-world graphs are
distinguishable by BML-formulas, they are distinguishable by some small formula.
One might expect a similar behavior for XPath=(↓a), implying that the restriction
to shorter paths provides a fair approximation of the problem in practice.

In this section we study the complexity of XPath=(↓a)-(bi)similarity for paths of re-
stricted length. We show that the problem becomes Co-NP-complete for paths of poly-
nomial length, and tractable for paths of constant length. This notion of bisimilarity
further captures the expressive power of a natural fragment of XPath=(↓a); namely, the
one formed by expressions of bounded length. This fragment only restricts formulas of the
form 〈α ? β〉, for ? ∈ {=, 6=}.

3.4.1 Bounded bisimulation and equivalence

Let f : N → N be a positive, non-decreasing function. We define the notion of f -
XPath=(↓a)-[bi]simulation as in Definition 144, but now in the Zig= [also Zag=] condition
we only consider paths π1 and π2 [resp., π′1 and π′2] of length at most f(max(|G|, |G′|)),
where |G| denotes the number of edges in G. We call the new conditions Zigf= and Zagf=,
respectively.

More formally, an f-XPath=(↓a)-bisimulation is a relation Z ⊆ G × G′ such that
for all (x, x′) ∈ G×G′ with xZx′ we have:

• (Zigf=) For every paths in G of the form

π1 = x
e1→x1

e2→ . . .
en→xn and π2 = x

d1→y1
d2→ . . .

dm→ym
such that m,n ≤ f(max(|G|, |G′|)), there are paths in G ′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m,
such that the following holds:

1. xiZx
′
i for all 1 ≤ i ≤ n, and yjZy

′
j for all 1 ≤ j ≤ m.

2. data(xn) = data(ym)⇔ data(x′n) = data(y′m).

• (Zagf=) For every paths in G ′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m
such that m,n ≤ f(max(|G|, |G′|)), there are paths in G of the form

π1 = x
e1→x1

e2→ . . .
en→xn and π2 = x

d1→y1
d2→ . . .

dm→ym,
such that conditions 1 and 2 above are verified.

3.4. RESTRICTING PATHS IN BISIMULATIONS 171

• (Zig) For every y ∈ G and e ∈ A such that x
e→y there is y′ ∈ G′ such that x′

e→y′
and yZy′.

• (Zag) For every y′ ∈ G′ and e ∈ A such that x′
e→y′ there is y ∈ G such that x

e→y
and yZy′.

The reason why we add the one-step, comparison-free rules of Zig and Zag will become
clearer below, in the characterization theorem for a fragment of XPath=(↓a) to be studied
next (Theorem 151). The idea is that we want to restrict with f the length of pairs of
paths which compare data values at their terminating nodes, but we do not want to restrict
the length of single paths which do not compare data values.

Similarly, an f-XPath=(↓a)-simulation is a relation Z ⊆ G × G′ such that for all
(x, x′) ∈ G×G′ with xZx′ it is the case that condition Zigf= and Zig above are verified.

We now define when u ∈ G and u′ ∈ G′ are said to be f-XPath=(↓a)-[bi]similar

notated G, u→↓af Gg′, u′ [resp. G, u↔↓af Gg′, u′]:

G, u→↓af [↔↓af]Gg′, u′
def⇔ there is an f -XPath=(↓a)-[bi]simulation Z such that (u, u′) ∈ Z.

The characterization. We define the logical counterpart of this refined notion of bisim-
ulation. We aim at an analog of Theorem 146 relative to the adequate restriction of
indistinguishability (compare for example with what was done for↔↓` and↔↑↓r,s,k in §1.2.2).
As we show below, this restriction is defined by the fragment of XPath=(↓a) whose path
expressions α occurring in an expression of the form 〈α ? β〉 (for ? ∈ {=, 6=}) have length
bounded by f . In the following we formalize this idea.

We recall that the length of a path expression α, denoted len(α), corresponds (after the
natural adaptation of its definition to the context of edge-labeled graphs) to the number
of ↓a’s occurring in α at the uppermost level, i.e., outside any test of the form [ϕ]. E.g.,
len(↓a[〈↓b = ↓a↓b↓c〉]↓b) = len(↓a↓b) = 2. We use this notion to define the maximum length
of a node or path expression. This represents the maximum length of paths that are
involved in expressions of the form 〈α ? β〉, for ? ∈ {=, 6=}.

Definition 150 (Maximum length). Given a node or path expression θ, we write ml(θ) to
denote the maximum length of θ. Formally, ml is recursively defined as follows:

ml(λ) = 0
ml(εα) = ml(α)

ml([ϕ]α) = max{ml(ϕ),ml(α)}
ml(↓aα) = ml(α)

ml(ϕ ∧ ψ) = max{ml(ϕ),ml(ψ)}
ml(¬ϕ) = ml(ϕ)
ml(〈α〉) = ml(α)

ml(〈α ? β〉) = max{len(α), len(β),ml(α),ml(β)},

where α is any path expression or the empty string λ. 2

172 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

As an example:
ml(〈↓a[〈↓b↓a↓c〉]↓b = ↓b[〈↓a↓b↓a↓b〉]〉) = 2.

We now state the notion of equivalence [and partial equivalence] for f -XPath=(↓a), no-
tion which coincides with that of f -XPath=(↓a)-[bi]simulation. Fix f : N→ N to be a posi-
tive, non-decreasing function, and G,G ′ to be two data graphs. Call F = f(max(|G|, |G′|)),
and remember that we say that a node expression is positive if it contains no negations.

G, u ≡↓af G ′, u′
def⇔ for all XPath=(↓a)-node expressions ϕ with ml(ϕ) ≤ F ,

G, u |= ϕ iff G ′, u′ |= ϕ

G, uV↓af G ′, u′
def⇔ for all positive XPath=(↓a)-node expressions ϕ

with ml(ϕ) ≤ F , G, u |= ϕ⇒ G ′, u′ |= ϕ

As in Theorem 146 we obtain the following characterization:

Proposition 151. G, u ≡↓af G ′, u′ iff G, u↔↓af G ′, u′, and G, uV↓af G ′, u′ iff G, u→↓af G ′, u′.

Proof. It follows using the idea in the proof of Theorem 8 in [45]. Formulas of the form
〈α ? β〉 of ml bounded by f(max(|G|, |G′|)) (for ? ∈ {=, 6=}) are handled by rules Zigf=
and Zagf=. Formulas of the form 〈↓α〉 are equivalent to 〈↓[〈α〉]〉, and these are handled by
rules Zig and Zag.

3.4.2 Computing f-XPath=(↓a)-bisimulations

Here we study the complexity of computing f -XPath=(↓a)-(bi)simulations:

f-XPath=(↓a)-[Bi]Similarity problem

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
OUTPUT : ‘Yes’ iff G, u→↓af G′, u′ [iff G, u↔↓af G′, u′, resp.]

Since this problem is PSpace-complete when f is an exponential function, it is
natural to start by restricting f to be a polynomial. We show next that while this restriction
lowers the complexity of our problem, it still does not yield tractability:

Proposition 152. The following holds:

1. The problem p-XPath=(↓a)-(Bi)similarity is in Co-NP for every non-decreasing
polynomial p : N→ N.

2. The problem p-XPath=(↓a)-(Bi)similarity can be Co-NP-hard even if p : N→
N is the identity function.

Proof. We only prove the claim for p-XPath=(↓a)-similarity. The proof for bisimilarity
is analogous. We start with item 1. Let G and G ′ be data graphs and u, u′ nodes in G,G′,
respectively. In order to check whether there is an XPath=(↓a)-simulation from u to u′ we

3.4. RESTRICTING PATHS IN BISIMULATIONS 173

can use the standard greatest fixed point algorithm for computing the maximal simulation
in the absence of data. We adapt it here to the Zigp= condition of XPath=(↓a)-simulations.

The algorithm computes the maximal XPath=(↓a)-simulation from G to G ′. We start
by defining Z = G × G′. At each step we choose an arbitrary pair (x, x′) ∈ Z. If Zigp=
fails when evaluated on this pair we simply remove it from Z. We proceed iteratively until
we reach a fixed point. Finally, we check whether (u, u′) ∈ Z. Only if this is the case we
declare that there is an XPath=(↓a)-simulation from u to u′.

Thus, in order to check that there is no XPath=(↓a)-simulation from u to u′, we can
simply guess a computation of the algorithm that removes the pair (u, u′) from Z. Such
computation consists of (a) pairs (x1, x

′
1), . . . , (xm, x

′
m); (b) relations Z0, . . . , Zm such that:

Z0 = G × G′, Zi = Zi−1 \ {(xi, x′i)} for each 1 ≤ i ≤ m, and Zm does not contain (u, u′);
and (c) suitable witnesses for the fact that (xi, x

′
i) does not satisfy Zigp= with respect to

Zi−1, for each 1 ≤ i ≤ m. Such witness consists of a pair (π1, π2) of paths of length at most
p(max (|G|, |G ′|)) in G starting from xi, and yet another witness for the fact that no pair
(π′1, π

′
2) of paths in G ′ starting from x′i satisfies Zigp= with respect to (π1, π2). The latter can

be represented by an accepting run of the complement of the NFA AG′,x′i,Zi−1
(as defined

in the proof of the upper bound of Theorem 147) over the word that represents the pair
(π1, π2) in AG,xi . Clearly, each one of the components of this guess can be represented using
polynomial space. Further, it can be checked in polynomial time that the guess satisfies
the required conditions It follows that checking whether there is no XPath=(↓a)-simulation
from u to u′ is in NP (and, thus, that our problem is in Co-NP).

For item 2 we use the following claim:

Lemma 153. The problem of checking containment of NFA A1 in A2, restricted to words
of length at most max (|A1|, |A2|) is Co-NP-hard. (Here, |Ai| defines the number of
tuples in the transition relation of Ai, for i = 1, 2).

Proof. We use a reduction from the complement of 3CNF satisfiability. Given a 3CNF
formula ϕ of the form

(l11 ∨ l21 ∨ l31) ∧ . . . ∧ (l1n ∨ l2n ∨ l3n),

over the set {h1, . . . , hm} of propositional symbols, we construct in polynomial time NFAs
A1 and A2 over the alphabet A := {h1, . . . , hm,¬h1, . . . ,¬hm} such that:

ϕ is satisfiable ⇐⇒ L(A1) 6⊆ L(A2). (24)

The NFA A1 consists of states q0, . . . , qn, with q0 and qn being the initial and final state.
The transitions of A1 are the ones in the set:

{(qi, lji+1, qi+1) | 0 ≤ i < n, j = 1, 2, 3}.

That is, the words accepted by A1 codify the different ways in which we can choose one
literal from each clause in ϕ. One of these words encodes a satisfying assignment of ϕ if
and only if it does not contain an “error”, i.e., it does not mention a propositional variable

174 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

and its negation. We then take A2 as the NFA that accepts those words over the alphabet
A that do mention a propositional variable in {h1, . . . , hm} and its negation, i.e.,

L(A2) =
⋃

1≤i≤m

A∗hiA∗¬hiA∗ ∪ A∗¬hiA∗hiA∗.

Such A2 can be easily defined as follows. The states of A2 are r0 and si, ti, s
′
i, t
′
i, for each

1 ≤ i ≤ m. The initial state is r0 and the set of final states is {ti, t′i | 1 ≤ i ≤ m}. For
each symbol a ∈ A and state q in A2, there is a transition (q, a, q). Moroever, for each
1 ≤ i ≤ m the NFA A2 contains transitions

(r0, hi, si), (si,¬hi, ti), (r0,¬hi, s′i), (s′i, hi, t′i).

It is easy to see that (24) holds. In fact, ϕ is satisfiable if and only if there is a word in
L(A1) that does not contain an “error”, that is, it does not belong to L(A2).

Notice, in addition, that |A1| = 3n and |A2| = 8m2 + 6m ≤ 14m2. Moreover, the
words in L(A1) are of length at most n. This tells us that not only (24) holds, but
it holds even if the containment of A1 into A2 is restricted to words of length at most
max (|A1|, |A2|)) ≥ 3n > n.

We then reduce the restricted containment problem from Lemma 153 to p-XPath=(↓a)-
similarity, where p : N→ N is the identity function, by using the same construction than
in the proof of the lower bound of Theorem 147. In fact, it can be readily checked that,
starting from NFAs A1 and A2, such reduction constructs data graphs G1 and G2 with
distinguished nodes q1 and q2, respectively, such that the following are equivalent:

1. A1 is contained in A2 up to words of length at most max (|A1|, |A2|)).

2. (G, q1)→↓amax (|G1|,|G2|)) (G2, q2).

This finishes the proof of the proposition.

The reason why the previous restriction is not sufficient to obtain tractability is that
there are too many paths of polynomial length in a data graph. We solve this issue by
restricting to paths of constant length only. In the following we identify the function that
takes constant value c ∈ N with the letter c.

For c ≥ 0, we call XPath=(↓a)(c), or c-XPath=(↓a), to the syntactical fragment of
XPath=(↓a) with a ml bounded by c. Further, fragments of the form c-XPath=(↓a) (for
c ≥ 1) extend multi-modal logic, which in turn coincides with 0-XPath=(↓a):

Proposition 154. 0-XPath=(↓a) is semantically equivalent to multi-modal logic with no
propositions and only atoms > and ⊥.

Proof. In the jargon of ML, we have a language with modalities 〈a〉 for each a ∈ A. On
the one hand, any node expression of the form 〈α ? β〉 in 0-XPath=(↓a) is also of the form

〈[ϕ1] . . . [ϕn] ? [ψ1] . . . [ψm]〉,

3.4. RESTRICTING PATHS IN BISIMULATIONS 175

which is equivalent to
∧
i ϕi ∧

∧
j ψj, if ? is =, and to a contradiction (e.g., ¬〈ε〉) other-

wise. On the other hand, a node expression 〈↓aα〉 is equivalent to 〈↓a[〈α〉]〉. Any node
expression of the form 〈↓a[ϕ]〉 of 0-XPath=(↓a) can be straightforwardly translated (in
a truth-preserving way) to ML via T as 〈a〉T (ϕ). The translation from modal logic to
0-XPath=(↓a) is obvious.

Proposition 155. The problem of c-XPath=(↓a)-(bi)similarity is PTime-complete
for each constant c > 0.

Proof. We use the same algorithm as in the proof of the previous upper bound. The
difference now is that checking whether a pair (x, x′) ∈ Z satisfies Zigc= can be solved
efficiently for each c > 0. This is because there is at most a polynomial number of paths
of length ≤ c in G starting from x. We conclude that checking whether G, u→↓ac G ′, u′ is
in PTime. The same holds for G, u↔↓ac G ′, u′. The lower bound follows straightforwardly
from Proposition 154 and PTime-hardness for usual ML-bisimulations [12].

Proposition 151 establishes that c-XPath=(↓a)-simulations characterize the expressive
power of the fragment of XPath=(↓a) defined by formulas of ml bounded by the constant
c. The following corollary to the proof of Proposition 155 states that when two nodes are
not c-XPath=(↓a)-bisimilar, it is possible to compute in polynomial time a node expression
in this fragment that distinguishes them.

Corollary 156. There is a polynomial time algorithm which given G, u 6↔↓ac G ′, u′ [resp.,

G, u 6→↓ac G ′, u′], constructs16 a [positive] node expression ϕ of c − XPath=(↓a) such that
G, u |= ϕ and G ′, u′ 6|= ϕ.

Proof. We adapt the algorithm given in [8] for BML to our notion of bisimulation. We only
explain the case of c-XPath=(↓a)-simulation, as for bisimulation the proof is analogous.

We construct a polynomial time algorithm which, on input G and G ′, computes, for
each x ∈ G, a set S(x) = {x′ ∈ G′ | x→↓ac x′} and a positive node expression N(x) such
that G, x |= N(x) and [[N(x)]]G

′
= S(x). The existence of this algorithm is enough to prove

the desired result: if G, u 6→↓ac G ′, u′, we have that u′ /∈ S(u) and therefore G, x |= N(x)
and G ′, x′ 6|= N(x), hence satisfying the statement of the Corollary.

The algorithm is as follows. We start by setting, for all x ∈ G, S(x) := G′ and
N(x) := > (representing any positive tautology, e.g.〈ε〉).We repeat the following process
until none of the items below are true:

• There are (x, x′) ∈ G×G′ such that Zigc= does not hold at (x, x′), in the sense that
there are paths in G of the form

π1 = x
e1→x1

e2→ . . .
en→xn and π2 = x

d1→y1
d2→ . . .

dm→ym
with m,n ≤ c, and such that there are no paths in G ′ of the form

π′1 = x′
e1→x′1

e2→ . . .
en→x′n and π′2 = x′

d1→y′1
d2→ . . .

dm→y′m,
16Provided an adequate representation for such formula is chosen [51].

176 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

satisfying x′i ∈ S(xi) for all 1 ≤ i ≤ n, y′i ∈ S(yi) for all 1 ≤ j ≤ m, and data(xn) =
data(ym) iff data(x′n) = data(y′m). In this case we set S(x) := S(x) \ {x′} and

N(x) := N(x) ∧ 〈↓e1 [N(x1)]↓e2 . . . ↓en [N(xn)] ? ↓d1 [N(y1)]↓d2 . . . ↓dm [N(ym)]〉,

where ? is = in case data(xn) = data(ym) and 6= otherwise.

• There are (x, x′) ∈ G × G′ such that Zig does not hold at (x, x′), in the sense that
there is y ∈ G such that x

e→y and there is no y′ ∈ G′ such that y
e→y′ and y′ ∈ S(y).

In this case, we set S(x) := S(x) \ {x′} and N(x) := N(x) ∧ 〈↓e[N(y)]〉.

The idea is that at each step, if either Zigf= or Zig are false, we shrink S(x) for some
x, and the “reason” behind the falsity of Zigf= or Zig is encoded in the node expression
N(x). The invariant of the cycle states that for all x ∈ G we have [[N(x)]]G

′ ⊆ S(x) and
G, x |= N(x). Since at execution of the body of the cycle, one element is removed from
S(x), for some (x, x′) ∈ G × G′, the total number of iterations is polynomial in the size
of the data graphs. Furthermore, at each iteration, we only search for paths of length at
most c, and so the total number of steps taken by this algorithm is polynomial.

3.5 Restricting the models

Here we follow a different approach from the one in Section 3.4: We constrain the topology
of graphs instead of the (bi)simulations. Since our goal is restricting the number and/or
length of the paths considered in the analysis of (bi)simulations, it is natural to look into
acyclic graphs; namely, trees and DAGs.

Let us start with data trees, i.e., data graphs whose underlying graph is a directed
tree. This case is relevant as XML documents are (essentially) data trees, and the study
of XPath=(↓a)-bisimulations was started in such context. Notice that for data trees both
the number and the length of paths one needs to consider when checking the Zig= and
Zag= conditions are polynomial. This implies that the problem of computing XPath=(↓a)-
(bi)simulations over data trees is tractable:

Theorem 157. The problem of XPath=(↓a)-(bi)similarity for data trees is in PTime.

As a second case, let us consider data DAGs, which allow for undirected cycles only.
In this case the length, but not the number, of the paths one needs to consider at the
moment of checking the Zig= and Zag= conditions is polynomial. The first observation
helps lowering the complexity of computing XPath=(↓a)-(bi)simulations in this context
from PSpace to Co-NP, while the second one prevents us from obtaining tractability.

Lemma 158. The problems of containment or equivalence of NFAs whose underlying graph
is a DAG are both Co-NP-complete.

Proof. The Co-NP-hardness of the NFA DAG containment problem follows from Lemma
153, since the number of tuples in the transition relations of a DAG form an upper bound

3.6. TWO-WAY XPATH= 177

to the length of words accepted by it. The completeness of the problem is then immediate,
as a witness of L(A1) 6⊆ L(A2) can be checked in polynomial time, since there is a linear
bound on the length of words accepted by DAGs. For the hardness of the equivalence
problem, we can reduce the problem of DAG containment to equivalence by adding a
disjoint copy of A2 to A1 and then joining by a same parent node: L(A1) ⊆ L(A2) iff
L(A1 t A2) = L(A2). The completeness follows as in the case of containment.

Proposition 159. The problem XPath=(↓a)-(bi)similarity for data DAGs is Co-NP-
complete.

Proof. The problem is in Co-NP as a consequence of the first item of Proposition 152,
since paths in DAGs are of linear size. To prove Co-NP-hardness, we reduce the problem
of DAG containment (equivalence) to the problem of data DAG (bi)similarity, and then
use Lemma 158. We will see the proof only for simulation, as the case of bisimulation is
analogous.

Given two DAG NFAs Ai = (Qi, qi, Fi, δi), for i = 1, 2, (i.e., NFA whose transition
graphs have no cycles) we construct data DAGs Gi = (Gi, Ei, data i), with i = 1, 2, as in
the proof of the lower bound of Theorem 147. The main difference is that the ui of Figure 40
will be replaced by some DAGs that we will now construct. Let n = max{|Q1|, |Q2|}, and
let Qj

i be the set of nodes q ∈ Qi at “maximum distance j” from fi, that is, so that there
is a directed path from q to fi of length j but there is no such path of length > j (note
that Qi =

⋃
j≤nQ

j
i). Now, each ui of Figure 40 is replaced with n fresh nodes u1

i , . . . , u
n
i

of data value 2, with every possible edge from Qj
i to uj−1

i , from uji to vi, wi, and from uji
to uj

′

i for every j′ < j. It is straightforward to check that the resulting data graphs are
DAGs, and that as in the lower bound proof of Theorem 147 we have that G1, q1→↓a G2, q2

if and only if L(A1) ⊆ L(A2).

3.6 Two-way XPath=

A common expressive extension for languages on graphs is to consider a two-way version
that allows to traverse edges in both directions (see, e.g., [20, 78]). We call XPath=(↑a↓a)
the extension of XPath=(↓a) with path expressions of the form ↑a, for a ∈ A. The semantics
of these expressions over G = 〈G,E, data〉 is as follows: [[↑a]]G = {(x, y) | (y, a, x) ∈ E}. We
write the expected definitions of equivalence and partial equivalence for XPath=(↑a↓a):

G, u ≡↑a↓a G ′, u′ def⇔ for any XPath=(↑a↓a)-node expression ϕ,
G, u |= ϕ iff G ′, u′ |= ϕ.

G, uV↑a↓a G ′, u′ def⇔ for any positive XPath=(↑a↓a)-node expression ϕ,
if G, u |= ϕ then G ′, u′ |= ϕ.

A notion of (bi)simulation for XPath=(↑a↓a) over data trees was introduced in [45],
and turns out to be tractable. It heavily relies on the determinism of ↑a over trees, and
hence does not fit in the context of data graphs. However, there is a simple way to adapt
XPath=(↓a)-bisimulations to the case of XPath=(↑a↓a).

178 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

Given a data graph G = 〈G,E, data〉 over A, we define its completion over A ∪ A−,
where A− := {a− | a ∈ A}, as the data graph Gc = 〈G,Ec, data〉, where Ec extends E
by adding the edge (v, a−, u), for each edge (u, a, v) ∈ E. That is, Gc extends G with the
“inverse” of every edge in E.

We also define a bijection ϕ 7→ ϕc mapping node expressions of XPath= over A to node
expressions of XPath=(↑a↓a) over A ∪ A− as follows: ϕc is the result of replacing each
occurrence of ↑a in ϕ (for a ∈ A) with ↓a− . The following proposition is straightforward:

Proposition 160. G, u |= ϕ iff Gc, u |= ϕc.

We say that there is an XPath=(↑a↓a)-bisimulation between u ∈ G and u′ ∈ G′

(denoted G, u ↔↑a↓a G ′, u′) if Gc, u ↔↓a G ′c, u′ (over the extended alphabet A ∪ A−).
Similarly, we define XPath=(↑a↓a)-simulations →↑a↓a . Analogously to Theorem 146,
one can show:

Theorem 161. G, u ≡↑a↓a G ′, u′ iff G, u↔↑a↓a G ′, u′, and G, u V↑a↓a G ′, u′ iff G, u →↑a↓a
G ′, u′.

We study the complexity of the following problem:

XPath=(↑a↓a)-[Bi]Similarity problem

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
OUTPUT : ‘Yes’ iff G, u→↑a↓a G′, u′ [iff G, u↔↑a↓a G′, u′, resp.]

The bounded notions of bisimulation introduced in §3.4 are defined over XPath=(↑a↓a)
and alphabet A in the expected way: reducing to XPath= over the signature A ∪ A− and
the corresponding completion of the data graphs. We use symbols→↑a↓af [resp.↔↑a↓af] for
referring to f -XPath=(↑a↓a)-[bi]similarity. We then study:

f-XPath=(↑a↓a)-[Bi]Similarity problem

INPUT : Data graphs G and G′, nodes u ∈ G and u′ ∈ G′.
OUTPUT : ‘Yes’ iff G, u→↑

a↓a
f G′, u′ [iff G, u↔↑

a↓a
f G′, u′, resp.]

The identification of XPath=(↑a↓a) over A with XPath= over A ∪ A− and the corre-
sponding completions of graphs allows us to straightforwardly transfer some upper bounds:

• XPath=(↑a↓a)-(bi)similarity is in PSpace (§3.3.1).

• p-XPath=(↑a↓a)-(bi)similarity, for p a non-decreasing polynomial, is in Co-NP
(item 1 of Proposition 152).

• c-XPath=(↑a↓a)-(bi)similarity, for c a constant function, is in PTime (Proposi-
tion 155)

3.6. TWO-WAY XPATH= 179

q0

2

A

Z

Z

Z

qf

2

2

G

1 3 4 4 3
v1 v2 v3 v4 v5

w1

w2

2

1 3

u0
2

1

v01

3

v02

w0
1

G0

1 3 4 4 3

u2 u3 u4 u5 u6

1

u1 u0
1

Figure 41: Definition of the data graphs G and G′ based on an NFA A over alphabet A. Boldface
arrows have, as label, all symbols from A. Lightface arrows have all the same label e /∈ A for
some e. All nodes of A (the grey area) have data value 2. All nodes inside a dotted area on G
are related to all nodes inside a dotted area on G′ via Z.

Regarding the lower bounds, we focus here on the general case of XPath=(↑a↓a) over
data graphs. One can check that the proof given in §3.3.2 does not work because in the two
way context, more nodes in the graphs can be reached through the accessibility relations.
The main result of this section is the following:

Theorem 162. XPath=(↑a↓a)-(Bi)similarity is PSpace-hard.

Proof. We only verify the bisimilarity case, as the similarity case can be solved in the same
way.

We reduce to this problem from the PSpace-complete problem of universality for
NFA (i.e., does an NFA accept all words?). Let A be a NFA over A, with initial state q0

and final state qf . We build data graphs G and G ′ as in Figure 41.
We claim that G, u1↔↑a↓a G ′, u′1 iff L(A) = Σ∗.
For the left-to-right direction we proceed as follows. Given a word ω = a1 . . . an in Σ∗,

we consider the formula ϕ = 〈ε = ↓e↓a1 . . . ↓an↓e〉. By construction, G ′, u′1 |= ϕ, and from
the hypothesis G, u1↔↑a↓a G ′, u′1 and Theorem 161, we have that G, u1 |= ϕ. On the one
hand, the only way to transit from u1 is through e, getting to q0. On the other hand, in
order to satisfy ϕ in u1, there is a path

u1
e→q0

a1→ . . .
an→z1

e→z2

where data(z2) = data(u1) = 1. One can see that the only possibility is that z2 = v1. One
could arrive to v1 from qf or w1, but w1 is downwardly inaccessible from A, and therefore

z1 = qf . Even more, all the nodes in the path q0
a1→ . . .

an→z1 are in A, and so ω ∈ L(A).

180 CHAPTER 3. BISIMULATIONS ON DATA GRAPHS

For the right-to-left direction, one can check that the relation Z depicted in Figure 41
is an XPath=(↑a↓a)-bisimulation. In all cases, the Zig= condition is easily satisfied thanks
to the construction of G ′, so we will only check Zag= for every pair (x, x′) ∈ G×G′.

• To prove Zag= for the pair (u1, u
′), with u′ ∈ {u′1, u′2}, let α = u′

e1→x2
e2→ . . .

em−1→ xm

and β = u′
e′1→y2

e′2→ . . .
e′n−1→ yn, where ei, e

′
i ∈ A∪A−. The interesting case is that where:

one of the paths has length 0, say α = u′; yn has the same data value as u′; and all e′i
belong to A. In this case, we only need to use the hypothesis that L(A) = Σ∗, and
here it is important that w2 cannot reach down into v1.

• For all other pairs (u, u′) with u ∈ {u2, u3, u4, u5, u6}, u′ ∈ {u′1, u′2} in the topmost
level of the figure, the general strategy for the construction of our needed paths is to
mimic the paths in G ′ by going into w1 or w2 whenever the original paths go to w′1.
Whenever the paths on G ′ go to u′1, u

′
2, v
′
1, or v′2, and the path does not end there,

the path on G mirrors the move by going into any node in the top or bottom part of
G, as appropriate. Finally, depending on whether the original paths end in different
or same data value, the path in G can go to two nodes with data value 3 and 4 or to
the same node, respectively.

• To prove that Zag= holds for all pairs (w,w′) with w ∈ A∪ {w1, w2}, w′ = w′1 of the
middle level, the hard case is when w is a node of the A portion of the graph. Here,
the idea of the procedure is the same as in the previous item.

• Finally, for pairs (v, v′) with v ∈ {v1, v2, v3, v4, v5}, v′ ∈ {v′1, v′2} of the bottom level,
we also proceed as before, going upwards into w1 as soon as the path in G ′ goes
upwards into w′1, and afterward mimicking the behaviors of the paths as needed.

This concludes the proof.

Chapter 4

Logics of repeating values over data
trees

It was no type of tree I had ever
seen before, and I approached it
slowly [...]
It sees all the future. Clearly.
Perfectly. Everything that can
possibly come to pass, branching
out endlessly from the current
moment.

The Wise Man’s Fear
Patrick Rothfuss

4.1 Introduction

In this chapter we work with an expanded definition of data trees, where we allow each
node to carry not merely a single data value, but a finite collection of them (organized in
an ordered way). This structure of (multi)data trees has been considered in the realm of
semistructured data as another abstraction of XML documents, but also of timed automata,
program verification, and generally in systems manipulating data values. Finding decidable
logics or automaton models over data trees is an important quest when studying data-driven
systems.

A wealth of specification formalisms on these structures (either for data trees or its
‘word’ version, data words) have been introduced, stemming from automata [88, 99], first-
order logic [17, 65, 48, 19], XPath [66, 50, 44, 43, 47], or temporal logics [38, 79, 70, 46,
36, 67]. In full generality, most formalisms lead to undecidable reasoning problems and a
well-known research trend consists of finding a good trade-off between expressiveness and
decidability.

181

182 CHAPTER 4. LRV OVER DATA TREES

Interesting and surprising results have been exhibited about relationships between logics
for data trees and counter automata [65, 50, 66], indicating that logics for data trees are
not only interesting for their own sake but also for their deep relationships with counter
systems.

In this chapter we study the basic mechanism of “data repetition”, common to many
logics used on data trees. For this, we investigate a basic logic that can navigate the struc-
ture of the tree through the use of modalities like those of CTL (computation tree logic),
and on the other hand can make “data tests”, by asking whether a data value is repeated
in a subtree. More concretely, the data tests are formulas of the form u ≈ EFv, stating
that the data value stored in attribute u of the current node is equal to the data value
stored in attribute v of some descendant. This kind of logics of repeating values, or LRV,
has been the center of a line of investigation studied in [35, 36] on data words, evidencing
tight correspondences between their satisfiability problems and the reachability problems
for Vector Addition Systems. The current chapter pursues this question further, exhibiting
connections between the satisfiability problem of LRV over data trees and the coverability
problem for branching counter systems. In order to obtain connections with branching
Vector Addition Systems with States, or branching VASS [105], we also introduce a re-
striction where data tests are limited to use only one variable, that is, they are of the form
v ≈ EFv. We denote this restriction by LRVD. This symbiotic relation between counter
systems and logics leads us to consider some natural extensions of both the logic and the
branching counter systems. In particular, we introduce a new model of branching counter
system of independent interest, with decidable coverability and control-state reachability
problems.

4.1.1 Related work

The work most closely related to the topic of this chapter is the one originated by Demri et
al. in [34, 35] and pursued in [36]. These works study the satisfiability problem for temporal
logics on data words, extended with the ability to test whether a data value is repeated in
the past/future. Indeed, our current study is motivated by the deep correlations evidenced
by these works between counter systems and simple temporal logics on data words. The
present chapter expands this analysis to branching logics and counter systems.

There are several works showing links between reachability-like problems for counter
systems and the satisfiability problem of logics on data trees. The first prominent exam-
ple is that satisfiability for Existential MSO with two variables on data words —notated
EMSO2(+1, <,∼)— corresponds precisely to reachability of VASS [18], in the sense that
there are reductions in both directions. On the other hand, EMSO2 over (unranked) data
trees was shown to have tight connections with the reachability problem for an extension
of BVASS [65], called ‘EBVASS’. This extension has features which are very close to the
model we introduce here, MVASS, but it does not capture, nor is captured by, MVASS. One
can draw a parallel between the situation of the satisfiablity for EMSO2 and for LRV: while
on data words both are inter-reducible to VASS, the extension to data trees is non-trivial,

4.1. INTRODUCTION 183

and they no longer correspond to BVASS, but to extensions thereof.
Regarding the logic in which we have focused so far in this thesis, research has been

done on the satisfiability problem for XPath= on unranked data trees, and many decidable
fragments have been identified [46, 47, 43, 50, 65]. However, most decidability procedures
known so far rely on the fact that the data trees are unranked: the branching of the
witnessing tree sought by the algorithms depends on the formula, sometimes polynomially
(e.g.. for the fragment containing child and descendant axes [43]) or sometimes non-
primitive-recursively (e.g., for the ‘vertical’17 or ‘forward’18 fragment [50, 46]). On the
other hand, on ranked data trees, it is known that:

• the satisfiability problem for XPath= with strict descendant (usually written ↓+)
has already a non-primitive-recursive lower bound in complexity, as can be seen by
adapting techniques used for data words [49];

• the aforementioned logic is decidable, even if extended with ‘child’ and ‘next-sibling’
axes, as a consequence of the same logic being decidable on unranked data trees [46],
added to the fact that the logic can express that the data tree has rank bounded by
k for any fixed k;

• the satisfiability problem for XPath= with strict descendant and ancestor is undecid-
able, again by adapting known techniques on data words [49].

Modulo a simple coding, the central logic of this chapter, LRV, is captured by a fragment
of regular-XPath=, here called reg-XPathLRV, on data trees where path expressions are
allowed to use Kleene star on any expression (this what we denote by ‘regular’ XPath=),
and where all data tests are of the form 〈ε ? ↓∗[ϕ]〉 or 〈↓n [ϕ]? ↓m [ψ]〉 for some n,m ∈ N
and ? ∈ {=, 6=}. There are, however, three provisos for this statement. First, in the
aforementioned works on XPath=, as in the past chapters of this thesis, the data model
consists of structures whose every position carries exactly one data value. In the present
chapter we study ‘multi-attributed’ data trees where, essentially, each node carries a set
of pairs ‘attribute:value’. However, by means of a simple coding, such as putting every
‘attribute:value’ as a leaf of the corresponding node, one can easily translate LRV-formulas
to XPath=-formulas. Second, our LRV-formulas are of the form u ≈ EFv stating that the
current data value under attribute u is repeated in a node x of the subtree under attribute v,
but one cannot test that some property ψ further holds at the repeating node x. However,
it was shown in [36] that one can extend the logic with this power, obtaining formulas of
the form x ≈ EFy[ψ], since this extended logic is PTime-reducible to the logic without
these tests. Third, the LRV-formulas cannot test for regular properties on the labeling
of paths, and thus there is no precise characterization in terms of a natural fragment of
regular-XPath=, but one could add regular path tests to LRV to match the expressive
power of reg-XPathLRV without changing any of our results.

17A nomenclature that collides with ours of ‘vertical’ as XPath=(↑↓); in [50], vertical XPath= contains
the reflexive transitive closure of ↓ and ↑, that is: ↓∗ and ↑∗.

18The fragment with axes → (right sibling), ↓, and their reflexive transitive closures.

184 CHAPTER 4. LRV OVER DATA TREES

In fact, the fragment reg-XPathLRV extends also the fragment DataGL, already men-
tioned in Chapter 2, which is considered in [10] and [47] and contains only data tests of
the form 〈ε ? ↓∗[ϕ]〉, a fragment which is known to be PSpace-complete on unranked
data trees [47].

It is not hard to see that the satisfiability problem of LRV on unranked data trees
is PSpace-complete following the techniques from [47]. On the other hand, on ranked
data trees we know, by the discussion above, that if we would allow intermediate tests
in a way to be able to encode the expressive power of XPath(↓+) we would have a non-
primitive recursive lower bound. It is therefore natural to limit the navigation disallowing
intermediary tests. This natural fragment was already studied on data words [36], and we
now study it on data trees.

4.1.2 Contributions

The aim of this chapter is to study the basic mechanism of “data repetition”, common to
many logics studied on data trees. For this, we study a basic logic that can navigate the
structure of the tree through the use of CTL-like modalities, and on the other hand can
make “data tests” by asking whether a data value is repeated in a subtree. More concretely,
the data tests are formulas of the form u ≈ EFv, stating that the data value stored in
attribute (also called variable here) u of the current node is equal to the data value stored in
attribute v of some descendant. This logic of repeating values, or LRV, has been the center
of a line of investigation studied in [35, 36] on data words, evidencing tight correspondences
between reachability problems for Vector Addition Systems and the satisfiability problem.
This chapter pursues this question further, exhibiting connections between the satisfiability
problem of LRV over data trees and the bottom-up coverability problem for branching
counter systems. In order to obtain connections with branching Vector Addition Systems
with States, or branching VASS [105], we also introduce a restriction, denoted by LRVD,
where tests of the form u ≈ EFv are only allowed when u = v.

While the extension of the logic LRV from words to trees is a very natural one, the
techniques needed to encode the satisfiability of the logic into a counter system are not
simple extensions from the ones provided on data words. The reason for this difficulty
is manyfold: a) the fact that now the future is non-linear in addition to the possibility
of having a data value repeating at several descendants in different variables, makes the
techniques of [36] for propagating values of configurations impractical; b) further, this
seems to be impossible for the case of data trees, and we could only show a reduction for
the fragment LRVD; c) in order to reduce the satisfiability problem for the full logic we
need to augment the power of branching VASS with the possibility of ‘merging’ counters in
a more powerful way, somewhat akin to what has been done for encoding the satisfiability
for FO2 [65].

We show that the satisfiability problem of our fragment LRVD is decidable, by reduc-
ing it to the control-sate reachability problem of VASS. The symbiotic relation between
counter systems and logics leads us to consider some natural extensions of both the logic

4.2. PRELIMINARIES 185

and the branching counter systems. One extension results from the use of the operator
AG≈v(ϕ), which expresses “every descendant with the same v-attribute verifies ϕ; we prove
that the addition of positive instances of this operator to LRVD gives a logic with a sat-
isfiability problem equivalent to that VASS. Furthermore, we introduce MVASS, a new
model of branching counter system of independent interest that, as we show, captures the
LRV satisfiability problem and has decidable coverability and control-state reachability
problems.

4.1.3 Organization

This chapter is organized as follows:

• In §4.3 and §4.2 we introduce some basic notation and definitions. In the first part
of §4.4 we introduce our models of branching counter systems and the related decision
problems.

• In §4.5 we show that the satisfiability for LRVD on k-ranked data trees is reducible, in
exponential space, to the control-state reachability problem for VASSk (i.e., Branch-
ing VASS of rank k). Since the control-state reachability problem is decidable [105]
in 2ExpTime [37], this reduction yields a decision procedure.

• In §4.6 we consider the addition of an operator AG≈v(ϕ) expressing “every descendant
with the same v-attribute verifies ϕ”, and we show that the logic resulting from adding
positive instances of this operator is equivalent to the control-state reachability for
Branching VASS, that is, there are reductions in both directions.

• In §4.4.2 we introduce an extension of Branching VASS, called Merging VASS or
MVASS. This model allows for merging counters in branching rules in a form which
is not necessarily component-wise, allowing for some weak form of counter transfers.
In §4.4.4 we show that the bottom-up coverability (and control-state reachability)
problem for MVASS is in 3ExpTime. This is arguably a model of independent
interest.

• In §4.7 we show that the satisfiability for LRV on k-ranked data trees can be reduced
to the control-state reachability for MVASSk. As in the case of LRVD, this yields a
decision procedure.

4.2 Preliminaries

We now give some basic notations that are used in this chapter. Let N+ = {1, 2, . . . },
N = N+ ∪ {0}, and n = {1, . . . , n} for every n ∈ N. We use the bar notation x̄ to denote a
tuple of elements, where x̄[i], for i > 0, refers to the i-th element of the tuple. For any pair
of vectors x̄, ȳ ∈ Zk we write x̄ ≤ ȳ if x̄[i] ≤ ȳ[i] for all 1 ≤ i ≤ k (that is, in this context
≤ represents the product ordering of tuples). The constant ∅̄ refers to the (unique) vector

186 CHAPTER 4. LRV OVER DATA TREES

of dimension 0, and the constant ēi refers to the vector (whose dimension will always be
clear from the context) so that ēi[i] = 1 and ēi[j] = 0 for all j 6= i. We write 0̄ for the
tuple of all 0’s (the dimension being implicit from the context). We write ↑x̄ to denote
{x̄′ ∈ Z | x̄′ ≥ x̄} and we generalize it to any set S ⊆ Z in the usual way: ↑S =

⋃
x̄∈S ↑x̄.

A linear set of dimension k is a subset of Nk which is either empty or described as
{v̄0 +α1v̄1 +· · ·+αnv̄n | α1, . . . , αn ∈ N} for some n ∈ N and v̄0, . . . , v̄n ∈ Nk. Henceforward
we assume that linear sets are represented by the offset v̄0 and the generators v̄1, . . . , v̄n,
where numbers are represented in binary. For ease of writing we will denote a linear set
like the one above by “v̄0 + {v̄1, . . . , v̄n}∗”.

In this chapter we generalize our definition of data trees so that many data values can
be associated to a single node. We fix for all this chapter an infinite domain of data values
D. A multidata tree (or simply a data tree for this chapter) of rank k over a finite
set of labels A and a finite set of attributes V, is a finite tree whose every node x contains
a pair (a, µ) ∈ A × DV and has no more than k children. In general, a will be called the
label of x and µ(v) will be called the data value of attribute v ∈ V at x. The i-ancestor
of a node x of a data tree T is the ancestor at distance i from x (i.e., the 1-ancestor is the
parent); while the i-descendants of x are all the descendants of x at distance i.

4.3 Logic of repeating values on data trees

We will work with a temporal logic using CTL∗ modalities [93, 40] to navigate the tree
—although this is not really essential to our results, in the sense that any other MSO
definable data-blind operators could also be added to the logic obtaining similar results.
The Logic of Repeating Values LRV contains the typical modalities from CTL∗, such
as EF, AF, EU, etc. as well as the possibility to test for the label of the current node, and
data tests. Data tests are restricted to being very basic, as in [35], of the form “u ≈ EFv”
stating “the data value of attribute u appears again at the attribute v of some descendant”,
or “u 6≈ EFv” stating “there is a descendant node whose attribute v contains a different
data value from the data value of the attribute u of the current node”. Since LRV is closed
under Boolean connectives, this means we can also express, for instance, that attribute u
of all descendants have the same data value as the current node’s: ¬(u 6≈ EFu).

Formally, formulas of LRV are defined by

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | EU(ϕ, ϕ) | u ≈ EFv | u 6≈ EFv | u ≈ EXiv | u 6≈ EXiv,

where a ranges over a finite set of labels A, u, v range over a finite set of attribute variables
V (also called just ‘variables’), and i ∈ N+. Given a data tree T and a node x of T ,
the satisfaction relation |= is defined in the usual way: T, x |= a if a is the label of
x; T, x |= u ≈ EFv [resp. T, x |= u 6≈ EFv] if there is a strict descendant y of x so
that the u-attribute of x has the same [resp. different] data value as the v-attribute of
y; T, x |= u ≈ EXiv [resp. T, x |= u 6≈ EXiv] if there exists an i-descendant of x whose
v-attribute is equal [resp. distinct] to the u-attribute of x; and T, x |= EU(ϕ, ψ) if there is

4.4. MODELS OF BRANCHING COUNTER SYSTEMS 187

some strict descendant y of x so that T, y |= ϕ and every other node z strictly between x
and y verifies T, z |= ψ. Note that the remaining CTL∗ modalities (EX, EG, EF, AX, AG,
AF, AU) can be expressed using EU19.

We call LRVD
n the logic using at most n attribute variables, whose only admissible

data tests are of the form u ≈ EFu, u 6≈ EFu, u ≈ EXiu or u 6≈ EXiu (same variable in the
left and right sides). Intuitively, this corresponds to the restriction where each attribute
variable ranges over a disjoint set of data values (hence the letter ‘D’).

4.4 Models of branching counter systems

We present the models of counter systems we are going to work with. The first one is a
well-known model, usually known as Branching Vector Addition System with States, or
“BVASS”, while the second one is a useful extension of the first one where the split/merge
operation of the counters is controlled by the use of linear sets.

4.4.1 Branching VASS

A VASS of rank k and dimension n, or nVASSk, is a tuple A = 〈Q,U,B〉, where Q
is a finite set of states, U ⊆ Q×Zn×Q is a set of unary rules, and B ⊆ Q×Q≤k is a finite

set of branching rules. We notate q
v̄−→ q′ for a unary rule (q, v̄, q′) ∈ U , q −→ (q1, . . . , qi) for

a branching rule (q, q1, . . . , qi) ∈ B with i ≥ 1, and q −→ ∅̄ for a branching rule in Q×Q0.
A configuration is an element from Confs := Q×Nn. For a configuration (q, n̄) we often
use the term “counter i” instead of “n[i]” (in the case n = 1 we speak of the counter).

A derivation tree [resp. incrementing derivation tree] is a finite tree D whose
every node x is either

• labeled with a pair (p
v̄−→ p′, (q, n̄)) ∈ U × Confs so that p

v̄−→ p′ is a unary rule of U ,
p = q and it has exactly one child, which is labeled (r1, (p1, n̄1)) so that p′ = p1 and

n̄+ v̄ = n̄1 [resp. n̄+ v̄ ≤ n̄1]; (25)

• or labeled with a pair ((p, q̄), (q, n̄)) ∈ B × Confs so that p −→ q̄, with q̄ ∈ Qk′ for
some k′ ≤ k, is a branching rule of B, p = q and it has exactly k′ children, labeled
(r1, (p1, n̄1)), . . . , (rk′ , (pk′ , n̄k′)) so that q̄ = (p1, . . . , pk′) and

n̄ =
∑

i≤k′
n̄i [resp. n̄ ≤

∑

i≤k′
n̄i]. (26)

We emphasize that the configurations only contain positive vectors; no node in a derivation
tree can ever have a counter with negative value. Note that leaf nodes are necessarily

19EXϕ = EU(ϕ,⊥), EFϕ = EU(ϕ,>), EGϕ = EU(ϕ ∧ ¬EX>, ϕ), AU(ϕ,ψ) = ¬EU(¬ψ ∧ ¬ϕ,¬ψ) ∧
¬EG(¬ϕ), etc.

188 CHAPTER 4. LRV OVER DATA TREES

p

q2

q1q1

q1q1

p! (q1, q1, q2)

(3, 1)

(1, 0) (2, 0) (0, 1)

(1, 0)

(0, 0)

(0, 0)

q1
(�1,0)����! q1

q1
(�1,0)����! q1

q1
(�1,0)����! q1

D

q1

Figure 42: A derivation tree D for the 2VASS3 A = 〈Q,U,B〉 with Q = {p, q1, q2, q3}, U =
{(q1, (−1, 0), q1), (q2, (−5,−1), q3)}, and B = {(p, (q1, q1, q2))}.

labeled with rules of the form q −→ ∅̄ ∈ B. Without loss of generality we will assume that
the system contains rules q −→ ∅̄ for every state q.

In Figure 42 we show an example of a derivation tree for a particular VASS of rank
3 and dimension 3 (that is, a 2VASS3). For the sake of clarity, we write the labels of
each node as follows: the configuration part is writen next to the node, and the part with
an unary or binary rule is represented in the edges. We do not write the labels of the
leaf nodes. In Figure 43 we show an incrementing derivation tree for the same VASS and
starting from a node with the same configuration as in the previous example.

4.4.2 Merging VASS

We present an extension of the model above where the branching rules, now called merg-
ing rules, are more powerful: they allow us to reorganize the counters. Whereas in an
(incrementing) derivation tree for VASSk the component i of the configuration of a node
depends only on the component i of its children and the rule applied, MVASSk allows
to have transfers between components. However, these transfers have some restrictions —
otherwise the model would have non-elementary or undecidable coverability/reachability
problems [76]. First, transfers between components are ‘weak’, in the sense that we cannot
force a transfer of the whole value of a coordinate i to a distinct coordinate j of a child,
we can only make sure that part of it will be transferred to component j and part of it
will remain in component i. Second, these weak transfers can only be performed for any
pair of coordinates i, j adhering to a partial order, where transfers occur from a bigger
component to a smaller one.

A Merging-VASS of rank k and dimension n, or nMVASSk, is a tuple of the form
A = 〈Q,U,M,�〉, where � is partial order on n, Q and U are as before, and M is a set of

4.4. MODELS OF BRANCHING COUNTER SYSTEMS 189

p

q2

q1q1

q1q1

p! (q1, q1, q2)

(3, 1)

(1, 0) (2, 0)

(1, 0)

(0, 0)

(0, 0)

q1
(�1,0)����! q1

q1
(�1,0)����! q1

q1
(�1,0)����! q1

D

q1

q3

(5, 1)

q2
(�5,�1)�����! q3

(0, 0)

Figure 43: An incrementing derivation tree D for the 2VASS3 A = 〈Q,U,B〉 with Q =
{p, q1, q2, q3}, U = {(q1, (−1, 0), q1), (q2, (−5,−1), q3)}, and B = {(p, (q1, q1, q2))}. Observe that
D is an increasing derivation tree, as (3, 1) ≤ (1, 0) + (2, 0) + (5, 1), but it is not an ordinary
derivation since (3, 1) 6= (1, 0) + (2, 0) + (5, 1).

merging rules of the form (q, S, q̄) where q ∈ Q, q̄ ∈ Qk′ with k′ ≤ k, and S ⊆ Nn·(k′+1) is
a linear set of dimension n · (k′ + 1) of the form 0̄ + (B ∪ S0)∗, where

1. all the elements of B are of the form (ēi, x̄1, . . . , x̄k′), where for each 1 ≤ ` ≤ k′,
x̄` ∈ Nn is either 0̄ or ēj for some j ≺ i; and

2. S0 consists of the following k′ · n vectors

S0 =
⋃

1≤i≤n

{(ēi, ēi, 0̄, 0̄, . . . , 0̄), (ēi, 0̄, ēi, 0̄, . . . , 0̄), . . . , (ēi, 0̄, . . . , 0̄, ēi)}. (27)

The idea is that in point 1 we allow to transfer contents from component i to components
of smaller order. For example, on dimension 3 and rank 2, a vector

v̄ = (1, 0, 0)(0, 1, 0)(0, 0, 1)

in B would imply that during the merge one can transfer a quantity m > 0 from component
1 of the father into component 2 of the first child and component 3 of the second child,
assuming 2, 3 ≺ 1). On the other hand, point 2 tells us that for every i we can always have
some quantity of component i that is not transfered to other components, i.e., that stays
in component i. Continuing our example, the children configurations (m,m′ + s, t) and
(m, s,m′ + t) can be merged into (m+m′, s, t) for every m,m′, s, t ≥ 0, using the vector v̄
and S0.

A derivation tree [resp. incrementing derivation tree] is defined just as before,
with the sole difference being that condition (26) is replaced with

(n̄, n̄1, . . . , n̄k′) ∈ S

190 CHAPTER 4. LRV OVER DATA TREES

(1, 0)

D
r

p

q (1, 0)

(0, 0)

(0, 1)

q

r
(0,1)���! p

p, (e2, e1, e1), (q, q)

Figure 44: A derivation tree D for the 2MVASS2 A = 〈Q,U,M,�〉 with Q = {r, p, q},
U = {(r, (0, 1), p), (q, (−1,−1), q)}, M = {(p, S1, (q, q)), (p, S2, (q))}, and � defined as
{(1, 1), (1, 2), (2, 2)}. S1 is the linear set with offset 0̄ generated by S0 and B1 = {(e2, e1, e1)},
while S2 is generated by S0 and B2 = {(e2, e1)}. The second rule of M is not used in this
derivation tree.

[resp. (n̄, n̄′1, . . . , n̄
′
k′) ∈ S for (n̄′1, . . . , n̄

′
k′) ≤ (n̄1, . . . , n̄k′)]. (28)

Notice that this is a generalization of VASSk. Indeed, VASSk corresponds to the restriction
where all the k′-ary merging rules have S = 0̄ + S∗0 for S0 as defined in (27). Note that an
(incrementing) derivation tree for nVASSk is, in particular, an (incrementing) derivation
tree for nMVASSk. As before, we assume that there are always rules (q, ∅, ∅̄) for every
state q.

In Figure 44 we show an example of a derivation tree for a MVASS of dimension 2 and
rank 2. Observe that, just by looking at the corresponding configurations of the nodes, this
tree cannot be a derivation tree for VASS, since (0, 1) 6≤ (1, 0) + (1, 0). Figure 45 shows a
related example of an incrementing derivation tree.

Jacquemard et al. [65] study an extension of BVASS, ‘EBVASS’, in relation to the
satisfiability of FO2(<,+1,∼) over unranked data trees. EBVASS has some features for
merging counters. While MVASS and EBVASS are incomparable in computational power,
it can be seen that without the restriction j ≺ i in condition 1, MVASS would capture
EBVASS. In fact, this condition is necessary for the (elementary) decidability of the cov-
erability problem for MVASS, while the status of the coverability problem for EBVASS is
unknown.

4.4.3 Decision problems

Given a counter system A, a set of states Q̂, and a configuration (q, n̄) of A, we write

(q, n̄) ;A Q̂ [resp. (q, n̄) ;
+
A Q̂] if there exists a derivation tree [resp. incrementing

derivation tree] for A with root configuration (q, n̄), so that all the leaves have configura-

tions from Q̂ × {0̄}. The reachability and incrementing reachability problems are defined
as follows:

4.4. MODELS OF BRANCHING COUNTER SYSTEMS 191

D
r

p

(0, 0)

q

r
(0,1)���! p

q

q

(0, 3)

(2, 2)

(1, 1)

(0, 0)

q
(�1,�1)�����! q

q
(�1,�1)�����! q

p, (3e2, 2e1 + e2), (q)

Figure 45: An incrementing derivation tree D for the 2MVASS2 A = 〈Q,U,M,�〉 with
Q = {r, p, q}, U = {(r, (0, 1), p), (q, (−1,−1), q)}, M = {(p, S1, (q, q)), (p, S2, (q))}, and � defined
as {(1, 1), (1, 2), (2, 2)}. S1 is the linear set with offset 0̄ generated by S0 and B1 = {(e2, e1, e1)},
while S2 is generated by S0 and B2 = {(e2, e1)}. The first rule of M is not used in this increment-
ing derivation tree. Notice that we are using twice the incrementing nature of the derivation:
once at the beginning with a unary rule and once afterwards for a branching rule.

192 CHAPTER 4. LRV OVER DATA TREES

nVASSk reachability problem
[resp. nVASSk incrementing reachability problem]

INPUT : an nVASSk A with states Q, a set of states Q̂ ⊆ Q, and
a configuration (q, n̄) of A.

OUTPUT : ‘Yes’ iff (q, n̄) ;A Q̂ [resp. (q, n̄) ;+
A Q̂].

Observe that when k = 1 these problems are equivalent to the reachability and cover-
ability problems for Vector Addition Systems with States, respectively.

The nMVASSk reachability problem and nMVASSk incrementing reachability problem
are defined just as before but considering A to be an nMVASSk instead of a nVASSk:

nMVASSk [incrementing] reachability problem

INPUT : an nMVASSk A with states Q, a set of states Q̂ ⊆ Q, and
a configuration (q, n̄) of A.

OUTPUT : ‘Yes’ iff (q, n̄) ;A [;+
A]Q̂.

For succinctness, we will often refer to the reachability and incrementing reachability
problems as Reach() and Reach+(), respectively. We also remark that the incrementing
reachability problem can be seen as a restatement of the bottom-up coverability problem20.
In particular, if (q, n̄) ;+

A Q̂ and m̄ ≤ n̄ then (q, m̄) ;+
A Q̂.

We define the control-state reachability problem CSReach as the problem of,
given A, q, Q̂, whether (q, n̄) ;A Q̂ for some n̄. It is easy to see that this problem is

equivalent to the problem of whether (q, 0̄) ;+
A Q̂

21, and it is this last formulation the one
we will use for our reductions:

nVASSk [nMVASSk] control-state reachability problem

INPUT : an nVASSk [nMVASSk] A with states Q, a set of states Q̂ ⊆ Q,
and a state q of A.

OUTPUT : ‘Yes’ iff (q, 0̄) ;+
A Q̂.

In [37] it is studied the coverability problem (or equivalently, the incrementing reacha-
bility problem) for a single-state formulation, called BVAS. A BVAS consists of a tuple
〈n,R1, R2〉, where R1 is a set of unary rules, R2 is a set of binary rules (both rules included
in Zn which add up a vector). The size of a given BVAS is defined as n`, where ` represents
the maximum binary size of an entry in R1 ∪R2.

20The bottom-up coverability problem asks, given A, Q̂, and (q, n̄), whether (q, n̄′) ;A Q̂ for some
n̄′ ≥ n̄.

21If the answer is ‘yes’ for CSReach on A, q, Q̂, then there is n̄ such that (q, n̄) ;A Q̂. If n̄ = 0̄
we are done. Otherwise, as the derivation tree for CSReach must end with leaves with configurations
in Q̂ × {0̄}, some rule is used first in its derivation tree starting from q. Now replicate that derivation
tree, but starting with counter 0̄ and using the ‘incrementing’ part to simulate having started with a
configuration with counter n̄; this is a solution for (q, 0̄) ;+

A Q̂. The idea is similar for the direction

(q, 0̄) ;+
A Q̂⇒ CSReach.

4.4. MODELS OF BRANCHING COUNTER SYSTEMS 193

Proposition 163. [37] Coverability for BVAS is 2ExpTime-complete. If the dimension
n is fixed, the problem is in ExpTime.

4.4.4 Decidability of Reach+(MVASS)

The arguments used in [37] to prove Proposition 163 can be adapted to show a similar
result for MVASS: the Reach+ and CSReach problems are in 3ExpTime:

Theorem 164. Reach+(MVASSk) and CSReach(MVASSk) are in 3ExpTime for every
k ≥ 1. If the dimension n is fixed, the problem is in 2ExpTime.

In order to simplify some of the arguments we use for the proof, we work with a slightly
different version of the incrementing reachability problem which can easily be shown to be
equivalent to our previous definition:

MVASSk incrementing reachability problem

INPUT : an nMVASSk A with states Q, a set of states Q̂ ⊆ Q, and
a configuration (q, n̄) of A.

OUTPUT : ‘Yes’ iff (q, n̄′) ;+
A Q̂ for some n̄′ ≥ n̄.

The difference is that we look for an incrementing derivation of a ‘bigger’ configuration
(q, n̄′) than the one (q, n̄) received as input. But it is straightforward to see that this is
essentially the same problem.

We say that a tree D is an incrementing derivation tree for (q, n̄) ;
+
A Q̂ if D is

an incrementing derivation that is a witness for (q, n̄) ;+
A Q̂. Throughout this section we

write ‘derivation’ as short for ‘incrementing derivation tree’. Given a derivation D and a
node x thereof, we write ρD(x) to denote the vector of the configuration at x and σD(x)
to denote its state. We will usually write ε to denote the node at the root of D. We
adapt the main concepts of the 2ExpTime proof for Reach+(VASSk) of [37] to our setup.
A contraction of a derivation D is the result of applying a finite number of times the
following operation. Let x be a node of D with configuration (q, n̄) and x′ a descendant of
x with configuration (q′, n̄′) so that q = q′. Consider the result of:

• replacing the subtree at x with the subtree at x′ (i.e., removing all descendants of x
which are not descendants of x′ and identifying x′ with x);

• for every ancestor y of x with configuration (p, m̄), replacing the configuration with
(p, m̄+ (n̄′ − n̄)).

We denote this substitution with D[x← x′]. We say that a configuration (q, n̄) is bigger
than a configuration (p, m̄) if p = q and n̄ ≥ m̄. Note that if D is a derivation for

(q, n̄) ;+
A Q̂ and the configuration at node x′ is bigger than the configuration at an

ancestor x of x′, then D[x ← x′] is a derivation for (q, n̄′) ;+
A Q̂ for some n̄′ ≥ n̄. Thus,

if D is a witness for the incrementing reachability problem instance (A, Q̂, (a, n̄′)), so is

194 CHAPTER 4. LRV OVER DATA TREES

D[x← x′]. (Indeed, this is true both when A is a VASS or a MVASS.) For a set of unary
rules U ⊆ Q × Zk × Q, let max(U+) ∈ N be the maximum positive value contained in
unary rules; that is,

max
(
U+)

def
= max({0} ∪ {v̄[i] | (q, v̄, q′) ∈ U, i ∈ k, v̄[i] > 0}

)
.

For a derivation of D of a kMVASSn A, and a set I ⊆ k, we define the restriction to
I of D, and we note it D|I , as the result of

• replacing each configuration (q, n̄) of a node with (q, n̄[I]), where n̄[I] ∈ N|I| is the
restriction of n̄ to the component indices of I;

• replacing every unary rule (q, v̄, q′) in a node with (q, v̄[I], q′); and

• replacing every merging rule (q, S, q̄) in a node with (q, S[I], q̄), where S[I] = {s̄[I] |
s̄ ∈ S}.

In a similar way, we consider the restriction A|I of the automaton A as the |I|-MVASSn
resulting from replacing the rules as described above. Note that if I is �-downward closed
(i.e., if i � j and j ∈ I, then i ∈ I) then D|I is actually a derivation of A|I .

Lemma 165. Let A = 〈Q,U,M,≤〉 be a MVASS1 of dimension k, and let D be a derivation

for (q, n̄) ;+
A Q̂. Then, there is a contraction of D which is a derivation for (q, n̄′) ;+

A Q̂

for some n̄′ ≥ n̄ and whose length is bounded by (max(U+) + max(n̄))2p(k) for a polynomial
p().

Proof. This proof follows arguments similar to those from Rackoff [94, Section 3] as de-

scribed in [37, Lemma 4]. Let m(D, n̄, Q̂,A) be the smallest height of a contraction of D
that is a derivation for (q, n̄′) ;+

A Q̂ for some n̄′ ≥ n̄. For L, k ∈ N we let:

ML(k) = sup {m(D′, n̄, Q̂,A) : D′ is a derivation for (q, n̄′) ;+
A Q̂, n̄

′ ≥ n̄

and |Q| · (max(U+) + max(n̄) + 1) ≤ L}.

We show that the number ML(k) is well-defined in the next lemma.
In the context of the partially ordered set (k,�), let ↓ i = {j ∈ k | j ≺ i} for every

i ∈ k.

Lemma 166. For all L ∈ N, the following inequalities hold:

ML(k) ≤
{
L if k = 0,

ML(k − 1) ·∏i∈k Bi if k ≥ 1,
(29)

for Bi = ML(| ↓ i|) ·
(∏

j�iBj

)2
+ L, and

∏ ∅ = 1 by convention.

4.4. MODELS OF BRANCHING COUNTER SYSTEMS 195

Proof. We proceed by induction on k. The case k = 0 is trivial, as there are no counters,
and thus the height of minimal contractions is bounded by |Q| by a pumping argument.

For every k ≥ 1, it is sufficient to prove that for every derivation D for (q, n̄′) ;+
A Q̂ where

n̄′ ≥ n̄ and |Q| · (max(U+) + max(n̄) + 1) ≤ L, the following inequality holds:

m(D, n̄, Q̂,A) ≤ML(k − 1) ·
∏

i∈k

Bi. (30)

For a set of components I ⊆ k, we say that D is I-bounded if for every i ∈ I and for
every configuration (q, v̄) of D we have v̄[i] < Bi. We consider the following two cases: (a)
D is k-bounded, and (b) D is not k-bounded. Assume that D has minimal height. We
define ρD(x) [resp. σD(x)] for any node x of D as the vector v̄ [resp. state p] contained in
the configuration (p, v̄) of D at x.

(a) Assume that D is k-bounded. Note that if ρD(x) = ρD(x′), σD(x) = σD(x′) and x
is an ancestor of x′ then the derivation D[x← x′] obtained by the contracting substitution

is also a derivation for (q, n̄′) ;+
A Q̂. By performing such substitutions repeatedly, we will

eventually obtain a contraction of D that is a k-bounded derivation for (q, n̄′) ;+
A Q̂ with

height bounded by

|Q| ·
∏

i

Bi ≤ L ·
∏

i

Bi ≤ML(k). (31)

(b) Suppose now that D is not k-bounded and suppose that it is minimal in the sense
of contractions. Let i0 ∈ k be a �-minimal index so that D is ↑i0-bounded for ↑i0 = {j |
j � i}. Note that

• for some node x of D we have ρD(x)[i0] > Bi0 ; and

• for all j � i0 and for every node y of D we have ρD(y)[j] ≤ Bj.

Let x0 be the lowest node (i.e., closest to the leaf) so that ρD(x0)[i0] > Bi0 . We first bound
the distance between x0 and the root, and then we bound the distance between x0 and the
leaf.

(I) Consider the subderivation D1 from the root to x0. We show that the height of D1

is bounded by

contr = ML(| ↓ i0|) ·
∏

j�i0

Bj.

For the sake of contradiction, suppose that its height is larger than contr. Note that at
each step of D1 we can increase component i0 in at most

incstep =
∑

j�i0

Bj + max(U+). (32)

If we restrict D1 to the components ↓ i0 we obtain a derivation for A|↓i0 with smaller
dimension. In fact it is a derivation thanks to the inequality of (28) —all the increments
coming from transfers from the components j � i0 can considered in the inequality.

196 CHAPTER 4. LRV OVER DATA TREES

By inductive hypothesis on D|↓i0 ,A|↓i0 , there are two nodes y, y′ (y ancestor of y′) at
distance ≤ contr from the root that can be contracted (i.e., so that D|↓i0 [y ← y′] is a

derivation for (q, n̄′) ;+
A|↓i0

Q̂ for n̄′ ≥ n̄), and whose values for all the components j � i0

coincide (i.e., ρD(y)[j] = ρD(y′)[j] for all j � i0). The contraction of y, y′ on D1|↓i0 is a
derivation of A|↓i0 by inductive hypothesis. Further, since the values of components j � i0
coincide, the contraction of y, y′ on D1|{j|j 6=i0} is also a derivation. Finally, by (32), the
increase from y to y′ on component i0 cannot be greater than contr · incstep; and since

contr · incstep+ max(n̄) = ML(| ↓ i0|) ·
∏

j�i0

Bj ·
∑

j�i0

Bj + max(n̄)

≤ML(| ↓ i0|) ·
∏

j�i0

Bj ·
∑

j�i0

Bj + L

≤ML(| ↓ i0|) ·
(∏

j�i0

Bj

)2
+ L

= Bi0

we thus have that the contraction D′1 of y, y′ on D1 is a derivation as well, for all the
components. Further, the root of D′1 has a configuration greater than (q, n̄) and the leaf
remains unchanged, that is, it contains the configuration (ρD1(x0), σD1(x0)). Therefore, by
minimality of D we have that D1 must have height bounded by contr.

(II) On the other hand, let D2 be the subderivation between x0 and the leaf of D. Since
D2 is (↑i0∪{i0})-bounded (except for the root), we have that D2 cannot have height larger
than

contr′ = ML(| ↓ i0|) ·
∏

j�i0

Bj

using similar arguments as before.
Thus, by (I) cum (II), we have that the height of D = D1D2 is bounded by

contr + contr′ = ML(| ↓ i0|) ·
∏

j�i0

Bj + ML(| ↓ i0|) ·
∏

j�i0

Bj

≤ML(k − 1) ·
∏

i

Bi = ML(k)

Note that by definition of Bi, for any �-minimal i, Bi = ML(0) + L = 2L. For any
other i, the number of recursive calls needed to compute Bi is bounded by 2k · k. This is
because at each recursive call for Bi we produce two instances of Bj for every j � i, and
thus in the product each Bt with maximal t will have an exponent 2|{j|i≺j�t}|; repeating
this for each such t (not more than k times) we obtain the bound. We then have, for every
i, that Bi ≤ (ML(| ↓ i|))2k·k + 2k+1 · k · L, and thus

ML(k) ≤ML(k − 1)2k·k2 · (2L)2k·k2 + 22k · k2 · L.

Therefore, ML(k) is bounded by a function L2p(k) for some polynomial p().

4.4. MODELS OF BRANCHING COUNTER SYSTEMS 197

We have now all the necessary elements to prove Theorem 164.

Proof of Theorem 164. Using Lemma 165, we show that if there is an incrementing deriva-
tion D for (q, n̄) ;+

A Q̂, where A = (Q,U,M,�) is an nMVASSk counter system, then
there is a contraction D′ of D with height bounded doubly-exponentially in the dimension.

We show that if a nMVASSk A = (Q,U,M) has an incrementing derivation D for

(q, n̄′) ;+
A Q̂, n̄′ ≥ n̄, then there a contraction D′ of D which is also an incrementing

derivation for (q, n̄′′) ;+
A Q̂, n̄′′ ≥ n, whose height is bounded by

(max(U+) + max n̄+ |Q|)2p(k) (33)

for a polynomial function p : N→ N.
The next argument basically follows the schema (i)–(iii) of [37, p.7]. Let D be an

incrementing derivation for (q, n̄′) ;+
A Q̂, and let π be a root-to-leaf path of D which is

larger than the bound. Let A′ be a nMVASSk whose set of rules consists of:

• The unary rules (q, v̄, q′) contained in the unary rules of π.

• Suppose we have a node x of π with configuration ((q, n̄), (q, S, q̄)) and with children
labeled ((q1, n̄1), r1), . . . , ((qs, n̄s), rs), so that the next element after x in π is the j-th
child of x. Further, suppose that this merging rule is preceded by a unary rule; that
is, the parent x′ of x is labeled with ((p, n̄′), (p, w̄, q)) —it is not hard to see that
without any loss of generality we can always assume that a merging rule is preceded
by a unary rule. Let B = {b̄1, . . . , b̄m} be the basis of S, that is, B∗ = S. Let
B′ = {b̄i | b̄i[h] = 0 for all n · (1 + j) + 1 ≤ h ≤ n · (2 + j)}, and B′′ = B \ B′. Note
that B′ is the set of bases that do not touch the j-th component. We then have

(n̄, n̄1, . . . , n̄s) = α1b̄
′
1 + · · ·+ αm′ b̄

′
m′ + β1b̄

′′
1 + · · ·+ βm′′ b̄

′′
m′′

for B′ = {b̄′1, . . . , b̄′m′} and B′′ = {b̄′′1, . . . , b̄′′m′′}. Let v̄′ = −(α1b̄
′
1 + · · · + αm′ b̄

′
m′) ∈

Zn·(s+1) and v̄ ∈ Zn the restriction of v̄′ to the first n components. Note that v̄
contains non-positive entries only. Then, produce the unary rule (p, w̄ + v̄, q) and
a merging rule (q, S ′, q′) so that S ′ ⊆ N2n is the restriction of S to the components
corresponding to the j-th child.

Note that if we relabel accordingly π we obtain an incrementing derivation for (q, n̄′) ;+
A′ Q̂.

Then, by Lemma 165, there is a contraction of π which is still a correct incrementing
derivation for (q, n̄′′) ;+

A′ Q̂ for some n̄′′ ≥ n̄ and so that its length is at most

(max(U ′
+

) + max(n̄) + 1)2p(k)

where U ′ is the set of unary rules of A′. Note that max(U ′+) ≤ max(U+) because we have
only added unary rules with smaller positive entries.

We can then unfold back the subtrees hanging from nodes of π to obtain an MVASS
incrementing derivation for (q, n̄′′) ;+

A Q̂ whose number of leaves at height greater than

198 CHAPTER 4. LRV OVER DATA TREES

the bound (33) has decreased in at least 1. Repeating the same argument a finite number
of times we obtain an incrementing derivation for (q, n̄) of height bounded by (33).

Thus, to decide the incrementing reachability problem, it suffices to search for a deriva-
tion of doubly-exponential height, whose vectors may contain triply-exponential entries in
principle. As a consequence of this, the verification of the existence of such a derivation can
be performed in alternating double exponential space, as it is shown in [37, Theorem 8],
and thus the incrementing reachability for MVASS is in 3ExpTime.

If n is fixed, the height of the witnessing derivation becomes singly exponential and
thus the problem is in 2ExpTime (as explained in [37, Theorem 8]).

4.5 Satisfiability of LRVD on data trees

We call SATk the satisfiability problem on finite k-ranked data trees. The main result of
this section is the following.

Theorem 167. SATk-LRVD
n is ExpSpace-reducible to CSReach(nVASSk).

In the proof of the theorem, the number of attribute variables of the formula will
become the dimension of the VASSk. Since the CSReach problem for VASSk is decid-
able, this yields a decidable procedure for SATk-LRVD for every k. For the case k = 1,
i.e., on data words, it has been shown [36] that there is a reduction from SAT1-LRVn to
CSReach(2n-VASS1), where the dimension of the VASS1 is exponential in the number
of variables. However, it is easy to see that the proof of [36] also yields a reduction from
SAT1-LRVD

n to CSReach(nVASS1). Thus, this theorem has been shown for k = 1, and
here we generalize it to k > 1. However, there are a number of problems that appear if one
tries to “extend” the proof of [36] to the branching setup. In particular, the non-linearity
of the future in addition to the possibility of having a data value repeating at several
descendants in different variables, calls for a non-standard way of propagating the values
of configurations, which is not contemplated in VASSk. This is why we are only able to
show the reduction for the ‘disjoint’ fragment LRVD, and which leads us to consider the
extended model MVASSk in Section 4.7. This propagation problem does not appear when
one only considers that the classes of different values are disjoint, that is, that all formulas
of the type v ? EFw with ? ∈ {≈, 6≈} have v = w, motivating the study of SATk-LRVD

n .

For the proof of the theorem, we start in §4.5.1 by analyzing a restricted case, which
serves as building block: the logic LRVD−

1 whose only formulas are conjuncts of terms of
the form v ? EXiv, v ? EFv, or their negation, where ? ∈ {≈, 6≈}. We show that for any
formula ϕ of LRVD−

1 , there is a 1VASSk Akϕ = 〈Q,U,B〉, a set of initial states Q0 ⊆ Q,

and a set of final states Q̂ ⊆ Q such that SATk(ϕ) iff there is a derivation tree with a

starting node in q0 ∈ Q0 that is a solution to CSReach(Akϕ, q0, Q̂)—it is easy to see that
this problem is equivalent to CSReach as stated in Section 4.4.3. We then extend this
construction to the automaton Bkϕ in §4.5.2, enabling a reduction from the full logic LRVD

1 ,
but still restricted to only one variable. Finally, because of the disjointness of the variables,

4.5. SATISFIABILITY OF LRVD ON DATA TREES 199

it is easy to extend these constructions to the full logic LRVD
n , and we do so in §4.5.3. In

§4.5.4, using this reduction, we analyze the complexity of SATk-LRVD
n ; in order to do that,

we reduce from the problem of CSReach for VASS into the problem of coverability for
BVAS, and then use Proposition 163.

We now start with the results and proofs related to Theorem 167, starting with a simple
logic and gradually increasing the complexity to finally obtain the desired result.

4.5.1 A simple logic: LRVD−
1

We notate LRVD−
1 to the logic which consists only of formulas ϕ ∈ LRVD

1 that are conjuncts
of terms of the form v ? EXiv, v ? EFv, or their negation, where ? ∈ {≈, 6≈}.

In this section we show the following:

Proposition 168. There is a reduction from SATk-LRVD−
1 to CSReach(1VASSk).

That is, we show that for any formula ϕ of LRVD−
1 , there is a 1VASSk Akϕ such that ϕ

is satisfiable in a k-ranked data tree iff Akϕ has a solution to the control-state reachability
problem.

We begin with some definitions used for the construction of Akϕ, and then proceed to
the proof of the reduction.

Valid (d, k)-frames. A valid (d, k)-frame (or often just (d, k)-frame) is a tuple
F = 〈N,E, `1, `2,≡〉 such that

• 〈N,E〉 is a k-ranked ordered tree of height at most d, whose non-empty set of nodes
is N and whose set of edges is E.

• `1 : N → {([v ≈ EFv], [v 6≈ EFv]), ([v ≈ EFv], [¬v 6≈ EFv]), ([¬v ≈ EFv], [v 6≈
EFv]), ([¬v ≈ EFv], [¬v 6≈ EFv])} is a node-labeling function

• `2 : N → {ε,⊕,	} is another node-labeling function

• ≡ is an equivalence relation over N

where `1 satisfies the following validity conditions:

1. If x ∈ N is such that `1(x) = ([¬v ≈ EFv], [¬v 6≈ EFv]) then x has no children.

2. If x ∈ N is a leaf, and x is at distance < d from the root of F , then `1(x) = ([¬v ≈
EFv], [¬v 6≈ EFv]).

3. Let y be a descendant of x, with x ≡ y, then π1(`1(x)) = [v ≈ EFv], and if π2(`1(y)) =
[v 6≈ EFv], then π2(`1(x)) = [v 6≈ EFv]. If x 6≡ y, then π2(`1(x)) = [v 6≈ EFv].

4. If y is a descendant of x and π2(`1(x)) = [¬v 6≈ EFv] then x ≡ y and π2(`1(y)) =
[¬v 6≈ EFv].

200 CHAPTER 4. LRV OVER DATA TREES

5. If y is a descendant of x and π1(`1(x)) = [¬v ≈ EFv], then x 6≡ y.

6. If π2(`1(x)) = [v 6≈ EFv] and all children y of x satisfy x ≡ y, then there is some
child z of x such that π2(`1(z)) = [v 6≈ EFv]

and `2 satisfies the following conditions:

a. `2(r) = ⊕ iff r is the root of F , π1(`1(r)) = [v ≈ EFv], and there is no descendant x
of r with x ≡ r

b. If `2(x) = 	, then x is a leaf of F at maximum distance from the root (i.e. at distance
d), and there is no node y at distance < k from the root with x ≡ y.

c. If x, y are leaves with x ≡ y, and `2(x) = 	, then `2(y) = 	.

Let Fd,k be the set of all valid (d, k)-frames. We will work with many (d, k)-frames so
we need a notation to distinguish the component of each of them. Unless otherwise stated,
a (d, k)-frame F is a tuple F = 〈NF , EF , `F1 , `

F
2 ,≡F 〉.

We say that a (d, k)-frame F ′ is an extension of a (d, k)-frame F , or that F is a
(d, k)-subframe of F ′, if NF ⊆ NF ′ and EF , `F1 , `F2 , and ≡F are the restrictions of EF ′ ,
`F
′

1 , `F
′

2 , and ≡F ′ , respectively, to NF .

Similarly as the definition of T |x given in Chapter 1, if T is any tree-shaped structure
(in particular, a data tree, but it could also have, e.g. other node labeling functions), here
we notate T (x) as the subtree of T generated by x and all its descendants (hence the
root of T (x) is x). Let F ′ be a (d, k)-frame, and let x ∈ NF ′ . We name F (x) as the
(d, k)-subframe of F ′ induced by x.

Let F be a (d, k)-frame with root r, such that `F2 (x) = ε for all x in NF , and let
x1, . . . , xi be the children of r, ordered from left to right. Let Gi be the (d, k)-frames of
F induced by xi. We say that F is 1-consistent with the (d, k)-frames F1, . . . Fi, and Gi

is a (d, k)-subframe of Fi for all i. Further, we say that F is a point of decrement if
there is a leaf x ∈ NF such that `2(x) = 	. More precisely, we say that it is a point of
decrement of value p if it is a point of decrement with a maximum of p ≡-equivalence
classes of leaves y with `F2 (y) = 	. We say that F is a point of increment if `F2 (r) = ⊕
and F is not a point of decrement.

The automaton Akϕ. We recall from Section 4.5 that the EX-length of ϕ is the maximum

i such that the a term of the form v ? EXiv is a subformula of ϕ. Let d be the EX-length
of ϕ. We define the 1VASSk Akϕ as follows:

• The set of states of Akϕ consists of Fd,k, the set of all valid (d, k)-frames.

• Unary rules. Let F1 and F2 be (d, k)-frames.

4.5. SATISFIABILITY OF LRVD ON DATA TREES 201

– F1
−n−→ F2 if F1 is a point of decrement of value n, and F2 is equal to F1, except

that `F2
2 is defined as follows:

`F2
2 (x) =

{
ε x is a leaf of F1;

`F1
2 (x) otherwise.

– F1
+1−→ F2 if F1 is a point of increment, and F2 is equal to F1, except that `F2

2 is
defined as follows:

`F2
2 (x) =

{
ε x is the root of F1;

`F1
2 (x) otherwise.

• Branching rules: F → (F1, . . . , Fi) (with i ≤ k), if F is 1-consistent with F1, . . . , Fi.

We define the following sets of states of Q, to be used as inputs of the control-state
reachability problem.

• Q0 is the set of initial (d, k)-frames. We say that F , of root r, is initial iff the following
conditions hold:

– F, r satisfies all terms of ϕ of the form v ? EXiv or ¬v ? EXiv;

– if v ≈ EFv [resp. v 6≈ EFv] is a positive conjunct of ϕ, then the root r ∈ NF

satisfies π1(`F1 (r)) = [v ≈ EFv] [resp. π2(`F1 (r)) = [v 6≈ EFv]];

– if v ≈ EFv [resp. v 6≈ EFv] is a negative conjunct of ϕ, then for all descendants
y of the root r ∈ NF , it holds that π1(`F1 (y)) = [¬v ≈ EFv] [resp. π2(`F1 (y)) =
[¬v 6≈ EFv]].

• Q̂ is the singleton containing the (d, k)-frame in Fd,k that consists solely of one node.

We define the control-state reachability problem for initial sets

CSReach(A, Q0, Q̂) as the problem of, given A, Q0, Q̂, whether (q, n̄) ;A Q̂ for some
n̄ and some q ∈ Q0. It is easy to see that this problem is equivalent to the problem of

whether (q, 0̄) ;+
A Q̂ for some q ∈ Q0. That is:

nVASSk control-state reachability problem for initial sets

INPUT : an nVASSk A with states Q, two subsets of states Q0, Q̂ ⊆ Q.

OUTPUT : ‘Yes’ iff (q, 0̄) ;+
A Q̂ for some q ∈ Q0.

Remark 169. The problem of control-state reachability problem for initial sets is equivalent
to the problem of control-state reachability, as defined in §4.4.3.

Consequently, it is enough to prove:

Proposition 170. CSReach(Akϕ, Q0, Q̂) implies SATk(ϕ).

202 CHAPTER 4. LRV OVER DATA TREES

Proof. Suppose S is a solution tree for the control-state reachability problem of Akϕ. We
first construct a (node-decorated) k-ranked data tree T = 〈N,E, `2,≡〉 (with the labeling
function such that `2(x) ∈ {ε,	}) and then we define our solution data tree by removing
the node decoration: T ′ = 〈N,E,≡〉. This last tree will satisfy ϕ at its root. The tree
T will be constructed by induction: for every subtree R of S we construct a tree TR such
that, as we will formally verify in the second part of the proof, its structure of nodes and
edges derives from the structure of the (d, k)-frames (states of Akϕ) of R, and where the
semantics of the labels `1 in R is satisfied in TR. The tree T will finally be TS. We then
verify that ϕ is true at the root of TS.

Construction of the data tree. Given a subderivation R, we construct a (labeled)
data tree TR = 〈NR, ER, `R2 ,≡R〉. We also identify each node x in a (d, k)-frame of R with
a corresponding node idR(x) in TR. This mapping idR will be surjective, and, whenever F
is a (d, k)-frame in R, idR � NF is injective.

We proceed by induction in the complexity of R.

Leaf. For the base case, let F be a leaf of S. Observe that by construction ofAkϕ, NF = {x}.
Then the corresponding tree is TF = 〈NF , EF , `F2 ,≡F 〉 and we define idF (x) to be the same
node in TF , i.e. idF (x) = x.

Branching rule. Let S0 be an incrementing derivation subtree of S such that its root, a
(d, k)-frame F0, branches into (d, k)-frames F1, . . . , Fi. We define TS0 as follows. Let r
be the root of F0, and let a1, . . . , ai be the children of r, ordered from left to right. Let
Sj = S0(Fj).

By inductive hypothesis, all Sj correspond with trees TSj , with equivalence relations

≡TSj and labeling function `
TSj
2 . Then we define TS0 as follows: the root of TS0 is some

node r̃, and the subtrees hanging from its i children are TSj , for 1 ≤ j ≤ i. See Figure 46
for an example in the case k = 2.

For each node x in some (d, k)-frame of S0, we define idS0(x) as follows: if x is in a
(d, k)-frame of some Sj, we keep the identification x̃ it had in TSj , i.e. idS0(x) = idSj(x);
if x is the root of F0, namely x = r, then idS0(x) = r̃; and for each node x 6= r of F0, let
(by 1-consistency) x′ be the corresponding copy of x in Fj and define idS0(x) = idSj(x

′).
It remains to define the labeling `2 and the equivalence relation ≡ of TS0 . We define `2 as
follows

`2(x) =

{
ε if x = r̃;

`
TSj
2 (x) if x is in a (d, k)-frame of Sj.

We define ≡ as the smallest equivalence relation such that:

• ≡�TSj=≡
TSj for each 1 ≤ j ≤ i

• if x ≡F0 y then idS0(x) ≡ idS0(y).

4.5. SATISFIABILITY OF LRVD ON DATA TREES 203

r

S0

.
a1 a2

.

.

S1

F1

a1

.

.

S2

F2

a2 ã2ã1

r̃

TS1
TS2

TS0

F0

Figure 46: The incrementing derivation tree S0, starting with a branching rule, and the con-
structed TS0 . The dotted lines represent some pairs of the mapping idS0 .

Unary rule. Let S0 be a incrementing derivation subtree of S, with root (d, k)-frame F0

and an only child, the (d, k)-frame F1, as the outcome of a unary rule. Let S1 = S0(F1).
Let TS1 = 〈N,E, `2,≡〉 be the tree that is constructed from S1 by inductive hypothesis.

If the rule for the transition from F0 to F1 was a −n decrement, then n is the maximal
such that there are leaves x1, . . . , xn of F0 with xi 6≡1 xj (i 6= j), and `F0

2 (xi) = 	. We define
TS0 = 〈N,E, ˜̀

2,≡〉 (i.e. the same tree structure as TS1 , and the same equivalence relation
over it, but a different labeling function), where ˜̀

2 is defined below, and the identification
mapping idS0 is defined as follows: idS0 � S1 = idS1 , and for any x ∈ NF0 , if x′ is the
corresponding copy of x in F1 (recall that the underlying trees of F0 and F1 are equal), we
let idS0(x) = idS1(x

′). The labeling ˜̀
2 is defined as follows:

˜̀
2(x) =

{
	 if (∃y ∈ NF0) `F0

2 (y) = 	 and idS0(y) = x;

`2(x) otherwise.

In other words, ˜̀
2 adds 	 labels to the nodes that correspond with 	 leaves in F0, and for

all other nodes keeps the labeling of `2. See Figure 47 for an illustration of this process.

If the rule was an increment, as we will see in Lemma 171, we can assume that there is a
node y in some (d, k)-frame F of S1 such that `F2 (y) = 	 and also `2(idS1(y)) = 	. The idea
now will be to join the equivalence classes of the root of TS0 with that of idS0(y) = idS1(y),
and to remove the 	 labels in the nodes of these equivalence classes. Let r be the root of F0,
and define TS0 = 〈N,E, ˜̀

2, ≡̃〉 (i.e. the same tree structure as TS1 , but different equivalence
relation and labeling function) where ˜̀

2 and ≡̃ are defined below, and the identification
mapping idS0 is defined as in the case of a −n decrement.

204 CHAPTER 4. LRV OVER DATA TREES

.

S0

F

S1

�2

F1

TS1
TS0

leaves of F1

F0

Figure 47: The incrementing derivation tree S0, starting with a decrement −2 rule, and the
constructed TS0 . The colours represent the equivalence classes. The dotted lines represent the
mappings idS0 and idS1 .

The relation ≡̃ joins the equivalence classes of idS0(r) and idS0(y), i.e.

z≡̃w iff z ≡ w or (z ≡ idS0(r) and w ≡ idS0(y))

and ˜̀
2 is defined as follows:

˜̀
2(x) =

{
ε if x = idS1(z) for some z ≡F y;

`2(x) otherwise.

See Figure 48 for an illustration of this process.
Observe that for the construction of we are ignoring the non-deterministic increments

in the derivation (which is a solution to the control-state reachability problem), as well as
the exact distribution of the counters.

Lemma 171. Let S0 be an incrementing derivation subtree of S (a solution to the control-
state reachability problem) with root (d, k)-frame F0, such that F0 has an only child, the
(d, k)-frame F1, which is the product of an increment rule. Let S1 = S0(F1). Let TS1 =
〈N,E, `2,≡〉 and TS0 = 〈N,E, ˜̀

2, ≡̃〉 be given as in the construction. Then there is a node
p ∈ N such that `2(p) = 	. Furthermore, if for any p with `2(p) = 	 we define P ⊆ N as

P = {x ∈ N | `2(x) = 	 ∧ x ≡ p}

then if both x, y ∈ P for some x, y ∈ N , and we have Fx, Fy ∈ S1 such that x̃ ∈ Fx, ỹ ∈ Fy
and idS1(x̃) = x, idS1(ỹ) = y (and thus with `Fx2 (x̃) = 	 and `

Fy
2 (ỹ) =), then we have

that Fx = Fy and x̃ ≡Fx ỹ.

4.5. SATISFIABILITY OF LRVD ON DATA TREES 205

.

.

S0

S1

F1

TS1
TS0

F0

+1

�
r

y

Figure 48: The incrementing derivation tree S0, starting with an increment rule, and the
constructed TS0 . The colours represent the equivalence classes. The dotted lines represent the
mappings idS0 and idS1 .

That is, the 	-labeled nodes of TS1 that in TS0 are ε-labeled correspond to the equiva-
lence class of 	-labeled leaves of a single (d, k)-frame in S0. In other words, when the join
of classes is done in the construction of TS0 because of an increment operation, the nodes

y in TS0 with `
TS1
2 (y) = 	 that have `

TS0
2 (y) = ε cannot correspond via id−1

S0
to 	-labeled

leaves in more than one (d, k)-frame; they correspond with exactly one decrement of the
counter in the incrementing derivation tree.

Proof of Lemma 171. We will prove the lemma by induction on S1.

Base case. If S1 is such that there is no increment operation in S1 then, as S1 is an
incrementing derivation subtree of a solution of the control-state reachability problem, S1

must contain a point of decrement F with a node ỹ with `F2 (ỹ) = 	 and, since there is no
increment operation in S1, we have that `2(idS1)(ỹ) = 	 (that is, p = idS1(ỹ)).

For the second claim, assume that p ∈ N is any node with `2(p) = 	, and P is defined
accordingly. Suppose by way of contradiction that x, y ∈ N are such that x, y ∈ P , but
there is no single F ∈ S1 such that there are x̃, ỹ ∈ F with idS1(x̃) = x, idS1(ỹ) = y,
`F2 (x̃) = 	, `F2 (ỹ) = 	, and x̃ ≡F ỹ. We will prove this leads to x 6≡ y, a contradiction
with our assumption that x, y ∈ P , and consequently we will conclude that there is such a
(d, k)-frame F .

First, observe that there cannot be a (d, k)-frame Fx and x̃ ∈ Fx with idS1(x̃) = x and
`Fx2 (x̃) = 	 such that x̃ has an ancestor ã ∈ Fx with ã ≡Fx x̃, since leaves of (d, k)-frames
are not labeled with 	 if they have an in-frame ancestor. Now, since increments have
not been used in the construction of TS1 , the equivalence classes of (d, k)-frames of S1

coincide with their identification via idS1 in TS1 , and therefore there cannot be an ancestor

206 CHAPTER 4. LRV OVER DATA TREES

z of x at distance d or less from x with z ≡ x. The analogous result holds for y. Now,
x ≡ y, and `2(x) = `2(y) = 	 implies that there are Fx, Fy ∈ S1, x̃ ∈ Fx, ỹ ∈ Fy with

idS1(x̃) = x, idS1(ỹ) = y and with `Fx2 (x̃) = 	, `Fy2 (ỹ) = 	. Observe from the definition
of the decrement rule in Akϕ and the conditions on 	, that there cannot be w̃ ∈ Fw with
idS1(w̃) = x and Fw 6= Fx. Analogously for y. So, as we are assuming Fx 6= Fy, from
1-consistency and the increment-free construction of TS1 , x ≡ y implies that there is a
least common ancestor z in N with x ≡ z ≡ y, and a chain of nodes z = z0, . . . , zn = x
in N such that zi+1 is a descendant of zi at distance at most d, and zi ≡ zi+1 (and the
same for a chain towards y). But this contradicts the observation that there cannot be an
ancestor z of x at distance d or less with x ≡ z.

Induction. Observe that, since S is a solution to the control-state reachability problem,
for every increment in S0 there must be at least one decrement in S1. Suppose there are m
increments and n ≥ m decrements in S0. Then there are m− 1 increments and n > m− 1
decrements in S1. From the inductive hypothesis, there must remain at least one node
p ∈ N with `2(p) = 	.

For the second claim, let p ∈ N with `2(z) = 	, P = {x ∈ N | `2(x) = 	 ∧ x ≡ p},
and x, y ∈ P . Let x, y ∈ P , and let Fx, Fy ∈ S1, x̃ ∈ Fx, ỹ ∈ Fy be such that idS1(x̃) =
x, idS1(ỹ) = y We want to prove that Fx = Fy and x̃ ≡Fx ỹ.

As `2(x) = `2(y) = 	, x and y cannot have been joined with the equivalence class of an
ancestor node of TS1 as a result of an increment operation. Therefore, we are in a similar
case as in the base step: there must a common ancestor z of x, y, such that x ≡ z ≡ y and
a chain of nodes z = z0, . . . , zn = x in N such that zi+1 is a descendant of zi at distance at
most d, and zi ≡ zi+1, but this is a contradiction with the fact that `2(x) = 	.

Verification. By ignoring the labeling function `2 of TS = 〈N,E,≡, `2〉 we obtain the
desired data tree. We show that the data tree T = 〈N,E,≡〉 satisfies ϕ at the root. To
ease the notation we write id for idS.

From the definition of Q0 and the construction of T , it is clear that any conjunct of ϕ
of the form v ? EXiv or ¬v ? EXiv, with ? ∈ {≈, 6≈}, is satisfied in the root of T .

Next, we show that conjuncts of ϕ of the type v ? EFv or ¬v ? EFv are also satisfied
in the root of T . Recall from the construction of T that all nodes of N correspond via
id−1 to nodes x1, . . . , xn in (d, k)-frames F1, . . . , Fn of S such that `Fi1 (xi) = `F1

1 (x1) for all
i = 1 . . . n. Therefore, it is enough to verify that if x is a node in some (d, k)-frame F of S,
then id(x) satisfies the semantics of π1(`F1 (x)) and of π2(`F1 (x)). Furthermore, it is enough
to verify the above when x is the root of F . In what follows, we write `j instead of `Fj
(j = 1, 2).

We will use the following facts:

Fact 172. In the construction of T , nodes that are at distance of at most d and non-
equivalent in some frame are never made equivalent in T .

Fact 173. In the construction of T , nodes that are equivalent for some tree TS′ with S ′ ⊆ S
are kept equivalent for TS.

4.5. SATISFIABILITY OF LRVD ON DATA TREES 207

Fact 174. If x 6≡F z for all x 6= z ∈ F , and `2(x) 6= ⊕ (recall that x is the root of F), then
in the construction of T the equivalence class of id(x) is never joined with the equivalence
class of a descendant.

We consider the four different cases, two for every projection π1 or π2 of `1(x):

• In the case π1(`1(x)) = [v ≈ EFv], we show the formula v ≈ EFv is satisfied in id(x):

– Local satisfaction. If there is some descendant y ∈ F of x such that x ≡F y,
then, from Fact 173, id(x) ≡T id(y) and thus T, id(x) |= v ≈ EFv.

– Non-local satisfaction. If there is no such frame as in the previous sub-item,
then (since π1(`1(x)) = [v ≈ EFv]) there is a frame F with `F2 (x) = ⊕. Thus,
from the construction of T and Fact 173, there is a descendant of id(x) in its
equivalence class.

• In the case π1(`1(x)) = [¬v ≈ EFv], we consider two subcases to consider. If
π2(`1(x)) = [¬v 6≈ EFv], from the validity condition 1 the nodes id−1(id(x)) have
no descendants (and thus neither does id(x)), and therefore ¬v ≈ EFv is trivially
satisfied at id(x). Otherwise, if π2(`1(x)) = [v 6≈ EFv], we show that for all descen-
dants id(y) of id(x) at distance k of id(x) in T we have id(x) 6≡ id(y):

– Local satisfaction. If 0 < k ≤ d then taking ỹ in the frame F such that id(ỹ) =
id(y), from condition 5, x 6≡ ỹ and then from Fact 172 we have id(x) 6≡ id(y).

– Non-local satisfaction. If k > d, since π1(`1(x)) = [¬v ≈ EFv] and x is the root
of F , then `2(x) 6= ⊕. As we have seen that x 6≡F z for all x 6= z ∈ F , Fact 174
indicates that for any ỹ descendant of id(x) we have id(x) 6≡ ỹ.

• In the case π2(`1(x)) = [v 6≈ EFv], we distinguish two cases:

– Local satisfaction. If there is a descendant y ∈ F of x (and thus at distance at
most d from x) such that x 6≡F y, then, from construction of T , there is also a
descendant id(y) in N such that id(x) 6≡TSF id(y). Thus, from Fact 172, id(x)
satisfies v 6≈ EFv.

– Non-local satisfaction. If there is no descendant y ∈ F with x 6≡F y, then, from
condition 6 there is chain of descendants of x, y1 ∈ F1, . . . , yn ∈ Fn such that
∀i < n yi ≡ yi+1, and ∀i π2(`1(yi)) = [v 6≈ EFv], and such that yn has no child
z with z ≡ yn. As π2(`1(yn)) = [v 6≈ EFv], condition 2 implies that there must
be a child z of yn, and then necessarily z 6≡ yn. From Fact 172 and Fact 173,
therefore id(x) 6≡ id(z) and then v 6≈ EFv is satisfied in id(x).

• Finally, in the case π2(`1(x)) = [¬v 6≈ EFv], the formula ¬v 6≈ EFv is satisfied in
id(x) since, by validity condition 4 and construction of T , for all of the descendants
id(y) of id(x) we have that id(x) ≡ id(y) and `1(y) = [¬v 6≈ EFv].

This concludes the proof of Proposition 170.

208 CHAPTER 4. LRV OVER DATA TREES

Proposition 175. SATk(ϕ) implies CSReach(Akϕ, Q0, Q̂).

Proof. Let T be a k-ranked finite data tree whose root satisfies ϕ. We want to see that
there is an incrementing derivation tree S of Akϕ that starts at a node of Q0 with the

counter at 0 and ends with all leaves in Q̂ with the counter in 0.

We construct the incremental derivation tree from the root to the leaves. The idea is
simply to identify which states ((d, k)-frames) of the automaton Akϕ correspond to portions
of T , adding first the appropriate values of `1 and `2, and then performing unary and
binary operations in the expected way.

From a node in T to a (d, k)-frame For any node x of T we associate a (d, k)-frame
Fx, defined as follows:

• NFx is the maximal subtree of T height d that hangs from x

• ≡Fx = ≡�NFx

• `Fx1 (y) is consistent with T (i.e. `Fx1 (y) = ([v ≈ EFv], [v 6≈ EFv]) if y has a descendant
in Fx with the same data value and other with different data value, etc.)

• `Fx2 defined as follows (cf. items a and b of the conditions for the (d, k)-frames):

`2(y) =





⊕
if y = x, π1(`1(y)) = [v ≈ EFv], and
there is no descendant z of y with z ≡ y;

	
if y is a descendant of x at distance d from it, x 6≡ y, and
for all descendant z of x at distance < d we have y 6≡ z;

ε otherwise.

Let r be the root of T . We select as the initial state of S the (d, k)-frame Fr.

Construction of the incrementing derivation tree. For this step, to make clearer
whether we are referring to a node in T or in some (d, k)-frame, we will use a function id
from the roots of the (d, k)-frames into T , as in Proposition 170. If x̃ is the root of F , and
F = Fx, then we set id(x̃) = x.

We now decide which rules are invoked on each (d, k)-frame Fx we construct. Let
x̃ ∈ id−1(x) be the root of F .

If Fx is neither a point of decrement nor a point of increment, and if x has descendants,
then we use a binary rule to branch Fx into the two (d, k)-frames Fa1 and Fa2 , where a1, a2

are the two children of x in T . The particular way in which the counter of Akϕ has been
divided between these two (d, k)-frames will be explained afterwards (see Verification,
below).

4.5. SATISFIABILITY OF LRVD ON DATA TREES 209

If Fx is a point of decrement of value n then from Fx we transition, via an n-decrement,
to the (d, k)-frame F− = 〈NFx , EFx , `Fx1 , `−2 ,≡Fx〉 (i.e. F− is equal to Fx except for the `2

labeling function), where

`−2 (ỹ) =

{
ε if `2(ỹ) = 	;

`Fx2 (ỹ) otherwise.

If x̃− is the root of F−, we keep id(x̃−) = id(x̃).
If Fx is a point of increment, we transition to the (d, k)-frame

F+ = 〈NFx , EFx , `Fx1 , `+
2 ,≡Fx〉 (i.e. F− is equal to Fx except for the `2 labeling function),

where

`+
2 (ỹ) =

{
ε if `2(ỹ) = ⊕;

`2(ỹ) otherwise.

If x̃+ is the root of F+, we keep id(x̃+) = id(x̃).

Verification. We show that the constructed incrementing derivation tree S is a solution
to the control-state reachability problem. Observe that labels ⊕ of `2 are assigned to
the roots of (d, k)-frames when the corresponding node of T has a descendant at distance
greater than d with the same equivalence class (but it has none at distance d or less). Also,
	 labels are assigned to leaves when they do not have an ancestor of the same class at
distance less than d from the root of the frame. Thus, for every frame in S whose root r
has `2(r) = ⊕, there is at least one descendant frame in S with a leaf y with `2(y) = 	.

Therefore, in the incrementing derivation tree S the total number of increments of the
counter has been some number m and the total value of the decrements some n ≥ m. If
n > m, we modify S to add an spontaneous increase of the counter in n −m at the first
frame, which can be done since we are working on the control-state reachability problem.
So we can assume that m = n. It remains to assign, for each instance of the branching
rule, a way in which the counter has been divided between the branches. We do that as
follows: if at a node F of S the counter is at c and the next operation of S is a branching
F → F1 | · · · | Fi, then for each i we assign ci to Fi, where ci is the number of decrements
in the derivation tree of S(Fi). In this way, all the operations of S are valid (there are no
n-decrements when the counter is less than n), and the counter in all leaves ends up at 0.
Therefore S is a solution for the control-state reachability problem.

This concludes the proof of Proposition 175.

Finally, from Propositions 170 and 175 we obtain Proposition 168.

Example 176. The following figure illustrates a scheme of an incrementing derivation S of
the 1VASS2 A2

ϕ (a) and some steps (b, c and d) in the bottom up construction of the data

tree TS satisfying ϕ, for ϕ = ¬v ≈ EXv∧¬v ≈ EX2v∧v ≈ EFv. Triangles represent (2, 2)-
frames. Shades of gray represent the equivalence classes, which only make sense inside
any frame. The counter is notated with c, and arrows represent the (unary/branching)
transitions of the derivation. Notice that the top branching is ‘incremental’, and that the

210 CHAPTER 4. LRV OVER DATA TREES

local requirements of ϕ (namely, ¬v ≈ EXv and ¬v ≈ EX2v) are satisfied in the root of
the top frame.

S1 S2

S3

S�

TS1
TS2

c = 1

c = 0

c = 0

c = 0

c = 0

c = 0

c = 1

c = 0

c = 0

+1

�1 �1

c = 1
branch

branch

branch

branch

branch

TS3

TS

(a)

(b)

(c)

(d)

The construction of TS is bottom-up, and we show three steps: (a), (b) and (c). Notice
that in (b) each of TS1 and TS2 has its own partition (no intersection). In (c) we process the
root of S3 by tying together TS1 and TS2 with a common parent, who lives in a single class
of the partition. Notice that the partitions of TS1 and TS2 are properly joined (grey area),
according to the information in the root of S3. Finally in (d) we construct TS. The root
of S is a point of increment, so we match ⊕ with some 	 in TS3 . In this case, we match it
with the right-hand 	, and so we join them by putting them in the same partition (gray
area). We have satisfied the future requirement v ≈ EFv of ϕ.

Remark 177. There exists a similar reduction when considering the logic that allows
node-labeling and formulas of the type ψ := a. In this case, the construction of Akϕ can be
easily extended so as to prove the analog of Proposition 170 in the presence of these type
of formulas.

4.5.2 Adding Boolean and Until operators: LRVD
1

We extend LRVD−
1 with ∧, ∨, ¬ and EU. We will combine the idea of [34, Section 3.2]

with our previous approach of §4.5.1 in order to deal with this more expressive logic, to
obtain the following generalization of Proposition 168:

Proposition 178. There is a reduction from SATk-LRVD
1 to CSReach(1VASSk).

Let ϕ be a formula. We define cl(ϕ) to be the standard closure of ϕ: the smallest F
set of formulas that contains ϕ, is closed under subformulas, and satisfies the following
conditions:

4.5. SATISFIABILITY OF LRVD ON DATA TREES 211

• If ψ ∈ F and ψ is not of the form ¬ψ1 for some ψ1, then ¬ψ ∈ F .

• If EU(ψ2, ψ1) ∈ F then EX(EU(ψ2, ψ1)) ∈ F .

An atom of ϕ is a subset A of cl(ϕ) which is maximally consistent in that it satisfies
the following conditions:

• For every ¬ψ ∈ cl(ϕ), we have ¬ψ ∈ A iff ψ 6∈ A.

• For every ψ1 ∧ ψ2 ∈ cl(ϕ), we have ψ1 ∧ ψ2 ∈ A iff ψ1 and ψ2 are in A.

• For every ψ1 ∨ ψ2 ∈ cl(ϕ), we have ψ1 ∨ ψ2 ∈ A iff ψ1 or ψ2 is in A.

• For every EU(ψ2, ψ1) ∈ cl(ϕ), we have EU(ψ2, ψ1) ∈ A iff either EX(ψ2) ∈ A or both
X(ψ1) ∈ A and EX(EU(ψ2, ψ1)) ∈ A.

We denote by Atom(ϕ) the set of atoms of ϕ. Let A,A1, . . . , Ai ∈ Atom(ϕ). We say
that A is 1-consistent with A1, . . . , Ai if for every EX(ψ) ∈ cl(ϕ), we have EX(ψ) ∈ A iff
ψ ∈ ⋃1≤j≤iAj.

We recall the definition of EX-length given in §4.5.
As in §4.5.1, we show that for any formula ϕ of LRVD

1 , there is a 1VASSk Bkϕ and sets

Q0, Q̂ such that SATk(ϕ) iff CSReach(Bkϕ, Q0, Q̂).
The idea behind the definition of Bkϕ is similar to the one of Akϕ defined in §4.5.1.

However, Bkϕ will encode more information. For the definition of Bkϕ, recall the definition
of (d, k)-frame given in §4.5.1. We say that an atom A is locally consistent with a (d, k)-
frame F if, for r the root of F , and for all γ ∈ A of the form v ? EFv or ¬v ? EFv (for
? ∈ {≈, 6≈}), r is labeled appropriately in `1.

The automaton Bkϕ. We define the 1VASSk Bkϕ as follows:

• The set of states Q of Bϕ consists of the set

{(F,A) ∈ Fd,k × Atom(ϕ) | A is locally consistent with F}.

• Unary rules. Let F1 and F2 be (d, k)-frames, and let A be an atom.

– (F1, A)
−n−→ (F2, A) if F1 and F2 are as in the rule F1

−n−→ F2 of Akϕ.

– (F1, A)
+1−→ (F2, A) if F1 and F2 are as in the rule F1

+1−→ F2 of Akϕ.

• Branching rules: (F,A) → ((F1, A1), . . . , (Fi, Ai)) (with i ≤ k), if F is 1-consistent
with F1, . . . , Fi, and A is 1-consistent with A1, . . . , Ai.

We now define the two sets Q0 and Q̂, to be used as inputs of the control-state reach-
ability problem.

212 CHAPTER 4. LRV OVER DATA TREES

• Q0 is the set of all (F,A) ∈ Fd,k × Atom(ϕ) which are initial. We say that (F,A) is
initial iff F satisfies the same conditions of an initial state of Akϕ and ϕ ∈ A.

• Q̂ is the set of all the states of the form (F,A), where F is the only (d, k)-frame
that consists solely of one node, and where A is such that if EU(ρ, ψ) ∈ cl(ϕ) then
EU(ρ, ψ) 6∈ A.

4.5.3 The general case: LRVD
n

To prove Theorem 167 it is enough to introduce a small modification to the construction
of Fd,k as seen in Proposition 168, changing the dimension (polynomially in n) of the
codomains of `1 and of `2 in order to maintain information for all the variables. For the
case of n disjoint variables and ϕ ∈ LRVD

n we make the following changes to the definition
of the (d, k)-frames that will constitute the states of the automaton Bkϕ:

• Let Vi = {([vi ≈ EFvi], [vi 6≈ EFvi]), ([¬vi ≈ EFvi], [vi 6≈ EFvi]), ([vi ≈ EFvi], [¬vi 6≈
EFvi]), ([¬vi ≈ EFvi], [¬vi 6≈ EFvi])}. Now we have `1 : N →∏

1≤i≤n Vi.

• `2 : N →∏
1≤i≤n{εvi ,⊕vi ,	vi}.

• ≡1, . . . ,≡n are equivalence relations over the nodes of the frames.

The notions of validity and 1-consistency between frames are then adjusted accordingly.
There are now n counters in the automaton, and n instances of our previous unary rules
for Bkϕ, one for every disjoint variable.

4.5.4 Complexity

We will make a short analysis on the complexity of the reduction corresponding to Theorem
167. For this part, we will assume we are working without labels, but their addition to the
logic does not change the complexity classes in our results.

First, we rapidly note that the maximum size of an entry in a unary rule of the n-
counter automaton Bkϕ is bounded by kd, corresponding with a (d, k)-frame of maximum
depth where all leaves are labeled via `2 with	 and all leaves belong to different equivalence
classes; such (d, k)-frame is a point of decrement of value kd, and there cannot be points
of decrement of higher value.

By making an analysis on the size of Fd,k (the set of valid (d, k)-frames) and of Atom(ϕ)
(which is used for the temporal portion), we can obtain an upper bound on the size of the
automaton Bkϕ of our reduction in Subsection 4.5.2, generalized to LRVD

n . Each state of
Bkϕ is basically a k-ranked tree of depth at most d (equipped with a node-labeling function

and an equivalence class) and a set of (roughly) subformulas of ϕ. There are O(2p1(|ϕ|))
such sets, for some polynomial p1, where |ϕ| denotes the number of subformulas of ϕ. On
the other hand, there are O(kd+1) many k-ranked tree of depth at most d, and so there
are O((kd+1)k

d+1
) many such trees with a binary relation defined on its nodes. Further,

4.5. SATISFIABILITY OF LRVD ON DATA TREES 213

each leaf can be labeled with p2(n)-many labels, where p2(n) is the product of the size of
the codomains of the functions `1 and `2 for (d, k)-frames in the n-dimensional case, as in
Subsection 4.5.3. So there are O((kd+1)k

d+1 · p2(n)k
d+1

) many k-ranked trees of depth at
most d equipped with node-labeling functions and an equivalence class.

Let LRVD
n,d be the fragment of LRVD

n where each formula has EX-length at most d. We
have obtained:

Proposition 179. Given ϕ ∈ LRVD
n,d, the number of states of Bkϕ is

O(p(n)k
d+1 · (kd+1)k

d+1 · 2p(|ϕ|))

for some polynomial p.

Now, using Proposition 163, Theorem 167, and Proposition 179, we can obtain:

Proposition 180. SATk-LRVD
n,d is in ExpTime for fixed k, n, d; it is in 2ExpTime for

fixed k, n or fixed d, k; and it is in 3ExpTime for fixed k.

Proof. Observe that the reduction of Theorem 167 can be done using only exponential
space, as we can codify in exponential space the lists of states and the rules between states,
while checking if each state represents a valid (d, k)-frame and if each rule corresponds to
one of our unary or branching rules.

In order to use the Prop. 163 from [37], we translate our nVASSk Bkϕ from Theorem 167
into a BVAS B such the control-state reachability problem of our nVASSk is equivalent
to the coverability problem (with n̄ = 0 in our reduction) for this B. We will find a
B = 〈n + ñ, R1, R2〉, where R1, R2 ⊆ Zn+ñ are unary and binary rules, respectively.
Observe that we need to measure the maximum binary size of entries in the rules R1, R2,
and we also need to specify a set of axioms, which adds a linear size to the input.

First we will show how we can build a branching VASS C = 〈C,UC , BC〉 with a constant
number of states; a fixed increase ñ in the dimension; and a new bound (that dominates
the bound of log2(kd) for Bkϕ) to the binary size of the maximum entry of the rules, a bound
that is logarithmic on |Bkϕ|. Afterwards, we can translate C to a BVAS in a standard way,
which does not increase our complexities, and only needs a single axiom.

Let q0, . . . , qN the states of Bkϕ. C will have three states: C = qa, qb, qc. For each unary

rule on Bkϕ of the form qi
v̄−→ qj, Uc contains the rules:

• qa
(v̄,w̄)−−−→ qb, where w̄ = (−i,−(N − i), j, N − j, 0, 0).

• qb
(v̄,w̄)−−−→ qa, where w̄ = (j,N − j,−i,−(N − i), 0, 0).

• qa
(v̄,w̄)−−−→ qc, where w̄ = (−i,−(N − i), 0, 0, j, N − j).

• ...And so on for all combinations qi → qj with i, j ∈ {a, b, c}.

214 CHAPTER 4. LRV OVER DATA TREES

For branching rules on Bkϕ of the form qk −→ (qi, qj), BC contains the rules22:

• qa, qb w̄−→ qc, where w̄ = (−i,−(N − i), j,−(N − j), k,N − k).

• And so on for all combinations with the three states.

For branching rules of higher branching, the idea is similar, but we have to introduce
new counters in order to simulate k-branching with only binary branching.

4.6 Obtaining equivalence with VASSk

In the previous section we have seen a reduction into the control-state reachability problem
for VASSk. A natural question is whether there exists a reduction in the other direction:
can CSReach(VASSk) be reduced into the k-satisfiability for LRVD? For the case k = 1,
this has been shown to be the case [36]: there exists a polynomial-space reduction from
CSReach(VASS1) to SAT1(LRV).

The existence of a reduction would show, intuitively, that one can express in the logic
that there is a tree that verifies all the conditions for being a derivation. Without the use
of data tests, one can easily encode trees that verify all the conditions except perhaps (25)
and (26) regarding the vectors. For this, let us assume without loss of generality that all
unary rules contain a vector ēi or −ēi. The data values are used to ensure the next two
conditions:

• Along any branch, every node containing a rule of the form q
ēi−→ q′ has a unique data

value. In other words, we cannot find two nodes encoding an increment of component
i with the same data value so that one is the ancestor of the other.

• For every node with a unary rule q
ēi−→ q′ there exists a descendant with a rule p

−ēi−−→ p′

and the same data value.

These two conditions imply that after incrementing component i there must be at least one
corresponding decrement of component i. Note that there could be more decrements than
increments, which is not a problem since we work under the ‘incrementing’ semantics.

Interestingly, these two conditions can be expressed in LRV, but we do not know how
to encode it in LRVD (we conjecture that they are not expressible).

Adding the operator AG≈v(ϕ) We add a new operator AG≈v(ϕ) to LRVD, where
T, x |= AG≈v(ϕ) if every descendant of x with the same v-attribute verifies ϕ. The fragment
of LRVD

n extended with positive occurrences of AG≈v(ϕ) (that is, where AG≈ occurs always
under an even number of negations) is called LRVD

n (AG+
≈).

Now, in LRVD
n (AG+

≈) one can express: for every node x containing a rule q
ēi−→ q′, we

have that all descendants of x with the same vi attribute contain a rule of the form p
−ēi−−→ p′.

22The branching rules BC of C will allow the addition of a vector, in order to facilitate a later transition
to a BVAS; this feature is unessential, but useful for the purpose of clarity.

4.6. OBTAINING EQUIVALENCE WITH VASSK 215

This, added to the property that every increment for component i must verify vi ≈ EFvi,
ensures that the tree indeed encodes a derivation tree.

Theorem 181. CSReach(nVASSk) is PTime-reducible to SATk-LRVD
1 (AG+

≈), where the
number of labels in the logic depends (polynomially) on the size of the nVASSk.

Proof. We will start by proving the result for n = 1, as the general case follows from small
modifications to the proofs for this restricted case. Let Ck = 〈Q,U,B〉 be a 1VASSk, let

q0 ∈ Q, and let Q̂ ⊆ Q. We can assume without loss of generality that all unary rules
in U of the form q

c−→ q′ have either c = 1 or c = −1. We will define23 a formula ϕC
k

of
LRVD

1 (AG+
≈), over an adequate set of labels, such that CSReach(Ck, q0, Q̂) iff SATk(ϕ

Ck).

For the signature of the logic, we will consider the set of labels:

L = (U ∪B ∪ {∗})× k,

where ∗ is a symbol to represent that the node is a ‘dummy node’ that will be ignored in
the translation to an incrementing derivation tree; also, dummy nodes will always be to
the right of nodes labeled with any (t, i), for t 6= ∗. We notate

ϕinc =
∨

1≤j≤k

∨

t=q
+1−→q′

(t, j) and ϕdec =
∨

1≤j≤k

∨

t=q
−1−→q′

(t, j).

For t = q
v−→ . . . a branching or unary rule, we notate πh(t) = q. We want to construct a for-

mula ϕC
k

whose satisfiability over k-ranked data trees is equivalent to CSReach(Ck, q0, Q̂).

The truth of ϕC
k

in a data tree T, r (where r is the root of T) expresses:

• πh(π1(`(r))) = q0

• For each node x of T , we have:

i. If π1(`(x)) = q
c−→ q′ then T, x |= EX(a, 1) ∧ EX(∗, 2) ∧ · · · ∧ EX(∗, k), where

πh(a) = q′.

ii. If π1(`(x)) = q −→ (q1, . . . qj), with j > 0, then T, x |= EX(a1, 1)∧· · ·∧EX(aj, j)∧
EX(∗, j + 1) ∧ · · · ∧ EX(∗, k), where πh(ai) = qi.

iii. If π1(`(x)) = ∗ then T, x |= ¬EX(>).

iv. If π1(`(x)) = q −→ ∅̄, then T, x |= ¬EX(>).

v. If T, x |= ¬EX(>) and π1(`(x)) = q −→ ∅̄, then q ∈ Q̂.

vi. If π1(`(x)) = q
+1−→ q′ then T, x |= v ≈ EFv ∧ AG≈v(ϕdec).

23Abuse of notation: ϕC
k

also depends on q0 and Q̂.

216 CHAPTER 4. LRV OVER DATA TREES

In the framework of k-ranked data trees, item i and item ii give nodes tagged with a non-
empty rule, exactly k-children, where the first ones are associated with the rule itself, and
the rest are dummy nodes. Item iii ensures that dummy nodes are leaves, and item iv
ensures that nodes corresponding to the empty rule are leaves. Item vi says that nodes
tagged with an increment rule have a descendant in its same class, and that all descendants
in the same class are tagged with a decrement rule. Item v assures that leaves of the
tree that are tagged with an empty rule correspond with states in Q̂. Observe that the
conditions i, ii, iii, iv, and v taken together imply that T, x |= ¬EX> iff either π1(`(x)) =
q −→ ∅̄ or π1(`(x)) = ∗.

We now write the formulas of the logic that correspond to all these conditions.

ϕC
k

0 =
∨

1≤z≤k
t=q0−→···∈U∪B

(t, z)

ϕC
k

1 =
∧

1≤z≤k
t=q

c−→q′∈U


(t, z)→


 ∨

πh(a)=q′

EX(a, 1) ∧
∧

2≤j≤k

EX(∗, j)




 (i)

ϕC
k

2 =
∧

1≤z≤k
t=q−→(q1,...qj)∈B


(t, z)→

∨

a1,...,aj∈U∪B
s.t.(∀i)πh(ai)=qi

(∧

1≤i≤j

EX(ai, i) ∧
∧

j<i≤k

EX(∗, i)
)

 (ii)

ϕC
k

3 =
∧

1≤z≤k

(∗, z)→ ¬EX> (iii)

ϕC
k

4 =
∧

1≤z≤k
t=q−→∅̄

(t, z)→ ¬EX> (iv)

ϕC
k

5 =


¬EX> ∧

∨

1≤z≤k
t=q−→∅̄

(t, z)


→

∨

1≤z≤k
t=q−→∅̄,q∈Q̂

(t, z) (v)

ϕC
k

6 = ϕinc →
(
v ≈ EFv ∧ AG≈v(ϕdec)

)
(vi)

For i = 1 . . . 6, let ψC
k

i = ϕC
k

i ∧ AG(ϕC
k

i) and finally define our desired ϕC
k

such that

CSReach(Ck, q0, Q̂) iff SATk(ϕ
Ck):

ϕC
k

= ϕC
k

0 ∧
∧

1≤i≤6

ψC
k

i .

Observe that the size of ϕ is polynomial on the size of Ck. Note also that AG≈ appears
only positively in ϕC

k
, and hence ϕC

k ∈ LRVD
1 (AG+

≈).

4.6. OBTAINING EQUIVALENCE WITH VASSK 217

For the general case of arbitrary n, we can assume without loss of generality that all
unary rules in U of the form q

v−→ q′ have either v = ei or v = −ei for some 1 ≤ i ≤ n.
Now, adding for each counter in Ck adequate new versions of ϕinc, ϕdec, and ϕC

k

6 , we can
extend the previous arguments, yielding a proof of Theorem 181. Observe that this does
not necessitate an increase in the number of variables of the logic.

The satisfiability for this extension still has a reduction to the control-state reachability
for VASSk:

Theorem 182. SATk-LRVD(AG+
≈) is ExpSpace-reducible to CSReach(VASSk).

To show SATk-LRVD
n (AG+

≈) reduces to CSReach(nVASSk) we will proceed incremen-
tally, as it was done in §4.5. We begin with a simple logic, notated LRVD−

1 (AG+
≈), which

consists only of formulas ϕ ∈ LRVD
1 (AG+

≈) that are conjuncts of terms of the form v?EXiv,
v ?EFv, or their negation, where ? ∈ {≈, 6≈}, and, all occurrences of AG≈v(ϕ) are of form
AG≈v(a), where a is a label, and whose labels rage over a finite fixed set L.

Let ϕ be a formula ϕ ∈ LRVD−
1 (AG+

≈), let

H = {a ∈ L | AG≈v(a) is a subformula of ϕ}

and let h = #H. We construct a (h + 1)VASSk Ckϕ (via a procedure similar to that of
§4.5.1, using Observation 177 to take labels into account), with two distinguished set of

states Q0 and Q̂ such that SATk(ϕ) iff CSReach(Ckϕ, Q0, Q̂) (recall Observation 169).

Valid (d, k)-frames. We adjust our notion of valid (d, k)-frames to this framework. A
(d, k)-frame is now a tuple F = 〈N,E, `, `1, `2,≡〉 that satisfies similar conditions as those
of §4.5, and ` : N → L. We state next the differences with the (d, k)-frames seen in §4.5.1.

• For x ∈ N , `1(x) is a tuple ([?1v ≈ EFv], [?2v 6≈ EFv], S), where ?1, ?2 can be either
the empty string or ¬, and where S is a potentially empty set containing elements
of the form AG≈v(a) with a ∈ L.

• Validity: We extend the validity conditions of §4.5.1 with the following rules:

– If x ∈ N satisfies π1(`1(x)) = [v ≈ EFv] and AG≈v(a) ∈ π3(`1(x)), and if y ∈ N
is a descendant of x with x ≡ y, then `(y) = a.

– If x ∈ N satisfies AG≈v(a),AG≈v(b) ∈ π3(`1(x)) for a 6= b, then π1(`1(x)) =
[¬v ≈ EFv].

• We change the labeling function `2, such that its codomain is

{ε,	a1 , . . . ,	an ,	,⊕,⊕a1 , . . . ,⊕an}.

• For a root r ∈ N , `2(r) = ⊕ai iff π1(`1(x)) = [v ≈ EFv] and AG≈v(a) ∈ π3(`1(r))
and there is no descendant in the same frame in the same equivalence class.

218 CHAPTER 4. LRV OVER DATA TREES

• For a root r ∈ N , `2(r) = ⊕ iff π1(`1(x)) = [v ≈ EFv] and π3(`1(r)) = ∅ and there is
no descendant in the same frame in the same equivalence class.

• For leaves z ∈ N , `2(z) = 	ai implies that `(z) = ai, AG≈v(ai) ∈ π3(`1(z)) and there
is no node in the frame at distance < d from the root with the same equivalence class
as z.

• For leaves z ∈ N , `2(z) = 	 implies that π3(`1(z)) = ∅ and that there is no node in
the frame at distance < d from the root with the same equivalence class as z.

A (d, k)-frame is an a-point of decrement of value p iff it has a maximum of p
leaves z1, . . . , zp in different equivalence classes and with `2(zj) = 	a for all j. It is a
neutral point of decrement of value p iff it has a maximum of p leaves z1, . . . , zp in
different equivalence classes and with `2(zj) = 	 for all j. A (d, k)-frame is an a-point
of increment if its root r has `2(r) = ⊕a and it is not an a-point of decrement. It is a
neutral point of increment if `2(r) = ⊕ and it is not an a-point of decrement for any
a ∈ L.

The automaton Ckϕ. We define the (h+ 1)VASSk Ckϕ and the sets Q0, Q̂ similarly as in
the case of Akϕ in §4.5.1, using Observation 177 to take labels into account with the notion
of 1-consistency between the (d, k)-frames just defined.

We define Ckϕ as follows:

• We fix the dimension to be h+1. Let H = {a1, . . . , ah}. For i ≤ h, the i-th coordinate
will correspond with the label ai. Intuitively, i-th coordinate will we used to count
instances of v ≈ EFv ∧ AG≈v(a), yet unsatisfied.

• The set of states of Ckϕ is Fd,k, the set consisting of all valid (d, k)-frames as defined
above.

• Unary rules. Let F1 and F2 be (d, k)-frames. We have the following rules24:

– F1
−nei−−−→ F2 if F1 is an ai point of decrement of value n, and F2 is equal to F1,

except that `F2
2 is defined as follows:

`F2
2 (x) =

{
ε x is a leaf of F1 with `F1

2 (x) = 	ai ;
`F1

2 (x) otherwise.

– F1
−meh+1−−−−−→ F2 if either:

24There will we a non-deterministic choice of the order of decrements if there are leaves with different
	aj

, but the order of these operations is not relevant.

4.6. OBTAINING EQUIVALENCE WITH VASSK 219

∗ F1 is a neutral point of decrement of value m and F2 is equal to F1, except
that `F2

2 is defined as follows:

`F2
2 (x) =

{
ε x is a leaf of F1 with `F1

2 (x) = 	;

`F1
2 (x) otherwise.

or

∗ F1 is a ai-point of decrement of value n ≥ m for some ai, and F2 is an ai
point of decrement of value n − m such that F2 has m fewer instances of
distinct equivalence classes of nodes with 	ai , that is: F2 is equal to F1,
except for `F2

2 : for any node x, `F1
2 (x) = 	ai implies either `F2

2 (x) = 	ai or
`F2

2 (x) = 	ai , and if `F1
2 (x) 6= 	ai then `F1

2 (x) = `F2
2 (x) .

– F1
ei−→ F2 if F1 is an ai point of increment, and F2 is equal to F1, except that

`F2
2 is defined as follows:

`F2
2 (x) =

{
ε x is the root of F1;

`F1
2 (x) otherwise.

– F1
eh+1−−→ F2 if F1 is a neutral point of increment, and F2 is equal to F1, except

that `F2
2 is defined as follows:

`F2
2 (x) =

{
ε x is the root of F1;

`F1
2 (x) otherwise.

• Branching rules: F → (F1, . . . , Fi), if F is 1-consistent with F1, . . . , Fi.

We define the sets Q0, Q̂:

• Q0 consists of initial frames. A (d, k)-frame F of root r is initial iff the following
conditions hold:

– F, r satisfies all terms of ϕ of the form v ? EXiv or ¬v ? EXiv;

– if v ≈ EFv [resp. v 6≈ EFv] is a positive conjunct of ϕ, then the root r ∈ NF

satisfies π1(`F1 (r)) = [v ≈ EFv] [resp. π2(`F1 (r)) = [v 6≈ EFv]];

– if v ≈ EFv [resp. v 6≈ EFv] is a negative conjunct of ϕ, then for all descendants
y of the root r ∈ NF , it holds that π1(`F1 (y)) = [¬v ≈ EFv] [resp. π2(`F1 (y)) =
[¬v 6≈ EFv]].

– If b ∈ L and b is a conjunct of ϕ, then `(r) = b, for r the root of F .

– If AG≈v(a) is a conjunct of ϕ, then AG≈v(a) ∈ π3(`1(r)), for r the root of F .

• Q̂ is the set of (d, k)-frames in Fd,k that consists solely of one node.

220 CHAPTER 4. LRV OVER DATA TREES

Proposition 183 and Proposition 183, the analogous results to Propositions 170 and
175, hold for ϕ ∈ LRVD−

1 (AG+
≈) and the corresponding (h + 1)VASSk Ckϕ and the states

Q0, Q̂. Hence we arrive at:

SATk(ϕ) iff CSReach(Ckϕ, Q0, Q̂).

As in Proposition 178, we can extend these results to the full logic, and then extend
for the general case where we allow any formula AG≈v(η) to appear in ϕ, completing the
proof of Theorem 182.

Proposition 183. If there is a solution to the problem of the CSReach(Ck, q0, Q̂) then
there is a solution to the SATk problem of ϕC

k
over the logic LRVD

1 (AG+
≈).

Sketch of the proof. Let S be an incrementing derivation tree that is a solution of
CSReach(Ck, q0, Q̂). We want to prove that there is a k-ranked tree TS where the root
r satisfies ϕC

k
. Nodes of TS will correspond to the nodes of S, and their labels will be

determined by the rule that is invoked on them in S and by their position as children of
some other node (and we choose to assign π2(`(r)) = 1). When a node has at least one
child but strictly less than k, we add dummy nodes (with labels of the form (∗, i)) in the
proper order so as to arrive to exactly k children. With all this, ψC

k

1 ∧ ψC
k

2 ∧ ψC
k

3 ∧ ψC
k

4 is

satisfied at r. Since S is a solution for CSReach(Ck, q0, Q̂), ϕC
k

0 holds at the root of TS,

and all leaves z of TS with π1(`(z)) of the form q −→ ∅̄ have πh(π1(`(z))) ∈ Q̂, and thus ψC
k

5

is satisfied at r. For the equivalence relation, we first put all nodes in different equivalence
classes. Then, since S is a solution for the control-state reachability problem, whenever
there is a (+1) increment rule there is a (−1) decrement rule further down, and we can
make this assignation injectively, yielding corresponding joining of the equivalence classes.
This is enough to satisfy ψC

k

6 at r.

Proposition 184. If there is a solution to the SATk problem of ϕC
k

over LRVD
1 (AG+

≈)

then there is a solution to CSReach(Ck, q0, Q̂).

Sketch of the proof. Let T be a k-ranked tree whose root r satisfies ϕC
k
. We want to

construct ST , an incrementing derivation tree of Ck that is a solution to the control-state
reachability problem. The idea is that the conjuncts ψC

k

1 , ψC
k

2 , and ψC
k

4 provide a natural
translation from the nodes and labels of each node of T to the structure and invoked rules
of ST . Because of ψC

k

3 , we can ignore those nodes x ∈ T with πh(`(x)) = ∗. ϕCk0 ensures

that the derivation tree starts from q0, while ψC
k

5 implies that all leaves of ST are in Q̂.
To check that all leaves of ST have the counter set at 0, observe that ψC

k

6 ensures that
whenever an increment rule (+1 to the counter) is invoked, there is further down in the
derivation an application of a decrement rule (−1 to the counter), furthermore, there is
at least one decrement for each increment, since ψC

k

6 also ensures that two nodes labeled
with some increment rule cannot be in the same equivalence class if one is ancestor of the
another.

4.7. FROM LRV TO MVASSK 221

4.7 From LRV to MVASSk

The reduction from LRVD to VASSk from Section 4.5 cannot be extended to treat LRV.
The main problem is that the branching nature of the counters in a CSReach(VASSk) will
be insufficient to represent some classes of data trees (which can be needed to model some
formulas). When we have tests of the form u1 ≈ EFu2 with u1 6= u2 distinct variables, we
can no longer reason in terms of “one coordinate i for each variable ui”, where the i-th
component in the configuration of the VASSk codes, intuitively, how many distinct data
values must be seen on variable ui in the subtree as shown in Section 4.5. In fact, when
working with LRV, a data value may appear in several variables, as a result of allowing
formulas like u1 ≈ EFu2 ∧ u1 ≈ EFu3. This means that we need to reason in terms of
sets of variables, where each component i is associated with a non-empty subset Ui of
the variables appearing in the input formula ϕ; this time, component i counts how many
data values must appear in the subtree under all the variables of Ui. This, in principle,
poses no problem for the non-branching case: in fact, this kind of coding (indexing one
coordinate of the configuration for each subset of variables) was used in [35] to show a
reduction from LRV to VASS on data words. However, on data trees, this coding breaks
with the semantics of the branching rules of VASSk.

As an example, suppose we work with two variables u, v and we thus have dimension
3 —the first component is associated with {u}, the second with {v} and the third with
{u, v}. Suppose that there are n ancestor nodes that have to satisfy both u ≈ EFu and
u ≈ EFv, which at the current configuration of the VASSk is witnessed by the vector
(0, 0, n). Intuitively, this means that there are n data values that must appear in the
subtree under a variable u and also under v (though not necessarily at the same node)
in the data tree the automaton is trying to find. Hence, as part of the “branching”
instruction of this configurations into the configuration of the left and right children, one
must contemplate the possibility of obtaining, for instance, (n, 0, 0) (0, n, 0), saying that
the left subtree contains n distinct data values for u, and the right child contains n data
values for v. But it could be (n − t, 0, t) (0, n − t, 0), or (0, 0, n − t) (0, 0, t), etc. In
other words, components need to be mixed in a more complex way that is not allowed in
VASSk branching rules. In particular, some sort of transfers between coordinates must be
necessary. This is precisely the behavior that we can encode into MVASS.

Theorem 185. SATk-LRVn is reducible to CSReach(2n-MVASSk).

As a corollary, due to Theorem 164, we have that SATk-LRV is decidable. We remark
that, similarly as done in [36], one can add formulas of the form u ? EF[ϕ]v stating that
there is a descendant witnessing u ? EFv and verifying ϕ, while preserving this reduction.

Proof. Using the merging rules as described in Section 4.7, the reduction from LRVD to
VASSk of Section 4.5 can be modified to obtain a reduction from LRV to MVASSk. Frames
and its notion of validity are extended to treat set of variables. In particular, now the points
of increment and decrement are always relative to a set of variables. This follows, very
roughly, the idea of coding from [36] in the setup built in Section 4.5, but now some special

222 CHAPTER 4. LRV OVER DATA TREES

care must be considered because of the non-linearity of a tree. One must decide in advance
to which leaf of the frame the satisfaction of data demands will be delegated. The resulting
MVASSk now has dimension exponential in the number of variables of the input formula.

Concretely, in order to encode this logic we need to make the following changes to the
set of frames Fd,k we work with.

First of all, the labeling function `1 now labels pairs of sets of formulas. These formulas
labelled by `1 are of the form

• in the first component u ≈ EFv or ¬(u ≈ EFv)

• in the second component u 6≈ EFv or ¬(u 6≈ EFv)

for any pair of variables u, v used in the input formula. For simplicity, we write ψ ∈ `1(x)
(or, alternatively, that x is `1-labeled with ψ) to denote that ψ is either in the first or
second component of `1(x).

Further, instead of having one equivalence relation ≡ over the set of nodes, we have
an equivalence relation ≡ over pairs (x, u) where x is a node of hte frame and u an at-
tribute variable of the input formula ϕ. This is to account for the possibility that different
attributes can have the same data value.

In light of this, the formulas labeled by `1 must ‘respect’ ≡. That is, if u ≈ EFv ∈ `1(x)
[resp. u 6≈ EFv ∈ `1(x)] and (x, u) ≡ (x, u′) then u′ ≈ EFv ∈ `1(x) [resp. u′ 6≈ EFv ∈ `1(x)].

More importantly, the labeling `2 must be changed to reflect the fact that

(1) there may be several demands for the same attribute, as a result of formulas like
u ≈ EFv ∧ u′ ≈ EFv (as we will see next, this is the reason for the first parameter of
⊕),

(2) there may be several attributes in a demand for equality, as a result of formulas like
u ≈ EFv ∧ u ≈ EFv′,

(3) a point of decrement needs to be a point that has some attributes U which are not
connected by equality to any ‘local’ ancestor and they are connected possibly to some
other attributes V in the descendants.

Formally, the mapping `2 now labels nodes with ⊕(U, V) and/or 	(U, V), where U, V are
sets of attribute variables. Each node x can receive more than one ⊕ or 	 label, that is,
`2 is a function from nodes to subsets of {⊕(U, V) | U, V ⊆ V} ∪ {	(U, V) | U, V ⊆ V},
assuming V is the set of variables used in the input formula.25 The idea is that ⊕(U, V)
holding at x means that there must be a data value appearing in the subtree at x under
all the variables of V (possibly at different nodes), which is equal to the u-attribute of the
k-ancestor of x, for every u ∈ U . On the other hand, 	(U, V) holding at x means that
the data value of the U -attributes of x (which are all the same) do no not appear in any
i-ancestor of x (i ≤ k), and they will appear in the future with attributes V .

We add the following conditions.

25It is worth remarking that `2(x) is always a set of size linear in |V| due to the next conditions.

4.7. FROM LRV TO MVASSK 223

• For any two labels ⊕(U, V) and ⊕(U ′, V ′) at the same node, U and U ′ are disjoint.
For any two labels 	(U, V) and 	(U ′, V ′) at the same node, U and U ′ are disjoint.

• For every leaf x which is `2-labeled with ⊕(U, V) we have that U is an equivalence
class of {(u, v) | (r, u) ≡ (r, v)}, where r is the root node.

• For every leaf x which is `2-labeled with 	(U, V) we have that for some v ∈ V we
have

U = {u | (x, u) ≡ (x, v)},
V = {u | [v ≈ EFu] ∈ `1(x)},

and that there is no ancestor y of x so that (x, u) ≡ (y, v′) for some u ∈ U , v′ ∈ V.

• There exists an `1-labeling u ≈ EFv holding at the root r if, and only if, there exists
a node x at some depth i so that either

– (r, u) ≡ (x, v), or

– (r, u) ≡ (x, v′) for some v′ and v′ ≈ EFv in `1(x), or

– i = k and x is `2-labeled with ⊕(U, V) with U = {u′ | (r, u) ≡ (r, u′)} and
v ∈ V .

• There exists an `1-labeling u 6≈ EFv holding at the root r if, and only if, there exists
a node x at some depth i so that either

– (r, u) 6≡ (x, v), or

– (r, u) ≡ (x, v) and v 6≈ EFv in `1(x).

1-step consistency is preserved as before. Now a point of increment for V is a frame
whose root is labeled with ⊕(U, V) for some U ; whereas a point of decrement for W is a
frame whose root is labeled with 	(U, V) for U ∪ V = W .

Finally, the automaton Akϕ is built as for the other reduction, with the exception that
now its dimension is exponential. As in the previous reductions, the frames are the states
of the automaton, where the initial frames are those that do not contain ⊕/	 tags at nodes
at distance < k from the root, and whose root labeling is consistent with the satisfaction
of the formula. In the automaton, we have one coordinate associated with every non-
empty subset V ⊆ V of attribute variables (remember that we use ēV to denote ēi for the
coordinate i associated with V and ē∅ to denote 0̄). Unary rules now follow a logic of first
decrementing all the 	 at the root, and then incrementing all the ⊕ at the root. (The ⊕/	
tags of other nodes are differed to the moment when they will be at the root of a frame.)
That is, unary rules (F1,−ēU∪V , F2) whenever F1 has 	(U, V) at the root, F2 is just like
F1 but without the 	(U, V) at the root. We have unary rules (F1, ēV , F2) whenever F1 has
no 	-labels at the root, it has a ⊕(U, V) label at the root, and F2 is the result of removing

224 CHAPTER 4. LRV OVER DATA TREES

⊕(U, V) at the root. Merging rules are built as it was explained before. That is, we have
(F1, 0̄ +B∗, (F ′1, . . . , F

′
k′)) whenever F1 is 1-consistent with (F ′1, . . . , F

′
k′), and B consists of

all vectors (ēV ēU1 · · · ēUk), so that V 6= ∅ and V =
⋃
i Ui. The partial order � will then be

the subset ordering on the components: i � j if the set associated to i is contained in that
associated to j. It is not hard to check that if Akϕ has a solution for CSReach if and only
if ϕ is satisfiable on k-ranked data trees using precisely the same ideas as in the proof of
Proposition 170.

Conclusions and future work

“And now it seems there are lots of
other worlds as well. When I think
I might die without seeing a
hundredth of all there is to see it
makes me feel,” he paused, then
added “well, humble I suppose.
And very angry, of course.”

The Colour of Magic
Terry Pratchett

Conclusions

In Chapter 1 we developed the model theory of XPath=(↓) and XPath=(↑↓) both for node
expressions and path expressions. For node expressions, we designed the tools of saturation
and quasi-ultraproducts in order to obtain definability and separation results. For path
expressions, we first developed adequate notions of binary bisimulation over two-pointed
data trees, such that a Hennessy-Milner-style characterization theorem held and thus the
notions coincided with logical indistinguishability. We also proved a van Benthem-style
characterization theorem for binary XPath=(↓)-bisimulation which connects this logic with
the fragment of first order logic with two free variables. We then proceeded to definability
and separation theorems for the framework of two-pointed data trees and path expressions.

These model-theoretical results are summarized in the following table:

225

226 CONCLUSIONS AND FUTURE WORK

Node expressions Path expressions

Downward Vertical Downward Vertical

Bisimulation notion [45, §3.1.2] [45, §3.2.4]
§1.4.1

Thm. 56
§1.4.2

Thm. 69

Characterization [45, §4.1] Fails [45, §4.2]
§1.4.1

Thm. 63
Fails

Definition of
saturation

§1.3.1 §1.3.1 §1.5.1 §1.5.1

Definition of
quasi-ultraproduct

§1.3.2 §1.3.2 §1.5.2 §1.5.2

Definability
§1.3.3

Thms. 25,26,27
§1.3.3

Thms. 30,31,32
§1.5.3

Thms. 80,81,82
§1.5.3

Separation
§1.3.4

Thms. 37,38
§1.3.4

Thms. 39,40
§1.5.3

Thms. 83,84
§1.5.3

In Chapter 2 we found (sound and complete) equational axiomatizations for XPath=(↓)
and for its data-inequality-free fragment XPath=(↓)−. In order to do this, we devised nor-
mal form theorems stating that consistent node or path expressions are provably equivalent
(in our axiomatic systems) to disjunction or union of expressions in a normal form. Then
we gave a method for constructing, for every consistent node expression, a finite data
tree where it is satisfied at the root. Moreover, this proof-theoretical construction already
showed the (unsurprising) fact that there is a primitive recursive function f such that if a
formula of size n from any of these logics is satisfiable over a class of finite/arbitrary data
trees/graphs, then it is satisfiable in a data tree of size bounded by f(n).

In Chapter 3 we began by modifying XPath to fit into an edge-labeled framework, and
we showed that the notion of XPath=(↓)-bisimulation was easily adapted to this context
with the XPath=(↓a)-bisimulation. More importantly, we saw that the expansion from
the universe of data trees into that of data graphs did not require a modification of the
bisimulation clauses.

After analyzing the complexity of deciding bisimilarity in different conditions, we
saw that while computing (bi)simulations on finite data graphs is generally PSpace-
complete, tractability can be regained by either restricting the topology of the graph
or by relaxing the conditions for bisimulation. Furthermore, several upper bounds con-
tinue to hold in XPath=(↑a↓a), where navigational reverses are added to the logic (the
only case left open is for DAGs). The following table summarizes our results:

Model Problem
Logic

XPath=(↓a) XPath=(↑a↓a)

Graph
(bi)simulation PSpace-c PSpace-c
p-(bi)simulation Co-NP Co-NP
c-(bi)simulation PTime-c PTime

DAG (bi)simulation Co-NP-c ?
Tree (bi)simulation PTime PTime

227

In Chapter 4 we have shown connections between counter systems and data logics on
ranked data trees. In particular, this has yielded decision procedures for data logics and a
new model of branching computation of VASS.

We have proved that the satisfiability problem for LRVD on k-ranked data trees is
reducible, in exponential space, to the control-state reachability problem for VASSk, yield-
ing a decision procedure. We expanded this logic with positive instances of the oper-
ator AG≈v(ϕ), and showed that the satisfiability problem for this new logic is equiva-
lent to the control-state reachability for VASS. We also introduced MVASS and proved
that the bottom-up coverability (and control-state reachability) problem for MVASS is in
3ExpTime. Finally, we showed that the satisfiability for LRV on k-ranked data trees can
be reduced to the control-state reachability for MVASSk, yielding a decision procedure for
this full logic.

Future work

Although so far we have mostly focused our research on the theoretical aspects of bisimu-
lation, we also want to apply our results and insights into actual optimization of database
query languages. Since bisimulations coincide with logical indistinguishability over finite
models, finding a maximal autobisimulation can be used as a tool to avoid unnecessary
computations when calculating the answer to a query, although there are technical aspects
that mean that over data-aware logics this idea is not as easily implemented as it is in the
data-oblivious case. There are many interesting problems that would be part of this area
of study, such as the trade-off between the time consumed in finding the autobisimulation
and the expected time saved via the subsequent speed-up to the queries, the available
strategies for an incremental construction of a maximal autobisimulation, the pitfalls and
advantages of calculating autobisimulations for dynamic databases, et cetera. Beyond us-
ing different benchmarks to make various analyses of performance, and fine-tuning our
algorithms depending on the target framework, we can also vary our models (data trees,
data graphs, and other unexplored possibilities) and the syntactical fragments of our logics
(some syntactical restrictions may encompass most of the queries that are actually used in
databases, and at the same time they may have bisimilarity problems of greatly reduced
complexity). The possibilities of this avenue of research are manifold, and we look forward
to working on it.

Regarding research of a more theoretical nature, we would like to study the model
theory and proof theory of different fragments of XPath=, or even of LRV, over data trees
or over other models such as data graphs. As we did in Chapter 1, this may include
the development of bisimulation notions that coincide with logical indistinguishability, the
statement of van Benthem-style characterizations theorems (if possible), and the proof of
definability and separation theorems; all this will probably require theoretical scaffolding of
independent interest, such as the adequate design of normal forms, saturation and quasi-
ultraproduct notions, et cetera. While the proofs of Chapter 2 were laborious, we may
obtain new axiomatizations following the ideas that were presented there; alternatively,

228 CONCLUSIONS AND FUTURE WORK

we may start working with other types of axiomatizations, such as sequent calculus in the
vein of [10], where finding a complete axiomatization gives rise to low-complexity decision
procedures for the satisfiability problem. While for many of these logics tight bounds for the
satisfiability problem are already known [46, 47, 43, 50, 65], working with axiomatizations
provides alternative demonstrations that are more pliable to extensions and modifications,
as long as the sets of axioms are modular enough. We are also interested in the possible
application of axiomatizations as a tool for query optimization. This study would involve
the search for rewriting strategies that are effective in practical cases in transforming queries
into equivalent but less computationally intensive forms.

After developing the proper notions of bisimulation for various fragments of XPath=

and LRV, we want to delve in the analysis of computational aspects such as the complexity
of the bisimilarity problem, in the vein of what we did in Chapter 3. Once again, we could
modify different parameters to observe what are the corresponding changes in complexity;
this may involve finding particular data structures with properties that behave well with
respect to our definition of bisimulation, or finding adequate notions of local bisimulation
depending on the fragment in question. This area of research ties in naturally with our
previously stated goal of using bisimulations as a tool for optimizing database querying.

We also intend to deepen our study into the connection between logics and branching
counter systems. While in Chapter 4 the focus has been put on ranked data trees, we
also envisage working on unranked trees in the future. In particular, we remark that while
LRV naturally functions over unranked trees, there are no well-known models of branching
counter systems with unbounded branching. This may lead to new natural models featuring
some sort of unbounded parallel computations with good computational properties.

We believe that SATk-LRV(AG+
≈) is equivalent to the control-state reachability problem

for MVASSk, but we did not prove it. Additionally, we want to determine the precise
complexity of CSReach(MVASSk), which lies between 2ExpTime and 3ExpTime. We
intend to answer both questions in future works.

We are also interested in considering other modalities in our logics, with branching (and
more XPath=-like) tests such as EXiv ?EFu and EFu ≈ EFv, or tests including past such
as u ≈ EF−1v and EF−1u ≈ EFv.

Resúmenes en español

Introducción y preliminares

¿Qué es una lógica? De cierta manera, una lógica es una forma de razonar sobre un cierto
dominio de discurso, es un lenguaje de śımbolos y reglas que nos permite hablar acerca
de verdad y consecuencia, acerca de lo que puede ser y lo que debe ser cuando uno parte
de ciertas premisas. Más formalmente, podemos pensar que una lógica está compuesta de
dos partes interconectadas: la sintáctica y la semántica. Básicamente hablando, la parte
sintáctica establece un conjunto de śımbolos utilizables y un conjunto de fórmulas constru-
idas con esos śımbolos, y puede incluir reglas de deducción que conectan a las fórmulas
y dictan qué es consecuencia de qué. Pero, por śı solos, estos śımbolos y fórmulas care-
cen de significado expĺıcito: este es dado por la semántica de la lógica, la interpretación
de sus fórmulas dentro de cierto marco de referencia. Dada una interpretación para los
śımbolos y fórmulas de la lógica, una fórmula adquiere un significado, volviéndose una
declaración acerca de un objeto o modelo particular, y como tal puede resultar verdadera
o falsa. Ahora bien, hay diversas maneras de juzgar qué tan adecuada es una lógica. Uno
podŕıa, por ejemplo, tratar de medir su expresividad, el grado en el cual podemos expresar
diversas propiedades (que podemos definir en términos informales o meta-lógicos) usando
únicamente fórmulas de nuestra lógica. Aunque mayor expresividad seŕıa, manteniendo
todo lo demás igual, algo mejor, usualmente tiene un costo asociado; en lógicas más ex-
presivas puede ser más dif́ıcil determinar algunas caracteŕısticas de fórmulas, como ser si
dos fórmulas son semánticamente equivalentes, si una fórmula es verdadera en un módelo
particular, si una fórmula puede ser satisfecha en algún modelo, si una fórmula puede ser
deducida a partir de cierto conjunto de axiomas, et cetera. Efectivamente, otras dimen-
siones sobre las cuales se puede juzgar una lógica son aquellas relacionadas con la decibilidad
y complejidad algoŕıtmica de tales problemas: ¿son siquiera solubles por medios efectivos?
de serlo, ¿qué tan trabajoso es para un algoritmo resolverlos? Además, hacer a una lógica
más expresiva puede tener otros costos asociados, como ser el sacrificio de legibilidad o de
concisión notacional. Este es el tipo de concesiones y balances que explican la abundancia
existente de lógicas, y justifican entonces por qué podŕıamos usar una lógica a pesar que
existan otras más expresivas. Este tipo de asuntos serán visibles cuando analicemos las
lógicas principales de esta tesis: diversos fragmentos de XPath= y otras lógicas con datos.

Un lenguaje de consulta de bases de datos es un lenguaje computacional que es us-
ado para responder preguntas acerca de una base de datos, como ser si una entrada tiene

229

230 RESÚMENES EN ESPAÑOL

una propiedad particular. Los lenguajes de consulta pueden ser estudiados formalmente
como lógicas, haciendo abstracciones matemáticas adecuadas de las estructuras de datos
que son usadas e identificando a las consultas con sus correspondientes fórmulas. Hecho
esto, obtenemos una equivalencia entre las respuestas a las consultas en la base de datos
y la semántica de su traducción a fórmulas de la lógica (sobre los modelos correspondi-
entes a esas bases de datos). XPath (XML Path Language) es un lenguaje de consulta
diseñado para trabajar sobre documentos XML, y Data XPath, aqúı llamado XPath=, es
la lógica correspondiente diseñada para trabajar sobre árboles con datos (data trees), una
abstracción de los documentos XML que consiste de un árbol con ráız donde cada nodo
posee una única etiqueta (label) y un único valor de dato (data value). XPath= es cercano
en varios aspectos a la lógica modal básica (BML; basic modal logic): tiene modalidades de
navegación (como ser ↑ o ↓) y es local (las fórmulas son analizadas en nodos particulares de
los árboles, y, dependiendo del fragmento de la lógica, la profundidad hasta la cual pueden
‘ver’ está acotada por el tamaño de la fórmula). XPath= tiene dos tipos de fórmulas:
expresiones de nodo, las cuales, como las fórmulas de BML, son evaluadas en nodos, y
expresiones de camino, las cuales son analizadas en pares de nodos. A diferencia de BML,
donde los nodos ni siquiera tienen data values, XPath= es capaz de hacer comparaciones
de datos entre nodos, esto es, puede verificar si dos nodos tienen el mismo valor de dato
o no, pero no puede consultar el valor concreto de un nodo. Además, como veremos, esta
diferencia en capacidades es fundamental, y BML no puede expresar apropiadamente el
concepto de comparación de datos aún si sus nodos son enriquecidos con valores de dato.
Mientras que la teoŕıa de BML está bien desarrollada, este no es el caso para XPath=. En
esta tesis avanzamos en los siguientes aspectos teóricos de XPath=:

Teoŕıa de modelos. Estudiamos problemas como definibilidad, que pregunta si una clase
de modelos puede ser caracterizada por fórmulas de XPath=; y separación, que pregunta si
dos clases pueden ser separadas por fórmulas. Nuestro trabajo en definibilidad y separación
para XPath= está inspirado en los correspondientes resultados para lógica modal básica;
para poder ajustar las demostraciones a nuestro marco, desarrollamos nociones apropiadas
de saturación y ultraproducto, y demostramos varios resultados técnicos antes de llegar a
los teoremas buscados. También estudiamos problemas relacionados con bisimulación, un
concepto central que aproxima equivalencia lógica mediante una noción más estructural.
Creamos nociones adecuadas de bisimulación para expresiones de camino, y obtuvimos
varios resultados clave para este marco. También observamos que diversos resultados de
XPath= sobre árboles con datos pueden ser extendidos al contexto más amplio de grafos
con datos.

Teoŕıa de prueba. Obtuvimos axiomatizaciones correctas y completas para dos frag-
mentos de XPath=, esto es, axiomas que solo permiten probar equivalencias universalmente
verdaderas, y tales que todas las equivalencias universalmente verdaderas sobre árboles con
datos pueden ser probadas a partir de esos axiomas. Al hacer esto, extendimos un trabajo
previo hecho en el caso más simple de XPath sin comparación de datos. Demostramos la

231

completitud de nuestras axiomatizaciones a través de teoremas de forma normal, y haciendo
las construcciones algo intrincadas que prueban que todas las expresiones consistentes de
nodo que están en forma normal son satisfacibles.

Aspectos computacionales. Expandimos nuestro estudio desde el universo de árboles
con datos al caso más general de grafos con datos, los cuales son ampliamente utilizados
como una abstracción para bases de datos en forma de grafos. En esta área, extendimos
resultados de XPath= que originalmente se basaban en árboles con datos, y estudiamos
los problemas de similaridad y bisimilaridad entre grafos con datos desde una perspectiva
computacional. Clasificamos a estos problemas de forma ajustada en varias clases de
complejidad, dependiendo de la noción de (bi)simulación elegida y de las restricciones que
aplicamos a la clase de modelos.

Adicionalmente, continuamos nuestro estudio de lógicas para razonar sobre árboles
con datos, expandiéndonos hacia las lógicas de valores repetidos (LRV; logics of repeating
values) sobre árboles con datos múltiples. Comenzamos generalizando un trabajo previo
hecho sobre palabras con datos múltiples, probando la inter-reducibilidad entre el problema
de satisfabilidad de LRV disjunto sobre árboles de rango finito y el problema de cubrim-
iento para VASS (branching vector addition systems with states). Luego presentamos una
extensión de BVASS llamada MVASS (merging VASS), y demostramos que el problema
de satisfabilidad de LRV sobre árboles de rango finito se puede reducir al problema de
control-state reachability para MVASS.

Definibilidad y bisimulación binaria

En este caṕıtulo nos enfocamos en estudiar la teoŕıa de modelos y el poder expresivo
de XPath=(↓) y XPath=(↑↓), tanto para expresiones de nodo como para expresiones de
camino. Nuestro objetivo principal es dar teoremas de definibilidad para estas lógicas: por
un lado, condiciones necesarias y suficientes bajo las cuales podemos asegurar qué clases
de pointed data trees pueden ser definidas mediante el uso de una única expresión de nodo
o un conjunto de ellas; por otro lado, condiciones necesarias y suficientes bajo las cuales
clases de two-pointed data trees resultan definibles por una única expresión de camino
o un conjunto de ellas. Como consecuencia de estos resultados, obtenemos teoremas de
separación, los cuales indican condiciones necesarias y suficientes para que dos clases de
pointed (o two-pointed) data trees sean separables por una tercera clase que a su vez es
definible por una única expresión de nodo (respectivamente, de camino) o un conjunto de
ellas.

Aunque nuestra investigación en XPath= toma como motivación la relevancia actual
de documentos XML (los cuales por supuesto son finitos) y las lógicas para razonar sobre
ellos, no nos restringimos al caso finito. Efectivamente, un conjunto infinito de expresiones
de nodo o camino puede forzar a todos sus modelos a ser infinitos. Por lo tanto, ya que
buscamos trabajar con conjuntos arbitrarios de expresiones de nodo o camino, debemos
considerar árboles de tamaño arbitrario (i.e. finito o infinito).

232 RESÚMENES EN ESPAÑOL

En el contexto de BML, los teoremas de definibilidad usan dos herramientas básicas:
ultraproductos y bisimulaciones. Como un primer paso para nuestra adaptación de es-
tos teoremas a XPath=, necesitamos modificar el concepto de ultraproducto para que su
aplicación permanezca en el universo de data trees. Y aunque la noción de bisimulación
ya fue desarrollada y estudiada para el caso de pointed data trees, necesitamos desarrollar
nociones apropiadas de bisimulación binaria para el caso de two-pointed data trees y expre-
siones de camino de XPath=(↓) y XPath=(↑↓), que capturen la noción de indistinguibilidad
lógica en los fragmentos respectivos y sobre árboles de ramificación finita. Nuestras defini-
ciones de bisimulación binaria son más complejas que aquellas de bisimulación unaria, y
de hecho la noción de bisimulación binaria subsume a aquella de bisimulación unaria.

Para este marco binario, también demostramos un teorema de caracterización al estilo
van Benthem que es análogo al de bisimulación unaria, mostrando que una fórmula de
primer orden con dos variables libres es expresable en XPath=(↓) si y solo si es invariante
por bisimulaciones binarias y representa una ‘forward property’. Aśı como en el caso
unario, la caracterización falla para XPath=(↑↓).

Los resultados de este caṕıtulo pueden encontrarse publicados en [2] y, más completa-
mente, en [5].

Axiomatizaciones

En este caṕıtulo desarrollamos la teoŕıa de prueba de XPath=(↓), diseñando un sistema
axiomático ecuacional que solo prueba verdades semánticas de XPath=(↓), y tal que todas
esas verdades de XPath=(↓) pueden ser probadas con el sistema. Esto es, obtenemos una
axiomatización correcta y completa de XPath=(↓). El estudio de axiomatizaciones com-
pletas nos puede proporcionar un método alternativo para resolver el problema de validez,
el cual es indecidible para la lógica entera Core-Data-XPath [54], pero es decidible para
algunos fragmentos, como ser cuando el único eje presente en el lenguaje es el de ‘hijo’ [42].
Adicionalmente, obtener una axiomatización completa tiene aplicaciones en la optimización
de consultas a través de reescritura de queries. La idea principal es mirar a los axiomas
de equivalencia (que son de la forma ϕ ≡ ψ) como reglas de reescritura de queries; en este
contexto, la completitud del sistema axiomático significa que una equivalencia semántica
entre dos expresiones de nodo o camino debe tener una correspondiente cadena de reglas
de reescritura que permite transformar a la primera expresión en la segunda. Por lo tanto,
obtener una axiomatización de XPath=(↓), junto con todas las pruebas involucradas en
la demostración de su completitud, tiene potencial de utilización como un primer paso
para encontrar estrategias efectivas para reescribir queries de XPath a formas que sean
equivalentes pero a su vez menos complejas.

Para demostrar correctitud y completitud para axiomatizaciones al estilo Hilbert, uno
quiere ver que una fórmula puede ser probada en el sistema axiomático si y solo si es
válida (eso es, resulta satisfecha en todo modelo posible). Más relevante para el marco que
elegimos para este caṕıtulo, cuando uno usa las reglas de inferencia de la lógica ecuacional
uno quiere ver que una equivalencia entre dos fórmulas puede ser probada (notado ` ϕ ≡ ψ)

233

si y solo si el valor de verdad de ambas fórmulas coincide sobre todos los modelos (notado |=
ϕ ≡ ψ). Por la (finite) tree model property de BML, la validez de una fórmula con respecto
a la clase de todos los modelos de Kripke es equivalente a la validez sobre la clase de modelos
de Kripke con estructura de árbol (finito). Como existen traducciones preservadoras de
verdad desde y hacia la lógica ciega a los valores Core-XPath, no es sorprendente que existan
axiomatizaciones del fragmento de expresiones de nodo de Core-XPath con ‘hijo’ como el
único operador de accesibilidad. Es más, también existen axiomatizaciones (ecuacionales)
para todos los fragmentos de Core-XPath con un único eje (aquellos donde la única relación
de accesibilidad es ‘hijo’, ‘descendiente’, ‘hermano’, o etcetera), y también para todo el
lenguaje Core-XPath entero [102].

Para el caso de XPath=, que puede expresar comparación de datos, el parecido con
lenguajes modales es ahora más distante, ya que, como indicamos brevemente en §I.1.2,
los modelos de XPath= no pueden ser representados por modelos de Kripke. Efectiva-
mente, encontrar una axiomatización en este caso se vuelve más complejo que para el caso
puramente de navegación. Nuestro procedimiento involucra el diseño de un teorema de
forma normal que muestra que dentro de nuestro sistema axiomático ecuacional todas las
expresiones de nodo (o camino) consistentes se pueden probar equivalentes a la disyunción
(unión) de expresiones de nodo (camino) en forma normal. Después damos un método
para construir, para toda expresión de nodo consistente, un árbol finito con datos donde la
expresión se satisface en la ráız. La construcción de este árbol es bastante intrincada, aśı
que comenzamos dando una axiomatización para un caso más simple, el de un fragmento
sintáctico de XPath=(↓) al cual llamamos XPath=(↓)−.

Los resultados de este caṕıtulo pueden encontrarse publicados en [3].

Bisimulaciones en grafos con datos

En este caṕıtulo, nos trasladamos desde el dominio de data trees potencialmente infinitos
hacia el estudio de bisimulaciones en el dominio de finite data graphs. Nuestro foco prin-
cipal es el de calcular la complejidad algoŕıtmica de encontrar bisimilaridades, de modo
que nuestra restricción a estructuras finitas es algo natural. Respecto a la expansión ha-
cia grafos, está parcialmente motivada por modelos de datos que se han vuelto cada vez
más importantes con el crecimiento continuo de la Web y de aplicaciones relacionadas con
Internet. Es cierto que, por un lado, la información accesible en la Web usualmente es
guardada en estructuras jerárquicas, como ser el formato XML, que pueden ser modeladas
como bases de datos estructuradas con árboles. Pero por otro lado, vastas cantidades de
información están asociadas a nuevas aplicaciones cuyo modelo de datos subyacente está
descrito por bases de datos estructuradas con grafos (finitos), como ser en los casos de redes
sociales, la Web Semántica, sistemas biológicos, tareas de análisis de redes, o aplicaciones
de detección de cŕımenes.

Las bases de datos semiestructuradas son usualmente vistas como árboles o grafos con
etiquetas en las aristas, y los nodos pueden ser vistos como ‘entidades’, conteniendo los
datos (por ejemplo, el nombre y dirección en una red social), mientras que las aristas

234 RESÚMENES EN ESPAÑOL

representan ‘relaciones’ entre estas entidades (como ser ‘befriends’ o ‘likes’). Muchas de
las aplicaciones que hacen uso de este modelo de datos tienen dos caracteŕısticas en común:
por un lado, el modelo de datos subyacente puede ser descrito por un grafo o un árbol, y,
por otro lado, al consultar tales estructuras la topoloǵıa del grafo es tan importante como
los propios datos.

Cuando L es la lógica modal basica, la noción de indistinguibilidad es capturada por la
relación de bisimulación [104], y las clases de equivalencia correspondientes a esta relación
pueden ser computadas de forma eficiente [8]. Consultar bases de datos sobre grafos, en
general, requiere la habilidad de testear propiedades relativas a la topoloǵıa. Un lenguaje de
consulta básico que puede testear este tipo de propiedades es RPQ (Regular Path Query),
el cual selecciona nodos conectados por un camino que es descrito por un lenguaje regular
sobre el alfabeto de las etiquetas [26]. Extensiones de este lenguaje de consultas básico,
como ser Propositional Dynamic Logic, tienen una noción de bisimulación similar a la de la
lógica modal básica y están por lo tanto sujetas a una computación eficiente de la relación
de indistinguibilidad.

Sin embargo, en varios escenarios, estos lenguajes de consulta se quedan cortos en poder
expresivo, ya que los datos contenidos en sus nodos desaparecen en sus representaciones
abstractas. Una forma estándar de añadir datos es a través del uso de una lógica como
XPath. XPath fue concebido originalmente para seleccionar nodos de documentos XML
(que esencialmente son árboles), pero su simplicidad y comportamiento modal se adaptan
perfectamente a grafos con datos, y efectivamente ya ha sido estudiado [78] y usado [22]
en este escenario.

En este caṕıtulo expandemos nuestro foco desde el universo de árboles con datos al uni-
verso de grafos con datos. También hacemos una transición desde nuestra lógica XPath=(↓)
con etiquetas en los nodos a la lógica XPath=(↓a) con etiquetas en las aristas, pero desta-
camos que se puede traducir entre ambos formalismos, y por lo tanto la elección de eti-
quetas en los nodos o en las aristas no es esencial. Mostramos que resultados previos para
XPath=(↓) sobre árboles con datos y etiquetas en los nodos se extienden a XPath=(↓a) so-
bre grafos con datos y etiquetas en las aristas. Estudiamos la complejidad computacional de
la noción de bisimulación de XPath= sobre bases de datos (finitas) semiestructuradas; a lo
largo de este caṕıtulo, nos restringimos al dominio de grafos finitos con datos. Para que este
estudio sea completo, variamos, por un lado, los tipos de estructuras finitas que analizamos:
grafo, árbol, o DAG (directed acyclic graph). Por otro lado, estudiamos dos modalidades
diferentes que puede tener la lógica, enfocándonos en el fragmento XPath=(↓a) y luego
expandiendo nuestros resultados a XPath=(↑a↓a), que añade la posibilidad de realizar
navegación inversa. Finalmente, también consideramos algunas restricciones sintácticas
sobre las fórmulas, que resultan en mejores resultados computacionales.

Los resultados de este caṕıtulo pueden encontrarse publicados en [1].

235

Lógicas de valores repetidos sobre árboles con datos

En este caṕıtulo trabajamos con una definición extendida de data trees, donde permiti-
mos que cada nodo lleve no solo un único valor de datos, sino una colección finita de
ellos (ordenada de cierta manera). Esta estructura de (multi)data trees ha sido consider-
ada en el ámbito de datos semiestructurados como otra abstracción de documentos XML,
pero también de automatas temporizados, para verificación de programas, y en general
en sistemas para manipular valores de datos. Encontrar lógicas decidibles o modelos de
autómatas sobre data trees es un objetivo importante a la hora de estudiar sistemas enfo-
cados en datos.

Hay una gran abundancia de formalismos de especificación sobre estas estructuras (ya
sea data trees o su versión de ‘palabras’, data words), con oŕıgenes en automatas [88, 99],
lógica de primer orden [17, 65, 48, 19], XPath [66, 50, 44, 43, 47], o lógicas temporales [38,
79, 70, 46, 36, 67]. En su mayor generalidad, estos formalismos suelen llevar a problemas
indecidibles, y un tópico de investigación muy conocido es aquel que busca un buen balance
entre expresividad y decibilidad.

Resultados llamativos y sorprendentes han sido exhibidos sobre la relación entre lógicas
para data trees y counter automata [65, 50, 66], indicando que las lógicas para data trees
no son solo interesantes por śı mismas, sino también por sus profundas conexiones con
sistemas con contadores.

En este caṕıtulo estudiamos el mecanismo básico de “repetición de datos” que es común
a muchas lógicas sobre data trees. Para esto, investigamos una lógica básica que puede
navegar la estructura del árbol a través del uso de modalidades como las de CTL (com-
putation tree logic), y que además puede hacer “tests de datos” al preguntar si un valor
de dato es repetido en un subárbol. Más concretamente, los data tests son fórmulas del
tipo u ≈ EFv, lo cual indica que el valor almacenado en el atributo u del nodo actual es
igual al valor almacenado en el atributo v de algún descendiente. Este tipo de lógica de
valores que se repiten, o LRV (logic of repeating values), ha sido el centro de una ĺınea de
investigación sobre data words estudiada en [35, 36], mostrando ajustadas corresponden-
cias entre los problemas de satisfacibilidad y los de accesibilidad (reachability) para Vector
Addition Systems. El caṕıtulo actual extiende esta investigación, exhibiendo conexiones
entre el problema de satisfabilidad de LRV sobre data trees y el problema de coverability
para branching counter systems. Con el propósito de obtener conexiones con branching
Vector Addition Systems with States (branching VASS) [105], también introducimos una
restricción en la cual los data tests están limitados a usar una sola variable, esto es, son de
la forma v ≈ EFv. Denotamos esta restricción con LRVD. Esta relación simbiótica entre
sistemas con contadores y lógicas nos conduce a considerar algunas extensiones naturales
de tanto la lógica como de los branching counter systems. Particularmente, introducimos
un nuevo modelo de branching counter system que es de interés independiente, y tiene
problemas decidibles de coverability y de control-state reachability.

Los resultados de este caṕıtulo pueden encontrarse publicados en [4].

Bibliography

Naresh had once told us that, to
men like himself, physical books
were like trophies of slain animals
and coats of arms rolled into one.

Crystal Society
Max Harms

We report a method for estimating
what percentage of people who
cited a paper had actually read it
[...] Our estimate is that only about
20% of citers read the original.

Read Before You Cite![100]
Simkin and Roychowdhury

[1] S. Abriola, P. Barceló, D. Figueira, and S. Figueira. Bisimulations on data graphs. In Principles
of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference,
KR, pages 309–318, 2016.

[2] S. Abriola, M. E. Descotte, and S. Figueira. Definability for downward and vertical XPath on data
trees. In 21th Workshop on Logic, Language, Information and Computation, volume 6642 of Lecture
Notes in Computer Science, pages 20–34, 2014.

[3] S. Abriola, M. Descotte, R. Fervari, and S. Figueira. Axiomatizations for downward XPath on Data
Trees. Submitted.

[4] S. Abriola, D. Figueira, and S. Figueira. Logics of repeating values on data trees and branching
counter systems. In FoSSaCS 2017: 20th International Conference on Foundations of Software
Science and Computation Structures, 2017.

[5] S. Abriola, M. E. Descotte, and S. Figueira. Model theory of XPath on data trees. Part II: Binary
bisimulation and definability. Information and Computation. In press, http://www.glyc.dc.uba.
ar/santiago/papers/xpath-part2.pdf.

[6] C. Areces, F. Carreiro, and S. Figueira. Characterization, definability and separation via saturated
models. Theoretical Computer Science, 537:72–86, 2014.

[7] C. Areces, A. Koller, and K. Striegnitz. Referring expressions as formulas of description logic. In
Proc. of the 5th INLG, Salt Fork, OH, USA, 2008.

237

http://www.glyc.dc.uba.ar/santiago/papers/xpath-part2.pdf
http://www.glyc.dc.uba.ar/santiago/papers/xpath-part2.pdf

238 BIBLIOGRAPHY

[8] C. Areces, S. Figueira, and D. Goŕın. Using logic in the generation of referring expressions. In Logical
Aspects of Computational Linguistics, pages 17–32. Springer, 2011.

[9] S. N. Artëmov and V. Krupski. Data storage interpretation of labeled modal logic. Annals of Pure
and Applied Logic, 78(1-3):57–71, 1996.

[10] D. Baelde, S. Lunel, and S. Schmitz. A sequent calculus for a modal logic on finite data trees. In
25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 - September 1,
2016, Marseille, France, pages 32:1–32:16, 2016.

[11] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

[12] J. Balcázar, J. Gabarro, and M. Santha. Deciding bisimilarity is P-complete. Formal aspects of
computing, 4(1):638–648, 1992.

[13] M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments. Theoretical
Computer Science, 336(1):3–31, 2005.

[14] P. Berkhin. A survey of clustering data mining techniques. In Grouping multidimensional data,
pages 25–71. Springer, 2006.

[15] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2001.

[16] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001.

[17] M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees and
XML reasoning. Journal of the ACM, 56(3):1–48, 2009.

[18] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data
words. ACM Trans. Comput. Log., 2010.

[19] B. Bollig, A. Cyriac, P. Gastin, and K. N. Kumar. Model checking languages of data words. In
Foundations of Software Science and Computational Structures, pages 391–405. Springer, 2012.

[20] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of conjunctive regular
path queries with inverse. In KR, pages 176–185, 2000.

[21] L. Cardelli and G. Ghelli. TQL: a query language for semistructured data based on the ambient
logic. Mathematical Structures in Computer Science, 14(3):285–327, 2004.

[22] S. Cassidy. Generalizing XPath for directed graphs. In Extreme Markup Languages, 2003.

[23] C. Chang and H. Keisler. Model theory. Studies in logic and the foundations of mathematics.
North-Holland, 1990.

[24] J. Clark and S. DeRose. XML path language (XPath). Website, 1999. W3C Recommendation.
http://www.w3.org/TR/xpath.

[25] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2001.

[26] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language supporting recursion. In
ACM SIGMOD Record, volume 16, pages 323–330. ACM, 1987.

[27] R. Dale and E. Reiter. Computational interpretations of the Gricean maxims in the generation of
referring expressions. Cognitive Science, 19, 1995.

[28] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraint satisfaction, bounded treewidth, and finite-
variable logics. In CP, pages 310–326, 2002.

[29] A. Dawar and M. Otto. Modal characterisation theorems over special classes of frames. Annals of
Pure and Applied Logic, 161(1):1–42, 2009.

http://www.w3.org/TR/xpath

239

[30] M. de Rijke. Modal model theory. Technical Report CS-R9517, CWI, Amsterdam, 1995.

[31] M. de Rijke and H. Sturm. Global definability in basic modal logic. Essays on non-classical logic,
1:111–135, 2001.

[32] R. Dechter. From local to global consistency. Artif. Intell., 55(1):87–108, 1992.

[33] R. Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.

[34] S. Demri, D. D’Souza, and R. Gascon. Decidable temporal logic with repeating values. In Symposium
on Logical Foundations of Computer Science, volume 4514 of LNCS, pages 180–194. Springer, 2007.

[35] S. Demri, D. D’Souza, and R. Gascon. Temporal logics of repeating values. J. Log. Comput.,
22(5):1059–1096, 2012.

[36] S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter systems. In
LICS, pages 33–42. IEEE Press, 2013.

[37] S. Demri, M. Jurdziński, O. Lachish, and R. Lazić. The covering and boundedness problems for
branching vector addition systems. J. Comput. Syst. Sci., 79(1):23–38, 2013.

[38] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Trans. Comput.
Log., 10(3), 2009.

[39] A. Dovier, C. Piazza, and A. Policriti. An efficient algorithm for computing bisimulation equivalence.
Theor. Comput. Sci, 311:221–256, 2004.

[40] E. A. Emerson and J. Y. Halpern. sometimes and not never revisited: on branching versus linear
time temporal logic. Journal of the ACM (JACM), 33(1):151–178, 1986.

[41] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph compression. In SIGMOD, pages
157–168, 2012.

[42] D. Figueira. Decidability of downward XPath. ACM Transactions on Computational Logic, 13(4):34,
2012.

[43] D. Figueira. On XPath with transitive axes and data tests. In W. Fan, editor, Proceedings of
the 31st Annual ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’13), pages 249–260, New York, NY, USA, June 2013. ACM Press.

[44] D. Figueira, S. Figueira, and C. Areces. Basic model theory of XPath on data trees. In International
Conference on Database Theory, pages 50–60, 2014.

[45] D. Figueira, S. Figueira, and C. Areces. Model theory of XPath on data trees. Part I: Bisimulation
and characterization. Journal of Artificial Intelligence Research, 53:271–314, 2015.

[46] D. Figueira. Forward-XPath and extended register automata on data-trees. In ICDT. ACM, 2010.

[47] D. Figueira. Decidability of downward XPath. ACM Trans. Comput. Log., 13(4), 2012.

[48] D. Figueira and L. Libkin. Pattern logics and auxiliary relations. In LICS, pages 40:1–40:10, 2014.

[49] D. Figueira and L. Segoufin. Future-looking logics on data words and trees. In International Sym-
posium on Mathematical Foundations of Computer Science, pages 331–343. Springer, 2009.

[50] D. Figueira and L. Segoufin. Bottom-up automata on data trees and vertical XPath. In STACS,
volume 9 of LIPIcs, pages 93–104. LZI, 2011.

[51] S. Figueira and D. Goŕın. On the size of shortest modal descriptions. In Advances in Modal Logic,
volume 8, pages 114–132, 2010.

240 BIBLIOGRAPHY

[52] G. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, and S. Vansummeren.
Similarity and bisimilarity notions appropriate for characterizing indistinguishability in fragments of
the calculus of relations. Journal of Logic and Computation, 25(3):549–580, 2014. Published online.

[53] M. Forti and F. Honsell. Set theory with free construction principles. Annali Scuola Normale
Superiore, Pisa, X(3):493–522, 1983.

[54] F. Geerts and W. Fan. Satisfiability of XPath queries with sibling axes. In Database Programming
Languages, 10th International Symposium, DBPL 2005, Trondheim, Norway, August 28-29, 2005,
Revised Selected Papers, pages 122–137, 2005.

[55] L. Getoor and C. P. Diehl. Link mining: a survey. volume 7, pages 3–12. ACM, 2005.

[56] R. Givan, T. L. Dean, and M. Greig. Equivalence notions and model minimization in Markov decision
processes. Artif. Intell., 147(1-2):163–223, 2003.

[57] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. ACM Trans.
Database Syst., 30(2):444–491, 2005.

[58] A. Grinberg. Algoritmos incrementales de actualización para aproximaciones de bisimulación en
XPath con datos. MSc thesis, Universidad de Buenos Aires, Argentina, 2016.

[59] M. Gyssens, J. Paredaens, D. Van Gucht, and G. Fletcher. Structural characterizations of the
semantics of XPath as navigation tool on a document. In PODS, pages 318–327. ACM, 2006.

[60] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, Cambridge, MA, 2000.

[61] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on finite and infinite
graphs. In Proc. of 36th Annual Symposium on Foundations of Computer Science, pages 453–462.
IEEE Computer Society Press, 1995.

[62] J. Hopcroft. An nlog(n) algorithm for minimizing states in a finite automaton. In Z. Kohave, editor,
Theory of Machines and Computations. Academic Press, 1971.

[63] E. V. Huntington. Boolean algebra. A correction to: New sets of independent postulates for the alge-
bra of logic, with special reference to Whitehead and Russells Principia mathematica. Transactions
of the American Mathematical Society, 35(2):557–558, 1933.

[64] E. V. Huntington. New sets of independent postulates for the algebra of logic, with special reference
to Whitehead and Russells Principia Mathematica. Transactions of the American Mathematical
Society, 35(1):274–304, 1933.

[65] F. Jacquemard, L. Segoufin, and J. Dimino. FO2(<,+1,∼) on data trees, data tree automata and
branching vector addition systems. arXiv preprint arXiv:1601.01579, 2016.

[66] M. Jurdziński and R. Lazić. Alternating automata on data trees and XPath satisfiability. ACM
Trans. Comput. Log., 12(3):19, 2011.

[67] A. Kara, T. Schwentick, and T. Zeume. Temporal logics on words with multiple data values. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, 2010.

[68] P. G. Kolaitis and M. Y. Vardi. A game-theoretic approach to constraint satisfaction. In AAAI,
pages 175–181, 2000.

[69] E. Krahmer, S. van Erk, and A. Verleg. Graph-based generation of referring expressions. Computa-
tional Linguistics, 29(1), 2003.

[70] O. Kupferman and M. Vardi. Memoryful Branching-Time Logic. In LICS’06, pages 265–274. IEEE,
2006.

241

[71] O. Kupferman and M. Y. Vardi. Verification of fair transition systems. Chicago J. Theor. Comput.
Sci., 1998, 1998.

[72] N. Kurtonina and M. de Rijke. Bisimulations for temporal logic. Journal of Logic, Language and
Information, 6:403–425, 1997.

[73] N. Kurtonina and M. de Rijke. Simulating without negation. Journal of Logic and Computation,
7:503–524, 1997.

[74] N. Kurtonina and M. de Rijke. Expressiveness of concept expressions in first-order description logics.
Artif. Intell., 107(2):303–333, 1999.

[75] R. E. Ladner. The computational complexity of provability in systems of modal propositional logic.
SIAM journal on computing, 6(3):467–480, 1977.

[76] R. Lazić and S. Schmitz. Nonelementary complexities for branching VASS, MELL, and extensions.
ACM Transactions on Computational Logic (TOCL), 16(3):20, 2015.

[77] L. Libkin and D. Vrgoč. Regular path queries on graphs with data. In International Conference on
Database Theory, pages 74–85, 2012.

[78] L. Libkin, W. Martens, and D. Vrgoč. Querying graph databases with XPath. In ICDT, pages
129–140. ACM, 2013.

[79] A. Lisitsa and I. Potapov. Temporal logic with predicate λ-abstraction. In TIME’05, pages 147–155.
IEEE, 2005.

[80] Y. Luo, G. H. L. Fletcher, J. Hidders, P. D. Bra, and Y. Wu. Regularities and dynamics in bisimu-
lation reductions of big graphs. In GRADES 2013, page 13, 2013.

[81] Y. Luo, G. H. L. Fletcher, J. Hidders, Y. Wu, and P. D. Bra. External memory k-bisimulation
reduction of big graphs. In 22nd ACM CIKM’13, pages 919–928, 2013.

[82] M. Marx and M. de Rijke. Semantic characterizations of navigational XPath. SIGMOD Record,
34(2):41–46, 2005.

[83] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with squaring
requires exponential space. In SWAT (FOCS), pages 125–129, 1972.

[84] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, 1980.

[85] R. Milner. An algebraic definition of simulation between programs. In Proceedings of the 2nd
International Joint Conference on Artificial Intelligence. London, UK, September 1971., pages 481–
489, 1971.

[86] R. Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University Press, 1999.

[87] T. Milo and D. Suciu. Index structures for path expressions. In ICDT, pages 277–295, 1999.

[88] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets.
ACM Trans. Comput. Log., 5(3):403–435, 2004.

[89] M. Otto. Elementary proof of the van Benthem-Rosen characterisation theorem. Technical Report
2342, Fachbereich Mathematik, Technische Universität Darmstadt, 2004.

[90] M. Otto. Bisimulation invariance and finite models. In Logic Colloquium’02, volume 27 of Lecture
Notes in Logic, pages 276–298, 2006.

[91] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM J. Comput., 16(6):973–989,
1987.

[92] D. Park. Concurrency and Automata on Infinite Sequences. In Theoret. Comput. Sci., volume 104
of LNCS, pages 167–183. Springer, 1981.

242 BIBLIOGRAPHY

[93] A. Pnueli. The temporal logic of programs. In Foundations of Computer Science, 1977., 18th Annual
Symposium on, pages 46–57. IEEE, 1977.

[94] C. Rackoff. The covering and boundedness problems for vector addition systems. Theoret. Comput.
Sci., 6(2):223–231, 1978.

[95] E. Rosen. Modal logic over finite structures. Journal of Logic, Language and Information, 6(4):427–
439, 1997.

[96] D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst.,
31(4):1–41, 2009.

[97] D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Transactions on Programming
Languages and Systems, 31(4), 2009.

[98] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities. J.
Comput. Syst. Sci., 4(2):177–192, 1970.

[99] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL, pages 41–57.
Springer, 2006.

[100] M. V. Simkin and V. P. Roychowdhury. Read before you cite! arXiv preprint cond-mat/0212043,
2002.

[101] B. ten Cate. The expressivity of XPath with transitive closure. In S. Vansummeren, editor, PODS,
pages 328–337. ACM, 2006.

[102] B. ten Cate, T. Litak, and M. Marx. Complete axiomatizations for XPath fragments. Journal of
Applied Logic, 8(2):153–172, 2010.

[103] B. ten Cate and M. Marx. Axiomatizing the logical core of XPath 2.0. Theory of Computing Systems,
44(4):561–589, 2009.

[104] J. van Benthem. Modal Correspondence Theory. PhD thesis, Universiteit van Amsterdam, 1976.

[105] K. N. Verma and J. Goubault-Larrecq. Karp-Miller trees for a branching extension of VASS. Discrete
Mathematics & Theoretical Computer Science, 7(1):217–230, 2005.

Index of notation

↔, bisimulation for BML, 18
→, simulation for BML, 19
XPath=(↓), downward XPath=, 26
XPath=(↑↓), vertical XPath=, 26
[[·]], semantics, 26
↔↓, bisimulation for XPath=(↓), 29
→↓, simulation for XPath=(↓), 30
↔↑↓, bisimulation for XPath=(↑↓), 31
≡↓, logical equivalence for XPath=(↓)

node expressions, 32
≡↑↓, logical equivalence for XPath=(↑↓)

node expressions, 32
V↓, one-way logical equivalence for

XPath=(↓), 32
XPath=(↓a), 32
XPath=(↓a), downward edge-labeled

XPath=, 32
↔↓` , bounded simulation for XPath=(↓),

48
↔↑↓r,s,k, bounded bisimulation for

XPath=(↑↓), 49
dd, downward depth, 50
≡↓` , bounded logical equivalence for

XPath=(↓), 50
vd, vertical depth, 50
nd, nesting depth, 50
T |u, downward subtree from u, 58
T |`u, bounded downward subtree from u,

73
XPath=(↓)−, inequality-free fragment of

XPath=(↓), 96
ConΣ, Σ-consistent node expressions, 98
↔↓a , bisimulation for XPath=(↓a), 160
→↓a , simulation for XPath=(↓a), 160
≡↓a , logical equivalence for XPath=(↓a),

161
V↓a , one-way logical equivalence for

XPath=(↓a), 161
XPathpaths

= (↓a), a simple fragment of
XPath=(↓a), 162

≡↓apaths, logical equivalence for XPathpaths

= (↓a),
162

V↓apaths, one-way logical equivalence for
XPathpaths

= (↓a), 163

↔↓af , f -XPath=(↓a)-bisimulation, 171

→↓af , f -XPath=(↓a)-simulation, 171
ml, maximum length, 172
LRV, logic of repeated values, 186
LRVD, restricted version of LRV, 187
;A, existence of derivation tree forA, 192
;+
A, existence of incrementing derivation

tree for A, 192
Reach(), reachability problem, 192
Reach+(), incrementing reachability

problem, 192
CSReach, control state reachability

problem, 192
BVAS, single state BVASS, 193
SATk, satisfiability on finite k-ranked

data trees, 198

243

Index

Σ-consistency, 98
XPathpaths

= (↓a), 162

basic modal logic, BML, 16
axiomatization, 22
box, 16
definability and separation, 21
diamond, 16
satisfiability, 21
semantics, 16
syntax, 16

bisimulation
binary for XPath=(↓), 70
binary for XPath=(↑↓), 79
for XPath=(↓a), 159
for XPath=(↑a↓a), 178
for XPath=(↓), 28
for XPath=(↑↓), 30

bounded bisimulation
binary for `-XPath=(↓), 72
for XPath=(↓),↔↓` , 48

for XPath=(↑↓),↔↑↓r,s,k, 49
for f -XPath=(↓a), 170

branching VASS, 187

characterization
Hennessy-Milner

binary XPath=(↓), 74
binary XPath=(↑↓), 80
BML, 19
unary XPath=, 33
unary XPath=(↓a), 161

van Benthem
binary XPath=(↓), 78

BML, 21
unary XPath=(↓), 34

configuration, 187

data tree, 25, 96
multidata tree, 186
pointed, 25
k-bounded, 60

two-pointed, 25
k-bounded, 88
n-two-pointed, 88
n,m, k-two-pointed, 91
forward, 89

weak, 57
decision problem

XPath=(↓a)-[Bi]similarity, 162
XPath=(↑a↓a)-[Bi]similarity, 178
f -XPath=(↓a)-[Bi]similarity, 172
f -XPath=(↑a↓a)-[Bi]similarity, 178
control-state reachability, 192

for initial sets, 201
incrementing reachability, 193
reachability, 190, 192
satisfiability, 14

XPath=(↓), 144
BML, 21
on finite k-ranked data trees, 198
propositional logic, 15

definable, 21
derivation tree, 187
diamond

XPath, 100
BML, 16

downward depth, dd, 49

245

246 INDEX

forward property, 77

Kripke model, 16

length of a formula, len, 67, 171
linear set, 186
logic of repeated values, LRV, 186
logical equivalence

for XPath=(↓a),≡↓a , 161
for XPath=(↓)

bounded, ≡↓` , 50
for XPath=(↓) node expressions, ≡↓,

31
for XPath=(↓) path expressions, ≡↓,

69
for XPath=(↑↓) node expressions,
≡↑↓, 31

for XPath=(↑↓) path expressions, ≡↑↓,
69

one-way for XPath=(↓a),V↓a , 161
one-way for XPath=(↓), V↓, 32

maximum length, ml, 171
merging-VASS, 188

nesting depth, nd, 50
node expression, 26
normal form, 52

simple, 67
syntactic, 100, 119

path expression, 26

quasi ultraproduct, 60, 88

satisfiability
=↓n,m-finitely satisfiable, 55
6=↓n,m-finitely satisfiable, 55
6=↓n,m-satisfiable, 54
6=↑↓n,m-satisfiable, 56
=↓n,m-satisfiable, 54
=↑↓n,m-satisfiable, 56

satisfiability problem, see decision prob-
lem

saturation
binary

for XPath=(↓), 83
for XPath=(↑↓), 85

unary
for XPath=(↓), 55
for XPath=(↑↓), 56

simulation
for XPath=(↓a), 160
for XPath=(↑a↓a), 178
for XPath=(↓), 30
for BML, 18

standard translation, 34

translation
between edge- and node-labeled data

graphs, 159
from XPath=(↑↓) to first order, 34
from BML to first order, 20

valuation, 14, 16
VASS

branching, 187
merging, 188

vertical depth, vd, 50

weak data tree, 57

XPath=(↓a), XPath=(↓) over edge-labeled
data graphs, 32

XPath=(↓)
bisimulation,↔↓, 28
node equivalence, 97
path equivalence, 97
semantics on data trees, 26
semantics on edge-labeled data

graphs, 32
syntax, 26

XPath=(↓)−, inequality-free fragment of
XPath=(↓), 96

XPath=(↑↓)
bisimulation,↔↑↓, 30
semantics on data trees, 26
syntax, 26

	Resumen
	Summary
	Introduction
	Context and preliminaries
	Logics
	XPath= basics
	Known model theory of XPath=

	Focus of study and contributions
	Bisimulations
	Expressive power
	Axiomatizations
	Relation between data logics and counter systems

	Organization

	A Model theory and proof theory
	Definability and binary bisimulation
	Introduction
	Related work
	Contributions
	Organization

	Preliminaries
	Bounded notions of bisimulation
	Bounded notions of equivalence
	Normal forms
	Ultraproducts

	Definability via node expressions
	Saturation
	Weak data trees and quasi-ultraproducts
	Definability
	Separation

	Binary bisimulations
	Downward
	Vertical

	Definability via path expressions
	Saturation
	Weak data trees and quasi-ultraproducts
	Definability and separation

	Axiomatizations
	Introduction
	Related work
	Contributions
	Organization

	Preliminaries
	Axiomatic System for XPath= ("3223379)-
	Axiomatization
	Normal forms
	Completeness for node and path expressions

	Axiomatic System for XPath= ("3223379)
	Axiomatization
	Normal forms
	Completeness for node and path expressions

	Bounded tree model property
	Technical material

	B Computational aspects
	Bisimulations on data graphs
	Introduction
	Related work
	Contributions
	Organization

	Bisimulations on data graphs
	Computing XPath= ("3223379 a)-bisimulations
	Upper bound
	Lower bound

	Restricting paths in bisimulations
	Bounded bisimulation and equivalence
	Computing f-XPath= ("3223379 a)-bisimulations

	Restricting the models
	Two-way XPath=

	LRV over data trees
	Introduction
	Related work
	Contributions
	Organization

	Preliminaries
	Logic of repeating values on data trees
	Models of branching counter systems
	Branching VASS
	Merging VASS
	Decision problems
	Decidability of Reach+(MVASS)

	Satisfiability of LRVD on data trees
	A simple logic: LRVD-1
	Adding Boolean and Until operators: LRVD1
	The general case: LRVDn
	Complexity

	Obtaining equivalence with VASSk
	From LRV to MVASSk

	Conclusions and future work
	Resúmenes en español
	Bibliography
	Index of notation
	Index

