
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Aspects of randomness
Tesis presentada para optar al t́ıtulo de

Doctor de la Universidad de Buenos Aires
en el área de Computación

Santiago Daniel Figueira

Directora de tesis: Verónica Becher

Codirector: André Nies

Lugar de trabajo: Departamento de Computación, FCEyN, UBA

Buenos Aires, 2006

A Coni

CONTENTS

Resumen . iii

Summary . v

Acknowledgements . vii

1. Introduction . 1
1.1 Algorithmic information theory . 5
1.2 Basic definitions . 7
1.3 Computability theory . 8
1.4 Program-size complexity . 11
1.5 Randomness . 15
1.6 K-triviality . 16

2. Absolutely normal numbers . 19
2.1 Introduction . 19
2.2 Definition of normality and absolute normality 20
2.3 Sierpinski’s result of 1916 . 22
2.4 Computing an absolutely normal number 23
2.5 About Sierpinski’s and other examples 30
2.6 Turing’s unpublished manuscript . 31
2.7 Turing’s first theorem . 32
2.8 Turing’s second theorem . 41
2.9 Applications . 44

3. Randomness and halting probabilities . 47
3.1 Introduction . 47
3.2 Uniform probability on (2<ω,�) and ΩU[X] 48
3.3 On the notion of universality . 50
3.4 Known positive instances of the Conjecture 52
3.5 Negative results about the Conjecture 55
3.6 Positive results about the Conjecture 62
3.7 The set {ΩU[X] : X ⊆ 2<ω} . 65
3.8 Conjecture for infinite computations 73

i

ii Contents

4. Infinite Computations . 77
4.1 Introduction . 77
4.2 Infinite computations on monotone machines 78
4.3 Program size complexities on monotone machines 80
4.4 Properties of K∞ . 82
4.5 K∞-triviality . 87
4.6 K∞-randomness . 91
4.7 Oscillations of C∞ . 92

5. Lowness properties and approximations of the jump 97
5.1 Introduction . 97
5.2 Strong jump-traceability . 99
5.3 Well-approximability of the jump . 105
5.4 Traceability and plain program-size complexity 108
5.5 Variations on K-triviality . 112

6. Open questions and future research . 119

Bibliography . 121

Index of notation . 127

Index . 129

ASPECTOS DE ALEATORIEDAD

Resumen. En esta tesis, investigamos algunos aspectos de aleatoriedad y trivialidad
definidos por la teoŕıa de largo de programa.

Primero abordamos la aleatoriedad y la absoluta normalidad de números reales.
Ambos conjuntos de reales tienen medida de Lebesgue 1 y son nociones que implican
varias propiedades de estocasticidad. A pesar de esto, no ha sido fácil dar ejemplos
concretos en estas clases. Probamos que existen números absolutamente normales
que son computables y damos dos algoritmos para construirlos. El primero está
basado en una reformulación computable de un resultado de Sierpinski de 1916.
El segundo es parte de nuestra reconstrucción de un manuscrito inédito de Turing
sobre números normales. En cuanto a ejemplos de aleatoriedad, generalizamos la
probabilidad de detención Ω de Chaitin y analizamos la probabilidad de que una
máquina universal se detenga y devuelva un resultado en un conjunto dado X.
Estudiamos la relación entre las propiedades de X provenientes de la teoŕıa de la
computabilidad y las propiedades de aleatoriedad de la probabilidad inducida.

El segundo aspecto de aleatoriedad que tratamos es el estudio de una variante
de la complejidad clásica de largo de programa que no involucra oráculos, y nos
preguntamos si esta noción conduce a una definición más estricta de aleatoriedad.
Definimos nuestra función de complejidad en base a máquinas de Turing monótonas
que realizan cómputos infinitos. Investigamos algunas propiedades de esta función
y consideramos las definiciones inducidas de aleatoriedad y trivialidad. Con esta
última noción caracterizamos a los reales computables.

El último aspecto se vincula con la anti-aleatoriedad y la posibilidad de caracteri-
zar a los reales llamadosK-triviales con nociones que no involucren directamente a la
complejidad de largo de programa libre de prefijos. Proponemos e investigamos dos
nociones de lowness que tienen sus ráıces puramente en la teoŕıa de la computabili-
dad, reforzando otras ya existentes en la literatura. Relacionamos la complejidad de
largo de programa plana C y libre de prefijos K con estas nociones, considerando
variaciones de K-trivialidad y C-trivialidad.

Concluimos con una lista de las principales preguntas que quedaron abiertas.

Palabras clave. Teoŕıa algoŕıtmica de la información, teoŕıa de la computabilidad,
complejidad de largo de programa, complejidad de Kolmogorov, números normales,
números absolutamente normales, aleatoriedad, número Omega de Chaitin, proba-
bilidad de detención, jerarqúıa aritmética, cómputos infinitos, máquina de Turing,
máquina monótona, K-trivialidad, noción de lowness (bajura), traceability (rastre-
abilidad).

iii

ASPECTS OF RANDOMNESS

Summary. In this thesis we investigate some aspects of randomness and triviality
defined by the theory of program-size.

We first deal with randomness and absolute normality of real numbers. Both sets
of reals have Lebesgue measure 1 and they are notions that imply several properties
of stochasticity. Despite that fact, it has not been easy to give concrete examples
in such classes. We prove that there are absolutely normal numbers which are
computable and we give two algorithms for constructing such numbers. The former
is a computable reformulation of a result of Sierpinski of 1916. The latter is part
of our reconstruction of an unpublished manuscript of Turing on normal numbers.
For examples of randomness, we generalize Chaitin’s halting probability Ω and we
analyze the probability that a universal machine halts and gives an output in a given
set X. We study the relationship between the computability theoretic properties of
X and the randomness properties of the induced probability.

The second aspect of randomness that we tackle is the study a variant of the clas-
sical definition of program-size complexity which does not involve oracles, and we ask
whether it leads to a stronger notion of randomness. We define our complexity func-
tion based on monotone Turing machines performing unending computations. We
investigate some properties of this function and we consider the induced definitions
of randomness and triviality. With this last notion we characterize the computable
reals.

The last aspect deals with anti-randomness and the possibility to characterize the
so calledK-trivial reals in terms of notions that do not directly involve the prefix-free
program-size complexity. We propose and investigate two computability theoretical
combinatorial lowness notions by strengthening other notions already existing in the
literature. We relate the plain C and the prefix-free program-size complexity K with
these notions by considering variations of K-triviality and C-triviality.

We conclude with a list of the main questions that remain open.

Key words. Algorithmic information theory, computability theory, program-size
complexity, Kolmogorov complexity, normal numbers, absolutely normal numbers,
randomness, Chaitin’s Omega number, halting probability, arithmetical hierarchy,
infinite computation, Turing machine, monotone machine, K-triviality, lowness no-
tion, traceability.

v

ACKNOWLEDGEMENTS

This thesis is the result of about four years of work whereby I have been accompanied
and supported by many people. I am very happy to express now my gratitude to
all of them.

I would like to express my deep and sincere thanks to my supervisor Verónica
Becher for her continuous support and friendship, for her enthusiasm in my work
and for the motivating and critical atmosphere during the many discussions we had.
I am also indebted to her for giving me the chance to spread my work and to meet
prominent researchers at several meetings.

The teaching and guidance of my co-supervisor André Nies was essential for my
learning. Furthermore, I want to thank him for his generosity, his deep explanations
and for being such a good friend of mine. I also want to express my gratitude to
André, Bakhadyr Khoussainov and the Marsden Fund of New Zealand for inviting
me to The University of Auckland from October 2004 to January 2005. The quantity
of knowledge I learnt in that travel was incomparable. During that trip, Rod Downey
invited me to Victoria University of Wellington. I am indebted to him for the
interesting discussions we had and for being such a kind host. I also want to thank
Cristian Calude for his hospitality during my visit to Auckland.

I am especially grateful to Frank Stephan for sharing with me his brilliant ideas,
for his clear explanations and for fruitful conversations. My discussions with Frank
have been of great value for me. I also thank him and Gouhua Wu for their generosity
for inviting me to work with them in an article. I also thank Joe Miller, who kindly
taught me a lot of tricks on randomness.

Besides the people already mentioned I would like to thank the following persons
for discussions on various subjects: Max Dickmann, Joos Heintz, Serge Grigorieff,
Denis Hirschfeldt, Pablo Jacovkis, Bjørn Kjos-Hanssen, Guillermo Mart́ınez, Elvira
Mayordomo, Wolfgang Merkle, Silvana Picchi, Jan Reimann, Ted Slaman, Ludwig
Staiger, Sebastiaan Terwijn, and Paul Vitányi.

I had the pleasure to co-supervise and work with Alejo Capparelli, Mariano
Moscato, Rafel Picchi and Mart́ın Urtasun, all students who did their graduation
work in this topic. I also thank Benjamı́n R. Callejas Bedregal, Daniel Goŕın and
Rafael Grimson, with whom I have done some research not directly connected to
this thesis but which was very enlightening for me.

I would like to thank the Group in Logic and Computaility (GLyC) for the
interest in my work and for the many enriching discussions on different topics. In
particular I would like to thank Carlos Areces, Diego Figueira, Sergio Mera, Mariano
Pérez Rodŕıguez and Ricardo Rodŕıguez. I am also grateful to the following students
and professors of the Department of Computer Science at the University of Buenos

vii

viii Contents

Aires for providing a nice atmosphere: Ariel Arbiser, Santiago Bazerque, Diego Ben-
dersky, Flavia Bonomo, Victor Braberman, Sergio Daicz, Pablo Factorovich, Diego
Fernández Slezak, Andrés Ferrari, Juan Pablo Galeotti, Diego Garbervetsky, Nicolás
Kicillof, Carlos Lopez Pombo, Javier Marenco, Esteban Mocskos, Yuri Poveda, Fer-
nando Schapachnik, Enrique Tobis, Pablo Turjanski and Demian Wasserman.

This research has been supported by various organizations. Besides the Depart-
ment of Computer Science at the University of Buenos Aires, which provided me an
excellent working environment, I also acknowledge Fundación Antorchas, Fundación
YPF and CONICET.

1. INTRODUCTION

In this thesis we investigate and discuss some aspects of randomness and triviality
defined by the theory of program size.

We first deal with randomness and absolute normality. Both are definitions that
imply several properties of stochasticity and both classes contain almost all real
numbers, in the sense of Lebesgue measure. Despite that fact, it has not been easy
to give concrete examples in such classes, that is, to identify single elements with
distinctive proper names.

Absolutely normal numbers were first defined by Borel in 1909 and he proved
that almost all reals are absolutely normal [16]. The idea of a real being normal to
a given scale t is that every digit and block of digits appears equally frequent in its
t-scale fractional expansion. Absolutely normal numbers are those that are normal
to every scale. The problem of giving concrete examples of such numbers was raised
by Borel as soon as he introduced the definition of normality.

The first example of an absolutely normal number was given by Sierpinski in
1916 [69], using generating functions and working with a sequence of sets with
limiting measure 0 covering the reals that are candidates not to be absolutely normal.
It is not clear whether his example is a computable number or not: his work appeared
twenty years before the concept of computability was formalized. In the beginning
of chapter 2 we reformulate Sierpinski’s construction in an effective way and in
Theorem 2.4.9 we exhibit an algorithm to compute an absolutely normal number,
which becomes the first known example of an absolutely normal number that is also
computable. The proof techniques we use in this part of the thesis is to computably
(and carefully) bound the error at each stage of the construction, using some facts
and methods of measure theory.

While we were looking for other examples of absolutely normal numbers, we
found a Turing’s manuscript on normal numbers which remained unpublished until
1992, when it was transcribed in the Collected works of Alan Turing [76]. This
manuscript is incomplete, unclear and hard to read. Our motivation was to explore
and make explicit the techniques used by Turing in relation to normal numbers,
and our challenge was to try to reconstruct it in the most accurate possible way.
The second part of chapter 2 deals with the reconstruction of Turing’s manuscript.
In particular, in Turing’s work there is an important unproved lemma (transcribed
in this document as Lemma 2.7.2) that turns to be essential for his construction.
We replaced this unproved lemma with our Lemma 2.7.7, whose statement is very
close to the original, but for which we were able to give a proof. Along these
sections, we use elementary techniques from number theory and measure theory. As

1

2 1. Introduction

an application to our computable reconstruction of Sierpinski’s or Turing’s work, in
Theorem 2.9.4 we show that there are not only absolutely normal numbers in the
least Turing degree, but in every 1-degree. To prove this, we modify our algorithms
and use the Lebesgue density theorem.

The formal definition of a random real, as conceived first by Martin-Löf [56] and
later by Levin [52], Schnorr [67] and Chaitin [23] appeared in the late 1960s, once
the computability theory was strongly developed. All these definitions have been
proved to be equivalent. Roughly, Martin-Löf random reals are those which can avoid
certain effectively presented measure 0 sets; Levin-Chaitin random reals are those
which are algorithmically incompressible, in the sense that the prefix-free program-
size complexity K is high in every initial segment of the real. The class of random
reals is much more restrictive than the class of absolutely normal reals. In fact, no
computable real can be random. However, it is still a huge class, since almost all reals
are random. As with absolute normality, the problem of finding particular examples
of random reals, i.e. to give a specific symbolic definitions, has been very difficult.
Martin-Löf showed that almost all reals are random, but the first explicit real which
was random was due to Chaitin [23]. He defines the number Ω, which represents the
probability that a certain universal Turing machine halts when the input is generated
by tossing a coin. In fact there is no single Ω, but a whole class of Ω numbers; one ΩU

for each universal machine U. So we have at our disposal the Ω numbers; all of them
are left-c.e., that is, they have the property that can be computably approximated
from below via a sequence of rationals. Using the standard notion of computability
relative to an oracle, one obtains new Ω numbers that are halting probabilities of
Turing machines endowed with oracles. These examples are more random and also
at higher levels of the arithmetical hierarchy, but still left-c.e. in their degree. But
we sought for other examples of significative random reals, possibly not left-c.e.
nor right-c.e.; we looked for a new source of examples of random reals. With this in
mind, we started studying the following conjecture of Grigorieff, stated in 2002: “The
probability ΩU[X] that a universal Turing machine U halts and outputs a string in a
fixed non-empty set X is random. Moreover the harder the set X, the more random
ΩU[X] will be.” Grigorieff’s conjecture is a wide generalization of Chaitin’s Ω, which,
if true, would lead to a lot of new examples of random reals. This study comprises
chapter 3 and shows that in many ways the situation is much more complicated
than the elegant conjecture suggests. What can be said about the relationship
between the computability theoretic properties of X and the randomness properties
of the induced probability? It turned out that the conjecture was not true in its
most general form but still is true with some refinements and adjustments. For the
classical halting computations we found some positive instances but unfortunately
also many negative examples. On the other hand, using infinite computations, much
more positive examples have been discovered in [14, 12], at the same time this thesis
was carried on. Our main positive example is Theorem 3.6.1, which states that for
any n ≥ 2, if X is Σ0

n-complete or Π0
n-complete then ΩU[X] is random. The proof of

this result uses an application of the Recursion Theorem over the existing technique
employed to prove that Ω is random. A further interesting part of chapter 3 is

3

devoted to the study of the topological structure of the set of reals that can be
obtained as the halting probability for some X, that is reals of the form ΩU[X].
Here the main result is Theorem 3.7.2, saying that for any universal machine U,
this set is of a rather simple structure, namely, it is the union of finitely many closed
intervals. As a consequence of this theorem, it follows that any real small enough
is ΩU[X] for some X and it also yields a proof that there are ∆0

2 sets X for which
ΩU[X] is rational, hence far from random.

The notion of randomness defined by Levin-Chaitin involves the prefix-free pro-
gram-size complexity K and this gives the classical definition of randomness that
coincides with the notion of Martin-Löf. The use of machines endowed with oracles
yields a complexity function relative to these machines and leads to stronger notions
of randomness. In this way, by relativizing K to oracles, we obtain a whole hierarchy
of random reals. The second aspect of randomness that we tackle in this thesis is
the study another version of the program-size complexity, which does not appeal
to oracles in its definition, and we ask whether it leads to a stronger notion of
randomness. In chapter 4 we define K∞ as the prefix-free program-size complexity
associated to possibly infinite computations in monotone machines. These unending
computations have proved to be useful for giving new examples of random reals [6,
5]. How does this new complexity function associated to programs that never halt
behave? What are the classes of random and anti-random reals induced by K∞?
These are some of the questions that we attack in this chapter. We prove that
the function K∞ is between K and K∅′ (this last is the prefix-free program-size
complexity relative to the Halting Problem ∅′) except for additive constants, butK∞

is inherently different from the relativization of K to any oracle. That is, K∞ does
not behave likeKA, no matter what is A. Surprisingly, although this new complexity
function K∞ is very different from K, the definition of randomness induced by K∞

exactly coincides with the classical Levin-Chaitin’s notion of randomness induced by
K. The situation is completely different regarding the notion of anti-randomness.
A real A is K-trivial if A is highly algorithmically compressible, in the sense that
the prefix-free program-size complexity of every prefix of A is as low as it can be.
It turns out that K-triviality, a notion opposite to randomness, is very different
when working with K or K∞. In Theorem 4.5.6 it is proved that a real is K∞-
trivial if and only if it is computable. This is a big difference with respect to K-
triviality, where it is known [73, 34] that there exist non-computable K-trivial reals.
In this aspect, K∞ behaves more like C, the plain program-size complexity, where
C-trivial reals coincide with the computable ones [24]. Our result partially answers
an open question of Chaitin about the possibility to characterize the computable
reals in terms of the prefix-free complexity K instead of the plain C: using K∞, our
variant of K for infinite computations, we do so. In this chapter we use repeatedly
a proof technique which consists of exploiting the Shoenfield’s Limit Lemma from
computability theory. We also use some other techniques from this theory like
approximations by effective trees.

A lowness property of a real A says that A is computational weak when used as

4 1. Introduction

an oracle, and hence A is close to being computable. The class of K-trivial reals
was characterized by using different lowness notions. A real is low for K when it is
not useful as an oracle to reduce the prefix-free program-size complexity of a string;
a real is low for random when it is not useful as an oracle to detect regularities
in a random real. Nies [62] proved that the classes of low for K, low for random
and K-trivial reals coincide. Even though the three mentioned classes represent the
same notion, they express very different aspects of it. However, the definition of the
three classes involve in one way or another the prefix-free program-size complexity
K. In [74] it was shown that the class of low for Schnorr tests (sets which are
not useful as oracles for detecting patterns in a Schnorr random real) coincides
with the class of recursively traceable sets, a combinatorial notion which is purely
computably theoretical, rather than measure theoretical. The third aspect we deal
with in chapter 5 is the possibility to characterize the K-trivial reals in terms of a
purely computably theoretical combinatorial lowness notion which does not involve
K in the definition. Two new notions are proposed: strong jump-traceability and
well-approximability. They are strong variants of the notions of jump-traceability
and ω-c.e. for sets of natural numbers, studied in [60]. A special emphasis is given
to the case where the jump of A is ω-c.e. Roughly speaking, a set A is jump-
traceable if one may effectively enumerate a set of possible values for the jump
JA(e) and number of values enumerated is computably bounded; a set is ω-c.e. if it
can be computably approximated with a {0, 1}-valued function and the number of
changes of this approximation is also computable bounded. Our notions are much
stronger versions, in the sense that the computable bounds introduced in the above
definitions may be forced to grow arbitrarily slow. There is a tight connection
between strong jump-traceability and well-approximability: we proved that if A′ is
well-approximable then A is strongly jump-traceable, and that the converse holds
as well in case A is c.e. We could not prove nor disprove that any of these two new
notions lead to a characterization of K-trivial reals, but in Theorem 5.4.3 it is given
a characterization of strongly jump-traceable reals as a variant of low for C reals
(reals that, when used as oracles, does not help much in reducing the C complexity of
strings). Furthermore, in Corollary 5.5.4 it is given a characterization of the jump-
traceable reals as a variant of the low for K reals. Among the proof techniques
used in this chapter, we can mention the finite injury priority method, strategies
from algorithmic information theory for compressing information and some counting
arguments. In particular, in Theorem 5.2.5 there is an interesting application of the
finite injury method with dynamic requirements.

In the rest of this chapter we introduce some definitions and results that will
be needed in subsequent chapters. In section 1.1 we describe concisely the field to
which this thesis belongs. In section 1.2 we fix some notation and give some basic
definitions that we will use. In section 1.3 we mention some results needed from
computability theory. In section 1.4 we introduce program-size complexity, one of
the main objects of study of this thesis. Sections 1.5 and 1.6 deal with some needed
material related with randomness and triviality.

1.1. Algorithmic information theory 5

1.1 Algorithmic information theory

The theory of program size complexity, also known as algorithmic information the-
ory, was initiated independently in the 1960s by Kolmogorov [46], Solomonoff [72]
and Chaitin [22]. This theory defines a notion of complexity of strings taking into
account the length of the shortest program which computes the string. From among
all the descriptions of a string we can take the length of the shortest program as a
measure of the string’s complexity. In this way, programs are regarded as algorith-
mic descriptions of strings. A string σ is simple, that is, has low complexity, if its
complexity is substantially smaller than the length of σ; and a string is complex if
its algorithmic description is as large as the length of σ. The pigeonhole principle
shows that the large majority of the strings have high complexity.

The function which associates to each string σ the length of the shortest program
which outputs σ is called program-size complexity or Kolmogorov complexity and was
introduced first by Kolmogorov [46] and studied by Levin [50, 51], Schnorr [66, 67],
Gács [40] and Chaitin [23].

It should be noticed that in this definition there is an implicit underlying uni-
versal machine, that is, a particular Turing machine that is able to simulate any
other Turing machine. This universal machine is used as reference to execute the
mentioned programs. When the domain of all the Turing machines is prefix-free
(i.e. there are no two halting programs such that one is a proper extension of the
other) we talk about prefix-free program-size complexity (here denoted by K) and
when no restriction on the domain is imposed, we speak of plain program-size com-
plexity (here denoted by C). Although these complexities depend on the underlying
universal machine, they are asymptotically independent of it [19, 54].

The roots of the study of algorithmic randomness go back to von Mises’ work
of the early 20th century [78], where he argued that random sequences should have
several properties of stochasticity from classical probability theory. For example, in
a random binary sequence of 0s and 1s, the proportion between the number of 1s
in the first n digits of the sequence and the number n should be 1/2 when n tends
to infinity. Intuitively a sequence is random when it lacks structure or regularity,
in other words, it does not have recognizable patterns. One would like to define
random sequences as those which are indistinguishable from an infinite output of
tossing a coin and writing 0 if it comes out a head or 1 if it comes out a tail. Thus
the sequences

00000000000000000000 . . . or 10101010101010101010 . . .

do not seem to be random because they have a very strong pattern. In contrast, one
feels that a sequence like

10010111010111100101 . . .

is random because it is difficult to discover patterns in it. Clarifications of precisely
what constitutes randomness were only made in the late 20th century, when Church
[28] and others argued that the notion of algorithmic randomness is closely connected

6 1. Introduction

to the notion of computable function. The reader may refer to the PhD thesis of
Michael van Lambalgen [77] for the evolution and philosophical insights of many of
these notions.

Martin-Löf [56] introduced a notion of randomness based on statistical tests.
The idea is that a random sequence has to pass every conceivable and reasonable
statistical test. He formalizes this notion of reasonable statistical test as a kind of
effective sets of measure zero. He defines a sequence to be random if it avoids all
such effectively presented measure zero sets.

Levin [51, 52] (involving the monotone complexity) and Schnorr [67] (using
a variant of monotone complexity, which he called process complexity) and later
Chaitin [23] (using the prefix-free complexity) introduced a notion of randomness
in terms of program-size complexity. The essential idea of prefix-free program-size
complexity was implicit in all these works. Levin-Chaitin random sequences are
those whose initial segments are algorithmically incompressible. That is, an infinite
sequence A of 0s and 1s is Levin-Chaitin random if the prefix-free program-size com-
plexity of the first n digits of A is greater than n minus a fixed constant. Hence, we
regard an infinite sequence as random if the only way to get initial segments of it is
to essentially hardwire those segments into a program generating them. Thus

10 . . .

is not random as we could describe the first 2n bits with a short program saying
“repeat n times 10”.

It is interesting that the idea of effectiveness is involved in both Martin-Löf
and Levin-Chaitin definitions. We had to wait till the development of computabil-
ity theory to come up with a formal definition of randomness. In fact, the whole
algorithmic information theory is closely intertwined with computability theory.

Schnorr [66] proved that Martin-Löf randomness and Levin-Chaitin randomness
notions coincide. So Levin-Chaitin randomness and Martin-Löf randomness reflect
two different aspects of the same fact. This notion of randomness became quite
accepted in the field and is known as Martin-Löf randomness or Chaitin randomness
or Chaitin-Kolmogorov randomness. After this proof, the notion is generally called
just randomness.

Any sequence of 0s and 1s can be regarded as a real number by identifying
the binary fractional expansion of the real with such sequence. Chaitin [23] found a
natural example of a random real number, called Ω, which represents the probability
that an arbitrary program halts. In fact, this is a whole class of numbers, since
the definition of Ω depends on the chosen underlying universal machine. But the
property of being random is independent of this choice: for any universal machine
the halting probability associated to it is always random. The value of Ω can be
computably approximated from below and the word left-c.e. is used to denote this
property. Further research [21, 48] provided the following equivalence: a real is
left-c.e. and random if and only if it is the halting probability of some prefix-free
universal machine.

In the opposite corner of the random sequences, are the K-trivial sequences,
which are those whose initial segments are highly compressible in terms of prefix-

1.2. Basic definitions 7

free program-size complexity [34]. Thus, this notion is contrary to randomness,
where this complexity is high. More formally, an infinite sequence A is K-trivial
when the prefix-free program-size complexity of the first n bits of A is as low as it
can be, that is, less than K(n) plus a fixed constant.

In the remaining of this chapter we will present formally the notion of program-
size complexity and two definitions that will be used along the thesis: randomness
and triviality. We will limit ourselves to introduce the main definitions and results
that are necessary in this document. More information on program-size complexity
and applications can be found in [54] and [19]. In [32] there is a whole picture of
the field, gathering both classical and very new results in the area.

1.2 Basic definitions

N denotes the set of natural numbers. As usual we identify a set A ⊆ N with its
characteristic function χA : N → {0, 1}. That is, A(x) = 1 if x ∈ A and A(x) = 0
if x 6∈ A. Q the set of rationals and R the set of reals. N+, Q+ and R+ are the
described sets restricted to positive values. P(A) is the power set of A. For a real
r, brc is the floor of r and dre is the ceiling of r.

2<ω is the set of all finite strings of 0s and 1s; 2n denotes the set of strings in 2<ω

of length n and 2≤n all the words of length up to n. λ denotes the empty string For
a string σ ∈ 2<ω, |σ| denotes the length of σ. For i ∈ {0, . . . , |σ| − 1}, σ(i) denotes
the i-th bit of σ. Sometimes we will consider natural numbers as strings. In this
case, we use the string 0 to represent the natural number 0 and for any n > 0, we use
the string that represents n in binary notation, starting with 1. Observe that when
interpreting a number n > 0 as a string we have |n| = 1+blog2 nc. We fix a recursive
pairing function 〈·, ·〉 : N×N→ N. We will use the same symbol to recursively codify
pairs in N×N or N× 2<ω. Let str : N → 2<ω be the standard enumeration of the
strings: the string str(n) is that binary sequence b0b1 . . . bm for which the binary
number 1b0b1 . . . bm has the value n + 1. Thus, str(0) = λ, str(1) = 0, str(2) = 1,
str(3) = 00, str(4) = 01 and so on. For σ, τ ∈ 2<ω, we write σ � τ when σ is a
prefix of τ , that is |σ| ≤ |τ | and σ(i) = τ(i) for all i ∈ {0, . . . , |σ| − 1}. We write
σ ≺ τ when σ is a proper prefix of τ , that is σ � τ and σ 6= τ . A set of strings A is
prefix-free if there are no two strings σ and τ in A such that σ ≺ τ . A set T ⊆ 2<ω

is a tree if for all σ, τ ∈ 2<ω if σ ∈ T and τ ≺ σ then τ ∈ T .
The Cantor space, denoted 2ω is the set of all infinite sequences of 0s and 1s. The

infinite sequence A ∈ 2ω can also be regarded as the enumeration A(0)A(1)A(2) . . .
of the characteristic function of a set A ⊆ N. Furthermore, A can also be seen as
the real number in [0, 1] defined by

∑
n≥0A(n) · 2−n−1.

We denote by A � n the string of length n which consists of the first n bits of A,
that is, A(0) . . . A(n − 1). The relation A < B is transferred from numbers to sets
and sequences with the additional convention, that for the two representations of
numbers of the from n · 2−m the one ending with 011111 . . . is below the one ending
with 100000 . . . so that < becomes a linear ordering on sets and sequences. The
number of elements of the set A is denoted by ‖A‖. For any two sets A and B we
define A⊕B = {2x : x ∈ A} ∪ {2x+ 1: x ∈ B}. If T is a tree then [T] ⊆ 2ω denotes

8 1. Introduction

the infinite branches of a tree, that is [T] = {X : (∀σ ≺ X)σ ∈ T}.
For any two strings σ and τ , στ is the concatenation of σ and τ . Also if Z ∈ 2ω

then σZ is the infinite sequence that starts with σ and follows with Z. For a string
σ, we denote by σ2ω the class {σZ : Z ∈ 2ω}. If A is a set of strings then A2ω

denotes the class {σ2ω : σ ∈ A}. If C is a set of real numbers, the Lebesgue measure
of C is notated µ (C). Hence, µ (σ2ω) = 2−|σ|.

We usually notate strings in lowercase Greek letters. Usually, σ, τ , χ, for outputs
and ρ, γ, ν for programs. Numbers will be denoted in lowercase Roman letters such
as x, y, n, m, k, etc. Usually s, t, u are used for steps in computations and c, d
for coding constants. Sets of natural numbers or sets of strings will be notated in
uppercase Roman letters, such as A, B, X, etc. Machines will be noted in uppercase
boldface Roman letters, typically, M, N for specific ones, and U, V, W for universal
ones. In general we use f , g, h for functions and calligraphic uppercase letters like
C, T for sets of reals.

1.3 Computability theory

We will work with Turing machines introduced by Turing [75] as a precise definition
capturing the intuitive notion of algorithmically computable function. Our Turing
machine architecture has a read-only input tape, a read-write working tape and a
write-only output tape. Both programs and outputs will be represented with strings
of 0s and 1s. A Turing machine is just a computer program used to perform a specific
task: it takes a binary word ρ as input and either gets undefined (notated M(ρ) ↑)
or it halts (notated M(ρ) ↓) and produces a certain binary string σ as output. In
this last case we say that M(ρ) = σ or that ρ is an M-description of σ. The domain
of M, notated domM, is the set of all strings σ for which M(σ) ↓. If domM = 2<ω

we say that M is total, otherwise M is partial.
Nowadays the fact that programs can be treated as strings and that all of them

can be listed is quite standard for a computer scientist. Moreover, there are special
programs that take strings representing programs as input, and simulate them. This
is a consequence of the Enumeration Theorem, which says that we can algorithmi-
cally enumerate all the Turing machines

T1,T2,T3, . . . (1.1)

and that there is a universal machine V such that

V(0i−11σ) = Ti(σ), (1.2)

so V can simulate every other machine. Each Turing machine N corresponds to a
number in the list (1.1) and that number is called the Gödel number of N.

Any Turing machine M can be approximated step by step. By Ms(ρ) = σ
we denote that the machine M on input ρ halts within s computational steps and
outputs σ; by Ms(ρ) ↑ we denote that M has not reached a halting state by stage s.
At each stage s we can algorithmically determine if M has reached a halting state
or not: if Ms(ρ) ↓ then Mt(ρ) ↓= M(ρ) for all t ≥ s. We write Te,s for (Te)s.

1.3. Computability theory 9

The class of recursive functions was introduced by Kleene [44] as another defi-
nition for capturing the algorithmically computable function idea. The Turing ma-
chine model and the recursive functions formalism are equivalent. However recursive
functions are defined from A to B, where A and B are subsets of N, and then this
equivalence is true modulo an appropriate conversion from strings to natural num-
bers and vice versa (Turing machines work with strings but recursive functions with
numbers). When working with functions from A to B, where A and B are subsets of
N we will generally use the symbol ϕe to denote the function computed by the e-th
Turing machine which only takes numbers and outputs numbers (these numbers shall
be represented, for example, as stated in section 1.2). When working with functions
from A to B, where A and B are subsets of 2<ω, we will use the same symbol Te for
denoting the e-th Turing machine (regarded as a computing agent) and the (math-
ematical) function it computes. The distinction between the enumeration (ϕi)i∈N
and (Ti)i∈N is not important for the facts that we will discuss in this section, since
all the results hold for both (ϕi)i∈N and (Ti)i∈N.

The Recursion Theorem due to Kleene [45] says that for every computable func-
tion f we can compute an n such that ϕn = ϕf(n). This n is usually called the
fixed point of f . This result (together with the s-m-n Theorem, see [71] for more
details) allows us to define computable functions which know in advance its own
Gödel number. For example, when defining a machine M we may assume that we
already know the number e such that M = Te.

A set of natural numbers A is computably enumerable (c.e.) if A is the domain
of ϕe for some e. We denotes the e-th c.e. set, that is, We = domϕe and We,s =
{x : x ≤ s ∧ ϕe,s(x) ↓}. The name computably enumerable comes from the fact that
we can computably approximate the set step by step: A is c.e. if and only if there
is a total computable function ψ such that ψ(N) = A. Hence ψ enumerates all
the elements of A, not necessarily in order. A c.e. approximation of the set A is
a sequence (As)s∈N such that As ⊆ As+1 and

⋃
sAs = A. A set A is co-c.e. if

N \ A is c.e. and A is computable if A is c.e. and co-c.e. It is not difficult to see
that A is computable if and only if there is a total computable function ψ such that
ψ(x) = A(x) for all x ∈ N.

The famous Halting Problem due to Turing [75] says that the set

{e : ϕe(e) ↓} (1.3)

is c.e. but non-computable. The notions of partial computable functions and com-
putably enumerable sets relativize to an arbitrary set B which acts as a piece of
information to use for free by Turing machines and it is called oracle. In the ar-
chitecture of Turing machines, we may think that the information of the oracle B
is coded in an extra infinite tape with a read-only head where we codify B as an
infinite binary sequence. We write ϕB

e (x) for the output of ϕe when the input is x
and the oracle is B. When B = ∅ we write ϕe(x) instead of ϕB

e (x). If ψ is a function
computable by an oracle machine and ψB(x) is defined then this computation should
have made a finite number of questions to the oracle. The use of ψ when the oracle
is B and the input is x is defined as one plus the maximum number queried to the
oracle in the computation if ψB(x), and ∞ otherwise.

10 1. Introduction

A set A is B-c.e. or c.e. in B if A is the domain of ϕB
e for some e; and A is B-

computable or computable in B if there is function computable by an oracle machine
ψ such that ψB(x) = A(x) for all x ∈ N. When A is B-computable we say that A
is Turing reducible to A, denoted A ≤T B. In case A ≤T B and B ≤T A we say
A is Turing equivalent to B and we notate A ≡T B. The Turing reducibility is a
pre-ordering of the sets of natural numbers. The Turing degree of A is degA =
{B : B ≡T A}. We define, for any set A, the jump of A as A′ = {e : JA(e) ↓}, where
JA(e) = ϕA

e (e). The Halting Problem (1.3), which under this notation is ∅′, can
be relativized to oracles and says that A′ is c.e. relative to A but A′ 6≤T A. For n
iterations of the jump of A we write A(n). From a partial function ψ computable
by an oracle machine, one can effectively obtain a primitive recursive (primitive
recursive functions are a very simple class of computable functions; see [71] for a
definition) and strictly increasing function α, called a reduction function for ψ, such
that (∀B)(∀e)ψB(e) = JB(α(e)).

The jump operator gives us a hierarchy of degrees

deg ∅ ⊂ deg ∅′ ⊂ deg ∅′′ . . .

The Arithmetical Hierarchy gives a different hierarchy according to the quantifier
complexity in the syntactic definition of A. For n ≥ 1, a set A is Σ0

n if there is a
computable relation R(x1, . . . xn, y) such that y ∈ A if and only if

(∃x1)(∀x2)(∃x3) . . . (Qxn) R(x1, . . . xn, y)

and in (∃x1)(∀x2)(∃x3) . . . (Qxn) there are n− 1 alternations of quantifiers (starting
with ∃, and Q is ∃ if n is odd and ∀ if n is even). A set A is Π0

n if the same happens
but starting with a leading ∀ and letting Q be ∃ or ∀ depending on whether n is
even or odd. We say that a set is ∆0

n if it is both Σ0
n and Π0

n. The Post Theorem
says that A is Σ0

n+1 if and only if A is c.e. relative to ∅(n), A is Π0
n+1 if and only if

A is co-c.e. relative to ∅(n) and A is ∆0
n+1 if and only if A ≤T ∅(n). The arithmetical

hierarchy can be relativized to an arbitrary oracle B and then we get similar results
with classes Σ0,B

n , Π0,B
n and ∆0,B

n which are defined in the same way as Σ0
n, Π0

n and
∆0

n but now the relation R is B-computable (see [71, 63] for further details).
Shoenfield’s Limit Lemma states that a set A is ∆0

2 if and only if there is a
total computable f : N × N → N such that for all x, lims→∞ f(x, s) exists (i.e.
{s : f(x, s) 6= f(x, s + 1)} is finite) and lims→∞ f(x, s) = A(x). This f is usually
called an effective approximation or computable approximation of A, and it is gener-
ally written As(x) for f(x, s). If A is given by an effective approximation and ψ is
a function computable by an oracle machine, we write ψA(e)[s] for ψAs

s (e).
There are weaker reducibilities besides the Turing reducibility. We say that A

is 1-reducible to B, notated A ≤1 B, if there is a computable injective function f
such that x ∈ A ⇔ f(x) ∈ B for all x. In case A ≤1 B and B ≤1 A we say A is
1-equivalent to B and we notate A ≡1 B. The set {B : B ≡1 A} is the 1-degree of
A. We say that A is weak truth-table reducible to B, notated A ≤wtt B, if there is
partial function ψ computable with an oracle machine such that ψB(x) = A(x) for
all x and we can computably bound the number of queries to the oracle B, that is,

1.4. Program-size complexity 11

there is a computable function f such that the use of ψB(x) is at most f(x). When
the above ψ is total for all oracles (i.e., ψZ(x) ↓ for all Z ⊆ N) we say that A is
truth-table reducible to B, notated A ≤tt B.

A set is Σ0
n-complete if A is Σ0

n and B ≤1 A for every Σ0
n set B; a set is Π0

n-
complete if A is Π0

n and B ≤1 A for every Π0
n set B. ∅(n) is Σ0

n-complete for all
n ≥ 1.

A real number r is left-c.e. if there is a computable non-decreasing sequence
of rationals which converges to r, and it is right-c.e. if there is a non-increasing
sequence of rationals which converges to r. A real is computable if it is computable
when it is regarded as a set. Also a real is computable if it is right-c.e. and left-c.e.
Therefore every computable real is left-c.e., but the converse is not true. It is possible
that a real number r be approximated from below by a computable non-decreasing
sequence of rationals but that there is no function which effectively gives each of the
fractional digits of r. This happens when it is not possible to give an effective bound
of the error of approximating the number by any computable sequence of rationals.

Some classical references in computability theory are [30, 43, 63, 71, 80].

1.4 Program-size complexity

In this section we introduce the plain and prefix-free program-size complexity and
we mention some known results and standard notation that will be used repeatedly
in the rest of this thesis. Some other important results will be introduced when
necessary.

In algorithmic information theory, programs are regarded as algorithmic descrip-
tions of strings. As we mentioned in section 1.3, we say that a program ρM-describes
a string σ when it is executed in a Turing machine M and produces σ as output.
In general there is more than one program describing the same output σ. The idea
of the program-size complexity introduced in [46, 72, 23] is to take the length of a
shortest description as a measure of the complexity of the string.

Definition 1.4.1 (Plain program-size complexity). CM : 2<ω → N, the plain pro-
gram-size complexity with respect to the Turing machine M, is defined as

CM(σ) =

{
min{|ρ| : M(ρ) = σ} if σ is in the range of M;
∞ otherwise.

If we restrict ourselves to partial computable functions with prefix-free domain,
we can think of prefix-free Turing machines (independently introduced by Levin [50,
51], Schnorr [66] and Chaitin [23]) as the formalism to compute them. Chaitin
thought of a convenient device to compute exactly all prefix-free machines. This
device is just like a classical Turing machines but the input tape is a bit primitive:
the input head moves only to the right and there is no blank end-marker delimiting
the end of the input. So a prefix-free machine starting with the input head in the
first bit of the input ρ may eventually try to read beyond the end of ρ and if this
happens, it simply crashes (i.e. it becomes undefined) and it stays in that error state
forever. Therefore, for a prefix-free machine M to succeed in the computation, it

12 1. Introduction

needs to somehow figure out by itself where the end of the input is. This is the reason
why this device is sometimes called self-delimiting machine. In this model, if a given
input is defined, all its extensions are undefined. It can be shown that this restricted
architecture of Turing machines compute exactly all partial computable functions
with prefix-free domain. The the prefix-free program-size complexity [52, 40, 23] is
defined in the same way as in Definition 1.4.1 but relative to prefix-free machines:

Definition 1.4.2 (Prefix-free program-size complexity). KM : 2<ω → N, the prefix-
free program-size complexity with respect to the prefix-free machine M, is defined
as

KM(σ) =

{
min{|ρ| : M(ρ) = σ} if σ is in the range of M;
∞ otherwise.

The two complexity functions C and K have been used for different purposes
(for more details, see [32] and [54]). In this thesis we will mainly use prefix-free pro-
gram-size complexity, but in some sections we will also work with the plain version.

There are two traditions of notation in the program-size complexity community
as regards the plain/prefix-free versions: the C/K tradition and the K/H tradition.
In recent years it seems that the C/K notation appears more often in both the
complexity and the recursion theory literature. In this document, we follow the
C/K notation.

Observe that it does not matter if the list in (1.1) is an enumeration of all classical
machines or all prefix-free machines (both have a finite table of instructions, so they
can be effectively listed). The machine V defined in (1.2) exists in both cases and
in the second, V is also prefix-free.

The classical notion of universality from computability theory is redefined in
the algorithmic information theory. We will use the word universal for denoting
machines like V defined in (1.2) that somehow simulate every other machine at no
noticeable extra cost in the length.

Definition 1.4.3 (Universality). U is a universal prefix-free (resp. classical) Turing
machine if and only if

(∀e)(∃ce)(∀ρ)(∃γe,ρ) [U(γe,ρ) = Te(ρ) ∧ |γe,ρ| ≤ |ρ|+ ce],

where T0,T1,T2, . . . is an enumeration of all the prefix-free (resp. classical) Turing
machines

When working with oracles, U will be universal if it may simulate any other
machine with any oracle, so it is universally universal. In the case of an prefix-free
universal machine, UA will be prefix-free for all A ⊆ N.

In general we use the same letter U for denoting both a classical universal ma-
chine and a prefix-free universal machine; it will always be clear from the context
which one we refer to. In [23] Chaitin called these machines optimal universal,
because they permit us to define the program-size complexity in an optimal way:

1.4. Program-size complexity 13

Theorem 1.4.4 (Invariance). If U is universal prefix-free (resp. classical) Turing
machine then for any prefix-free (resp. classical) Turing machine M there is a con-
stant c such that for all σ ∈ 2<ω, KU(σ) ≤ KM(σ) + c (resp. CU(σ) ≤ CM(σ) + c).

Hence for any two prefix-free universal machines U and V, the prefix-free pro-
gram-size complexity with respect to U and V is the same up to an additive constant,
i.e. there is some constant c such that |KU(σ)−KV(σ)| ≤ c for any σ ∈ 2<ω. Of
course the same is true for classical machines and C. If there is no need to refer to
the underlying universal machine U, one just writes K for KU and C for CU. In
this way, K and C become an absolute measure of the complexity of the strings.

To illustrate some useful application of the Invariance Theorem, let us see some
upper bounds for K and C. Imagine a classical machine M that reads the input
σ and writes σ as its own output. Then CM(σ) = |σ| for all σ ∈ 2<ω and by the
Invariance Theorem 1.4.4 this shows that for all σ, C(σ) ≤ |σ|+ c for some constant
c. With prefix-free machines the situation is a bit different because the machine
has to discover by itself where the end of the input is. Suppose U is any universal
prefix-free machine and suppose ρσ is a minimal U-description of |σ|. This just
means that U(ρσ) = |σ| and |ρσ| = K(|σ|). Then there is a prefix-free machine N
that with input ρσσ can do the following: fist simulate U step by step. Each time
U asks for reading one more bit, N obeys and reads from its own input. Eventually
U will read the whole ρσ and will terminate with U(ρσ) = |σ| as output. Now N
(which is still running) knows that exactly |σ| more bits need to be read from the
input. So N reads |σ| bits from the input and recovers σ. Afterwards, N writes
σ in the output and terminates. This shows that N(ρσσ) = σ. Of course, if the
input is wrong, the computation may go wrong, for example N can try to read
beyond the end of the input and then crashes. However, when the input is of the
form ρσσ, N always outputs σ. By the invariance Theorem 1.4.4 this shows that
K(σ) ≤ |ρσσ|+ d = K(|σ|)+ |σ|+ d for some constant d. These upper bounds on C
and K will be repeatedly used in the thesis. We will also use that for any n there is
a string σ of length n such that K(σ) ≥ n. This is true because there are at most
2n − 1 programs of length less than n but 2n strings of length n. The same holds
for C. In fact, Chaitin [23, 26] showed that there is a constant c such that for all
d ∈ N and all n

‖{σ : |σ| = n ∧K(σ) ≤ n+K(n)− d}‖ ≤ 2n−d+c

This result is usually called Counting Theorem, tells us that only a small fraction of
all the strings of length n have prefix-free program-size complexity below n+K(n)−d,
when we take d much bigger than c. Observe that if we let d = n− b, we obtain

‖{σ : |σ| = n ∧K(σ) ≤ K(n) + b}‖ ≤ 2b+c

and this last upper bound depends on b and c, but not on n.
As we explained in the last paragraph, one way to bound the program-size com-

plexity is to explicitly design specific machines, like M or N and explain their
behavior. Another powerful method to implicitly build prefix-free machines and up-
per bound the prefix-free program-size complexity is via a Kraft-Chaitin set. This
method consists of an effective interpretation of an inequality of Kraft [47]:

14 1. Introduction

Definition 1.4.5 (Kraft-Chaitin set). A c.e. set

W = {〈n0, σ0〉, 〈n1, σ1〉, 〈n2, σ2〉, . . . },

where ni ∈ N and σi ∈ 2<ω, is a Kraft-Chaitin set if wt (W) ≤ 1, where wt (W) =∑
i∈N 2−ni is the weight of W . The pairs enumerated into such a set W are called

axioms.

The Kraft-Chaitin Theorem can be found in Levin’s Thesis [50] and in [52],
Schnorr also included a version of it in [67] and Chaitin [23] gave the first proof
explicitly for prefix-free program-size complexity. This theorem states that from a
Kraft-Chaitin set W like the one described in the above Definition 1.4.5, we can
effectively obtain a prefix-free machine M such that for each i there is a ρi of length
ni with M(ρi) ↓= σi, and M(γ) ↑ unless γ = ρi for some i. Observe that the
machine M is built in an implicit way: we only need to specify the lengths of the
programs we want. In particular, the Kraft-Chaitin Theorem states that there is a
constant c such that for all i, K(σi) ≤ min{m : 〈m,σi〉 ∈W}+ c.

The complexity K is related with the probability that a prefix-free machine M
outputs a given string σ. This last magnitude is defined as

PM(σ) = µ ({ρ : M(ρ) = σ}2ω)

=
∑

ρ : M(ρ)=σ

2−|ρ|. (1.4)

Clearly, for all σ, 2−K(σ) ≤ PU(σ), since a shorter M-description of σ already
contributes to the sum in equation (1.4). The following result, due to Levin [52],
Gács [40] and Chaitin, [23] known as the Coding Theorem, states that the other
inequality is also true, except for a multiplicative constant

Theorem 1.4.6 (Coding Theorem). For each prefix-free machine M, one may ef-
fectively find a constant c such that (∀σ ∈ 2<ω) 2c−K(σ) ≥ PM(σ).

For more information in the Coding Theorem, see [54] and [32].

Although K and C are not computable functions, they can be computably ap-
proximated from above using the step by step approximation of U. Ks(σ) is the
approximation at stage s of K(σ) defined by Ks(σ) = min{|ρ| : Us(ρ) = σ} ∪ {∞}.
Observe that Ks(σ) → K(σ) when s→∞. The same holds for Cs.

Machines can be relativized to oracles. For any MA, a prefix-free machine M
relativized to an oracle A, domMA has to be prefix-free. The Definition 1.4.2 of
program-size complexity can be relativized to oracles:

Definition 1.4.7 (Relativized prefix-free program-size complexity). KA
M : 2<ω → N,

the prefix-free program-size complexity with respect to the prefix-free machine M and
relative to oracle A, is defined as

KA
M(σ) =

{
min{|ρ| : MA(ρ) = σ} if σ is in the range of MA;
∞ otherwise.

1.5. Randomness 15

Definition 1.4.1 of CM also adapts straightforwardly to CA
M. Again, when there

is no need to refer to the underlying universal machine, we just write CA and KA.
Having an oracle A gives more power for compressing strings, soKA is always smaller
than K up to an additive constant. The same holds for CA and C.

1.5 Randomness

In this section we introduce the equivalent definitions of randomness due to Martin-
Löf and Levin-Chaitin that we will use all over the present research.

A collection of reals A that can be effectively enumerated is a Σ0
1 class. More

formally, T is a Σ0
1 class if and only if T = {σ2ω : σ ∈ W} for some c.e. prefix-free

set W ⊆ 2<ω. Martin-Löf [56] gave a definition of a random real using constructive
measure theory.

Definition 1.5.1 (Martin-Löf test and Martin-Löf randomness [56]). A Martin-Löf
test is a sequence (Un)n∈N of uniformly c.e. Σ0

1 classes such that µ (Un) ≤ 2−n.
We say that a real A passes the Martin-Löf test (Un)n∈N if A /∈

⋂
n∈N Un. A is

Martin-Löf random if and only if A passes every Martin-Löf test.

The intuitive idea is that Martin-Löf random reals cannot be covered by any
effectively presented set of measure 0. A sequence is Martin-Löf random when it
avoids all conceivable effectively presented properties of stochasticity.

The first characterization of randomness using algorithmic complexity was due
to Levin [51, 52] and involved what are called monotone machines and monotone
complexity. His idea was to assign a complexity to the real itself, working with
infinite computations (that is, computations that output an infinite sequence of 0s
and 1s). This monotone complexity was related to Schnorr’s process complexity [67],
which used a different kind of monotone machines. Independently, Chaitin [23]
defined random sequences using the prefix-free program-size complexity. All this
three notions coincide and in this section we mention the prefix-free complexity that
will be used all along this thesis. for detailed historical remarks, see refer to [54].

Definition 1.5.2 (Levin-Chaitin randomness [52, 23]). A real A is Levin-Chaitin
random if and only if there is a constant c such that (∀n)K(A � n) > n− c.

The idea of a Levin-Chaitin random real A is that the prefixes of A are hard to
describe with a program. We need at least n bits to describe the first n bits of A,
and then A is algorithmically incompressible. From the Invariance Theorem 1.4.4 it
follows that the above definition of Levin-Chaitin randomness does not depend on
the underlying universal machine. Martin-Löf showed that we cannot replace K by
C in the above Levin-Chaitin’s definition of randomness because we end up with an
empty definition: there are no reals A such (∀n)C(A � n) > n− c.

Schnorr [66] proved that A is Levin-Chaitin random if and only if A is Martin-Löf
random. We will call this notion just randomness.

In [23] Chaitin proposed the following experiment: given a prefix-free machine
M, execute it step by step. Each time the machine M requests a new bit from the

16 1. Introduction

input, we give it a 0 or 1 bit depending on the result of tossing a coin. Now consider
the probability that the machine M halts:

ΩM =
∑

M(ρ)↓

2−|ρ| = µ (domM2ω) . (1.5)

Chaitin called this magnitude the halting probability of M. For example, if machine
M halts only on strings of the form 0i1, for i even, then ΩM = 0.1010101 · · · = 2/3.
Observe that, since the domain of M is c.e., ΩM can be computably approximated
from below by a sequence of rationals, so ΩM is a left-c.e. real.

Martin-Löf has shown in a constructive measure theoretical sense that almost
all sequences are random, that is, the set {Z ∈ 2ω : Z is random} has Lebesgue
measure 1. However, to give examples of single random reals has not been easy. As
a consequence of the definition of randomness, no computable real can be random.
In [23], Chaitin gives the first example: the halting probability of any universal
prefix-free machine is random. This means that ΩU is random regardless of the
universal prefix-free machine U. When the underlying universal prefix-free machine
is fixed, we simply write Ω. Chaitin also proved that the computational power of Ω
is equivalent to the Halting Problem, that is Ω ≡T ∅′ .

The notion of randomness can easily be relativized to oracles: A is random
relative to B if and only if there is a constant c such that (∀n)KB(A � n) > n− c.
Since there is a constant d such that (∀B)(∀σ)KB(σ) ≤ K(σ) + d, if A is a random
real relative to B then A is already random. We say that A is n-random when it is
random relative to ∅(n−1).

1.6 K-triviality

If randomness means algorithmically incompressible, the anti-random sequences are
those which are highly compressible, in the sense that the prefix-free program-size
complexity of A � n is about the same as the program-size complexity of n (regarded
as a string). These sequences have been studied in [24, 73] and are called K-trivial:

Definition 1.6.1 (K-triviality). A is K-trivial if and only if there is a constant c
such that (∀n)K(A � n) ≤ K(n) + c.

All computable sequences are K-trivial because given n one can compute the
first n bits of A. If instead of considering K, in Definition 1.6.1 we consider C then
Chaitin [24] proved that such sequences coincide with the computable sequences.
Chaitin [24] also showed that if a sequence is K-trivial then it is ∆0

2; and Downey,
Hirschfeldt, Nies and Stephan [34] (after the first construction Solovay [73], later
adapted by Zambella [81] and Calude and Coles [20]) showed that there are K-
trivial reals which are not computable.

A is low for K when it cannot be used to further compress strings:

Definition 1.6.2 (Low for K). The real A is low for K if and only if there is a
constant c such that (∀σ)K(σ) ≤ KA(σ) + c.

1.6. K-triviality 17

Hence, if A is low for K then K and KA differ at most by a constant. Nies [62]
showed that A is K-trivial if and only if A is low for K. This means that being
computationally weak as an oracle for compressing strings is the same as being
algorithmically incompressible.

For more information on K-triviality, see [34, 31] and for more characterizations
of K-triviality (like being low for K), see [62].

2. ABSOLUTELY NORMAL NUMBERS

In this chapter we give a computable reformulation of Sierpinski’s example of an
absolutely normal number of 1916. We also reconstruct an unpublished manuscript
of Turing on normal numbers, which is incomplete and quite hard to read. Both
computable versions of Sierpinski’s and Turing’s works lead lo examples of absolutely
normal numbers that are also computable. Based in these constructions, we prove
that there is an absolutely normal number in each 1-degree.

This chapter comprises joint work [7] with Verónica Becher and joint work [11]
with Verónica Becher and Rafael Picchi.

2.1 Introduction

Random sequences (and other variants of randomness) have various properties of
stochasticity from classical probability theory. For example, every random real is
normal to the scale of t, in the sense that no block of digits is more frequent than
another of the same size, when the sequence is regarded as a real number between
0 and 1 written to some scale (or base) t. One can write the same real number to
other scale t′ and check normality to the new scale t′. A real number is absolutely
normal when it is normal to every scale t ≥ 2.

Examples of random reals are automatically examples of non-computable abso-
lutely normal numbers. Surprisingly, almost all (in the sense of Lebesgue measure)
real numbers are absolutely normal. This result without a constructive proof dates
back to 1909, and was proven by Émile Borel [16]. However there are very few
known examples of absolutely normal numbers (see [17, 7, 49, 41]). The problem of
giving concrete examples was raised by Borel in [16] as soon as he introduced the
definition of normality.

The first example of an absolutely normal number was given by Sierpinski in
1916 [69], twenty years before the concept of computability was formalized. Sierpin-
ski determines such a number using a construction of infinite sets of intervals and
using the minimum of an uncountable set. Thus, it is a priori unclear whether his
number is computable or not. In the following sections we give a computable re-
formulation of Sierpinski’s construction and obtain a computable absolutely normal
number. Unfortunately, the algorithm to produce this number is highly exponential.
We also present a reconstruction of an unpublished manuscript of Turing on normal
numbers, which also leads to an exponential algorithm.

The problem of giving examples of numbers that are normal to a given scale has
been more successful. There are fast algorithms to produce several examples, and
these examples have analytic formulations such as a conveniently defined series. For

19

20 2. Absolutely normal numbers

instance, Champernowne’s number [27] and its generalization given by Copeland and
Erdös [29], or the Stoneham class of normals to given scales and its generalization
by Bailey and Crandall [4] to reals of the form

∑
i

1
bmicni , for certain sequences

(mi), (ni).
In section 2.2 we give the formal definitions of normality and absolute normality.

In section 2.3 we present Sierpinski’s original construction and in section 2.4 we
introduce our algorithmic version of his construction. We discuss Sierpinski’s number
and we consider other variants defining absolutely normal numbers in section 2.5.
In sections 2.6, 2.7 and 2.8 we include the reconstruction of Turing’s unpublished
manuscript, leading to another algorithm for computing absolutely normal numbers.
Finally in section 2.9 we mention some applications of our constructions: we give a
simple proof of the fact that all Schnorr random reals are absolutely normal and we
prove that there is an absolutely normal number in every Turing degree.

Whenever possible, we try to keep the notation used in Sierpinski’s and Turing’s
original works. This is why some letters used to refer to scales, digits, words, etc.
change from section 2.6 with respect to the previous one.

2.2 Definition of normality and absolute normality

The idea of normal numbers is that every digit and block of digits appears equally
frequent in its fractional expansion. Of course, this definition is dependent of a given
scale. Absolute normal numbers are normal in every scale. In the following we give
the precise definitions of normality and absolute normality.

Let q be an integer greater than or equal to 2. The elements in {0, . . . , q−1} are
referred to as digits in the scale of q. A word in the scale of q is a finite sequence of
digits in the scale of q. The set of all words of length k in the scale of q is denoted
by {0, . . . , q − 1}k. We say that a word γ in the scale of q occurs in a word σ in the
scale of q at position i, 0 ≤ i < |p|, if

σ(i) σ(i+ 1) . . . σ(i+ |γ| − 1) = γ;

a word γ occurs in σ if it occurs at some position.

Definition 2.2.1. Let α be any real in (0, 1). We denote by Q(α, q, γ, n) the number
of occurrences of the word γ in the first n digits after the fractional point in the
expansion of α in the scale of q.

Definition 2.2.2 (Normality and absolute normality). α is normal in the scale of
q if for every word γ in the scale of q,

lim
n→∞

Q(α, q, γ, n)
n

=
1
q|γ|

.

α is absolutely normal if it is normal to every scale q ≥ 2.

For example, the rational number

0.101010101010101010101 . . . (written in the scale of 2),

2.2. Definition of normality and absolute normality 21

is not normal in the scale of 2 because although the probability to find “1” is 1/2
and so is the probability to find “0”, the probability to find “11” is not 1/4. In fact,
no rational is absolutely normal: a/b with a < b may be written in the scale of b as

0.a00000000000 . . .

This follows from the fact that a/b = a · b−1 + 0 · b−2 + 0 · b−3 . . . Moreover, every
rational r is not normal in any scale q ≥ 2 [55]: the fractional expansion of r written
in the scale of q will eventually repeat, say with a period of k digits, in which case
the number r is about as far as being normal in the scale of qk as it can be.

Of course, there are also irrational numbers that are not normal in some scale,
for example

0.101001000100001000001 . . . (written in the scale of 2),

is not normal in the scale of 2. Champernowne’s number [27]

0.123456789101112131415 . . . (written in the scale of 10),

(which has all natural numbers in their natural order, written in the scale of 10) is
normal in the scale of 10, but not in some other scales.

A famous example of an absolutely normal but not computable real number is
Chaitin’s random number Ω, the halting probability of a universal machine [23] de-
fined in (1.5). As explained in sections 1.4 and 1.5, we can formalize the notion of
lack of structure and unpredictability in the fractional expansion of a real number,
obtaining a definition of randomness stronger than statistical properties of random-
ness. Although the definition of Ω is known there is no algorithm to exhibit its
fractional digits. That is, Ω is not computable.

The fundamental constants, like π,
√

2 and e, are computable and it is widely
conjectured [70, 3] that they are absolutely normal. However, none of these has
even been proven to be normal in the scale of 10, much less in all scales. The same
has been conjectured of the irrational algebraic numbers [3]. In general, we lack an
algorithm that decides on absolute normality.

Definition 2.2.2 is not the only one we can find in literature. In [16] Borel defines
normality of real numbers as follows:

Definition 2.2.3 (Absolute normality as defined by Borel). The real α ∈ (0, 1) is
simply normal in the scale of t if for every digit p ∈ {0, . . . , q − 1},

lim
n→∞

Q(α, q, p, n)
n

=
1
t
,

and we say that α is absolutely normal à la Borel if it is simply normal in every scale
t ≥ 2.

Based just on symbols instead of words, Definition 2.2.3 does not allow any
overlapping. Although the condition imposed in Definition 2.2.3 seems to be weaker
than that of Definition 2.2.2, the are known to be equivalent:

22 2. Absolutely normal numbers

Theorem 2.2.4. α is absolutely normal if an only if it is absolutely normal à la
Borel.

A nice proof of the equivalence of the two definitions can be read in [42, Theorem
1.3, pp. 5–7]. Sierpinki’s work is based on this last Definition 2.2.3 of normality, while
Turing’s manuscript (studied from section 2.6 of this chapter) is based in the first
Definition 2.2.2.

Stochasticity, as conceived by von Mises [78], Church [28] and Wald [79], is related
with randomness. If the reader is interested in this topic, refer to the work of van
Lambalgen [77], Ambos-Spies [1], Merkle [57], Ambos-Spies, Mayordomo, Wang and
Zheng [2] and Durand and Vereshchagin [36] . For a complete compendium of the
results in this area, see [32].

2.3 Sierpinski’s result of 1916

Sierpinski [69] achieves an elementary proof of an important proposition proved by
E. Borel that states that almost all real numbers are absolutely normal [16]. At the
same time he gives a way to effectively determine one such number. Following his
notation, he defines ∆(ε) ⊆ P(R) as a set of certain open intervals with rational end
points. Although the set ∆(ε) contains countably many intervals, they do not cover
the whole (0, 1) interval. Sierpinski proves that every real number in (0, 1) that is
external to every interval of ∆(ε) is absolutely normal.

∆(ε) is defined as the union of infinitely many sets of intervals ∆q,m,n,p.

Definition 2.3.1. The set of reals ∆(ε) is

∆(ε) =
⋃
q≥2

⋃
m≥1

⋃
n≥nm,q(ε)

q−1⋃
p=0

∆q,m,n,p

The parameter ε is a number in (0, 1] used to bound the measure of ∆(ε). In
the above definition the variable q ranges over all possible scales, n ranges over
the lengths of fractional expansions, p ranges between 0 and q − 1, m allows for
arbitrarily small differences in the rate of appearance of the digit p in the fractional
expansions.

Definition 2.3.2. ∆q,m,n,p ⊆ P(R) is the set of all open intervals of the form(
b1
q

+
b2
q2

+ · · ·+ bn
qn

− 1
qn
,
b1
q

+
b2
q2

+ · · ·+ bn
qn

+
2
qn

)
such that ∣∣∣∣Qp(b1, b2, . . . , bn)

n
− 1
q

∣∣∣∣ ≥ 1
m

(2.1)

where 0 ≤ bi ≤ q − 1 for 1 ≤ i ≤ n and Qp(b1, b2, . . . , bn) represents the number of
times that the digit p appears amongst b1, b2, . . . , bn.

2.4. Computing an absolutely normal number 23

The idea is that ∆q,m,n,p contains all numbers that are not normal in the scale
of q. If a number is normal in the scale of q we expect that the rate of appearance
of the digit p in a prefix of length n to be as close as possible to 1/q. Each interval
in ∆q,m,n,p contains all numbers that written in the scale of q start with 0.b1 b2 . . . bn
and the digit p appears in 0.b1 b2 . . . bn at a rate far from 1/q -here far from means
with a difference greater than or equal to 1/m. Let us observe that the right end of
the intervals in ∆q,m,n,p add 2/qn: having added only 1/qn would leave the number

0.b1 b2 . . . bn (q − 1) (q − 1) (q − 1) · · · = b1
q

+
b2
q2

+ · · ·+ bn
qn

+
1
qn

outside the open interval, and this number must be included in the interval. Clearly,
each interval in ∆q,m,n,p has measure 3/qn and for fixed q, m, n, ∆q,m,n,p is a finite
set of intervals.

From Sierpinski’s proof, it follows that nm,q(ε) must be large enough as to imply
µ (∆(ε)) < ε; nm,q(ε) = b24m6q2/εc + 2 suffices. In order to bound the measure of
∆(ε), Sierpinski works with the sum of the measures of each interval of ∆q,m,n,p:

Definition 2.3.3.

s(ε) =
∑
q≥2

∑
m≥1

∑
n≥nm,q(ε)

q−1∑
p=0

∑
I∈∆q,m,n,p

µ (I)

He proves that
µ (∆(ε)) ≤ s(ε) < ε

for every ε ∈ (0, 1]. We are abusing notation here, because ∆(ε) is not a set of reals
but a set of intervals. For simplicity, for any set of intervals C we will write µ (C) for
µ
(⋃

I∈C I
)
. Of course, µ (C) ≤

∑
I∈C µ (I).

E(ε) is defined as the set of all real numbers in (0, 1) external to every interval of
∆(ε), i.e. E(ε) = (0, 1) \∆(ε) and he proves that -thanks to the definition of ∆(ε)-
for every ε ∈ (0, 1], every real in E(ε) is absolutely normal. Since µ (E(ε)) > 1− ε,
for every ε in (0, 1], every real in (0, 1) is absolutely normal with probability 1. This
was E. Borel’s result that almost all (in the sense of measure theory) real numbers
are absolutely normal.

Although the measure of E(ε) is greater than 1−ε, no interval can be completely
included in E(ε). If this happened there would be infinitely many rationals belonging
to E(ε), contradicting absolute normality. Thus, E(ε) is a set of infinitely many
isolated irrational points. Sierpinski defines ξ = min(E(1)), and in this way he
determines a particular absolutely normal number.

2.4 Computing an absolutely normal number

Our work is based on one essential observation: we can give a computable enumer-
ation of Sierpinski’s set ∆(ε), and we can bound the error measure in each step. To
simplify notation, we fix a rational ε ∈ (0, 1/2] (in fact, ε can be any computable
real in (0, 1/2]) and we rename ∆ = ∆(ε); s = s(ε); nm,q = nm,q(ε). We define the
following computable sequence (∆k)k∈N+ :

24 2. Absolutely normal numbers

Definition 2.4.1. For any k, The set of reals ∆k is

∆k =
k+1⋃
q=2

k⋃
m=1

knm,q⋃
n=nm,q

q−1⋃
p=0

∆q,m,n,p.

We also define the natural upper bound to the measure of each term in the
sequence:

Definition 2.4.2. For any k, the real sk is

sk =
k+1∑
q=2

k∑
m=1

knm,q∑
n=nm,q

q−1∑
p=0

∑
I∈∆q,m,n,p

µ (I) .

It is clear that limk→∞ sk = s and
⋃

k∈N∆k = ∆. Since sk is the sum of the
measures of all intervals belonging to ∆k, we have µ (∆k) ≤ sk and similarly we have
µ (∆) ≤ s. Furthermore, for every natural k, sk ≤ s. Let us observe that for every
pair of natural numbers k and l such that k ≤ l, we have ∆k ⊆ ∆l, and for any k,
∆k ⊆ ∆. Finally, we define the error of approximating s by sk, rk = s− sk. We can
give an upper bound on rk, a result that makes our construction computable.

Theorem 2.4.3. For every k ≥ 1, rk < 5ε
2k .

Proof. Let us define

Sq,m,n =
q−1∑
p=0

∑
I∈∆q,m,n,p

µ (I) .

By splitting the sums in the definition of s, we obtain

s =
k+1∑
q=2

k∑
m=1

knm,q∑
n=nm,q

Sq,m,n +
k+1∑
q=2

k∑
m=1

∑
n≥knm,q+1

Sq,m,n +

k+1∑
q=2

∑
m≥k+1

∑
n≥nm,q

Sq,m,n +
∑

q≥k+2

∑
m≥1

∑
n≥nm,q

Sq,m,n. (2.2)

But the first term of (2.2) is sk, so the rest is rk.

rk =
k+1∑
q=2

k∑
m=1

∑
n≥knm,q+1

Sq,m,n +
k+1∑
q=2

∑
m≥k+1

∑
n≥nm,q

Sq,m,n +

∑
q≥k+2

∑
m≥1

∑
n≥nm,q

Sq,m,n. (2.3)

We bound each of the three terms that appear in the above equation. From Sier-
pinski’s proof we know that Sq,m,n < 12m4/n2. Hence, the third term of equation
(2.3) can be bounded by

12
∑

q≥k+2

∑
m≥1

m4
∑

n≥nm,q

1/n2

 . (2.4)

2.4. Computing an absolutely normal number 25

Let us now find a bound for
∑

n≥nm,q
1/n2 of equation (2.4). For any i ≥ 1, we

know that
∑

n≥i+1 1/n2 < 1/i, and by the definition of nm,q we have, nm,q − 1 =
b24m6q2/εc + 1 > 24m6q2/ε. Then,

∑
n≥nm,q

1/n2 < ε
24m6q2 . Applying this last

result to (2.4) we have

∑
q≥k+2

∑
m≥1

∑
n≥nm,q

Sq,m,n <
ε

2

 ∑
q≥k+2

1/q2

∑
m≥1

1/m2


<

ε

k
.

Similarly, the second term of equation (2.3) can be bounded by

ε

2

∑
q≥2

1/q2

 ∑
m≥k+1

1/m2

 <
ε

2k
. (2.5)

Finally, the first term of equation (2.3) can be bounded by

12
∑
q≥2

∑
m≥1

m4
∑

n≥knm,q+1

1/n2

 <
ε

k
. (2.6)

Replacing in (2.3) the bounds found in (2.4), (2.5) and (2.6) we conclude

rk <
ε

k
+

ε

2k
+
ε

k
=

5ε
2k
.

and this finishes the proof.

We now give an overview of our construction of the binary number

Z = 0.Z(0)Z(1)Z(2) . . . (2.7)

To determine the first digit of Z we divide the [0, 1] interval in two halves, I0
0 =

[0, 1/2] and I1
0 = [1/2, 1], each one of measure 1/2. Thinking in the scale of 2, in

I0
0 there are only numbers whose first fractional digit is 0 while in I1

0 there are only
numbers whose first fractional digit is 1. By Sierpinski’s result we know that neither
∆ nor any of the ∆k cover the whole segment [0, 1]. Of course, all reals external to
∆ must either be in I0

0 or in I1
0 . The idea now is to determine a subset of ∆, ∆p0 ,

big enough (i.e. sufficiently similar to ∆) as to ensure that, whenever ∆p0 does not
completely cover a given interval, then ∆ does not either. We can guarantee this
because we have an upper bound on the error of approximating ∆ at every step.
We pick the interval I0

0 or I1
0 , the least covered by ∆p0 . If we select I0

0 then there
will be real numbers external to every interval of ∆ whose first digit in the binary
expansion is 0; therefore, we define Z(0) = 0. Similarly, if we select I1

0 we define
Z(0) = 1.

To define the rest of the digits we proceed recursively. We will divide IZ(n−1)
n−1 in

two halves defining the intervals I0
n and I1

n, each of measure 1/2n. At least one of

26 2. Absolutely normal numbers

the two will not be completely covered by ∆. The n-th digit of Z will be determined
by comparing the measure of a suitable set ∆pn restricted to the intervals I0

n and
I1

n, where the index pn is computably obtained from n. If we select I0
n, then we will

define Z(n) to be 0, otherwise Z(n) will be 1. Since these measures are computable
we have obtained an algorithm to define a real number Z, digit by digit, such that
Z is external to every interval of ∆. By Sierpinski’s result, Z is absolutely normal.

Before proceeding we shall prove some results, concerning the error we make
when approximating ∆ with ∆k. The following proposition gives us a bound on the
measure of the sets that have not been enumerated at step k.

Proposition 2.4.4. For every k, µ (∆ \∆k) ≤ rk.

Proof. Since ∆k is included in ∆, the measure of ∆ \ ∆k is less than or equal to
the sum of the measures of those intervals in ∆ but not in ∆k. Hence µ (∆ \∆k) ≤
s− sk = rk.

We are also able to bound the measure of the difference between two sets enu-
merated at different steps.

Proposition 2.4.5. For every k and l such that k ≤ l, µ (∆l \∆k) ≤ rk − rl.

Proof. Since ∆k is included in ∆l, the measure of ∆l \ ∆k is less than or equal to
the sum of the measures of those intervals in ∆l but not in ∆k. Hence µ (∆l \∆k) ≤
sl − sk = rk − rl.

Let C be a set of intervals and let I be an interval. We will denote with C ∩ I
the restriction of C to I, i.e. I ∩

⋃
J∈C J .

Lemma 2.4.6. For any interval I and any k, µ (∆ ∩ I) ≤ µ (∆k ∩ I) + rk.

Proof. Since ∆k ⊆ ∆, for any k we have that ∆ ∩ I ⊆ (∆k ∩ I) ∪
(⋃

I∈∆\∆k
I
)
.

Taking measure we obtain µ (∆ ∩ I) ≤ µ (∆k ∩ I)+µ (∆ \∆k). By Proposition 2.4.4
we have µ (∆ ∩ I) ≤ µ (∆k ∩ I) + rk.

Lemma 2.4.7. For any interval I and any k and l such that k ≤ l, µ (∆l ∩ I) ≤
µ (∆k ∩ I) + rk − rl.

Proof. The argument is similar to the one in the proof of Lemma 2.4.6, using Propo-
sition 2.4.5 and the fact that ∆l ∩ I ⊆ (∆k ∩ I) ∪

(⋃
I∈∆l\∆k

I
)
.

Lemma 2.4.8. The function f : N+ → Q such that f(k) = µ (∆k) is computable.
Also the function g : N+ × Q × Q → Q such that g(k, a, b) = µ (∆k ∩ (a, b)) is
computable.

Proof. ∆k is a finite set of known intervals with rationals endpoints. Moreover, since
condition (2.1) is clearly computable, and the limits in the unions of Definition 2.4.1
also are, the function which given k produces a list of rationals

a1, b1, a2, b2, . . . , am, bm

2.4. Computing an absolutely normal number 27

(m depending on k) such that ai < bi < ai+1 and ∆k = (a1, b1)∪· · ·∪(am, bm) is com-
putable. Hence µ (∆k) ∈ Q and µ (∆k ∩ (a, b)) ∈ Q. An algorithm for calculating
these magnitudes from k can be easily given.

Theorem 2.4.9. There is a real Z which is computable and absolutely normal.

Proof. We give an algorithm to determine every bit of Z (see (2.7)). We prove that
for all m, if we define

pm = 5 · 22m, (2.8)

um = ε+
m∑

j=0

2jrpj , (2.9)

I0
m = [0.Z(0)Z(1) . . . Z(m− 1) , 0.Z(0)Z(1) . . . Z(m− 1) 1] , (2.10)
I1

m = [0.Z(0)Z(1) . . . Z(m− 1)1 , 0.Z(0)Z(1) . . . Z(m− 1) 111 . . .] ,

Z(m) =

{
0 if µ

(
∆pm ∩ I0

m

)
≤ µ

(
∆pm ∩ I1

m

)
;

1 otherwise.
(2.11)

then we obtain
µ
(
∆ ∩ IZ(m)

m

)
< 1/2m+1 = µ

(
IZ(m)

m

)
(2.12)

and
µ
(
∆pm ∩ IZ(m)

m

)
+ rpm < um/2m+1. (2.13)

For the determination of the first digit, take m = 0 in definitions (2.8), (2.9),
(2.10) and (2.11). Clearly, I0

0 = [0, 1/2] and I1
0 = [1/2, 1] and

µ
(
∆p0 ∩ I0

0

)
+ µ

(
∆p0 ∩ I1

0

)
= µ (∆p0) ≤ sp0 .

Adding rp0 + rp0 at each side of this inequality and using the definition of rp0 , we
have (

µ
(
∆p0 ∩ I0

0

)
+ rp0

)
+
(
µ
(
∆p0 ∩ I1

0

)
+ rp0

)
≤ sp0 + rp0 + rp0

= s+ rp0

< ε+ rp0 .

It is impossible that both terms µ
(
∆p0 ∩ I0

0

)
+rp0 and µ

(
∆p0 ∩ I1

0

)
+rp0 be greater

than or equal to (ε+ rp0)/2. Thus, either µ
(
∆p0 ∩ I0

0

)
is less than (ε+ rp0)/2− rp0

or µ
(
∆p0 ∩ I1

0

)
is. Following (2.11),

Z(0) =

{
0 if µ

(
∆p0 ∩ I0

0

)
≤ µ

(
∆p0 ∩ I1

0

)
;

1 otherwise.

and then we proved (2.13) for m = 0:

µ
(
∆p0 ∩ I

Z(0)
0

)
+ rp0 <

ε+ rp0

2
.

28 2. Absolutely normal numbers

The idea is that the value of p0 is large enough so that the error rp0 is sufficiently
small to guarantee that even if all the remaining intervals that have not yet been
enumerated at step p0 fall in IZ(0)

0 , the whole IZ(0)
0 will not be completely covered

by ∆. Theorem 2.4.3 states that rp0 < 5ε/2p0. Following (2.8), p0 = 5 and so
rp0 < ε/2. Then,

µ
(
∆p0 ∩ I

Z(0)
0

)
+ rp0 <

ε+ rp0

2
< ε ≤ 1/2

and using Lemma 2.4.6 we obtain

µ
(
∆ ∩ IZ(0)

0

)
< 1/2 = µ

(
IZ(0)

0

)
,

which is exactly what we wanted, i.e. (2.12) specializing for m = 0.
This means that the union of all the intervals belonging to ∆ will never cover the

whole interval IZ(0)
0 , whose measure is 1/2. Thus, there exist real numbers belonging

to no interval of ∆ that fall in the interval IZ(0)
0 . These have their first digit equal

to Z(0).
For the determination of the n-th digit, n > 1, assume definitions (2.8), (2.9),

(2.10) and (2.11) and also assume (2.12) and (2.13) are true for all m ≤ n− 2. We
prove that if we follow the definitions (2.8), (2.9), (2.10) and (2.11) for m = n− 1,
we arrive to (2.12) and (2.13) for m = n− 1.

By (2.8), pn−1 = 5 · 22n−2. Following (2.10), we split the interval IZ(n−2)
n−2 in two

halves of measure 1/2n each:

I0
n−1 = [0.Z(0)Z(1) . . . Z(n− 2) , 0.Z(0)Z(1) . . . Z(n− 2) 1] ;
I1

n−1 = [0.Z(0)Z(1) . . . Z(n− 2)1 , 0.Z(0)Z(1) . . . Z(n− 2) 111 . . .]

(written in the scale of 2). As they partition the interval IZ(n−2)
n−2 , we have

µ
(
∆pn−1 ∩ I0

n−1

)
+ µ

(
∆pn−1 ∩ I1

n−1

)
= µ

(
∆pn−1 ∩ I

Z(n−2)
n−2

)
.

Since pn−1 ≥ pn−2 and using Lemma 2.4.7 we obtain

µ
(
∆pn−1 ∩ I0

n−1

)
+ µ

(
∆pn−1 ∩ I1

n−1

)
≤ µ

(
∆pn−2 ∩ I

Z(n−2)
n−2

)
+ rpn−2 − rpn−1 .

Adding rpn−1 + rpn−1 to both sides of this inequality we have(
µ
(
∆pn−1 ∩ I0

n−1

)
+ rpn−1

)
+
(
µ
(
∆pn−1 ∩ I1

n−1

)
+ rpn−1

)
≤

µ
(
∆pn−2 ∩ I

Z(n−2)
n−2

)
+ rpn−2 + rpn−1

and by (2.9) and (2.13),(
µ
(
∆pn−1 ∩ I0

n−1

)
+ rpn−1

)
+
(
µ
(
∆pn−1 ∩ I1

n−1

)
+ rpn−1

)
< un−1/2n−1.

2.4. Computing an absolutely normal number 29

Hence, one of the two terms, µ
(
∆pn−1 ∩ I0

n−1

)
+ rpn−1 or µ

(
∆pn−1 ∩ I1

n−1

)
+ rpn−1 ,

must be less than un−1/2n. Following (2.11), we define

Z(n− 1) =

{
0 if µ

(
∆pn−1 ∩ I0

n−1

)
≤ µ

(
∆pn−1 ∩ I1

n−1

)
;

1 otherwise.

By Theorem 2.4.3 and (2.8) we have

un−1 = ε+
n−1∑
j=0

2jrpj < ε+ ε

n−1∑
j=0

2−j−1 < 2ε.

From the above inequality and from the definition of Z(n− 1) we obtain

µ
(
∆pn−1 ∩ In−1

Z(n−1)

)
+ rpn−1 < un−1/2n

< 2ε/2n ≤ 1/2n,

which proves (2.13) for m = n− 1. Furthermore, using Lemma 2.4.6 we deduce

µ
(
∆ ∩ In−1

Z(n−1)

)
< 1/2n = µ

(
In−1

Z(n−1)

)
.

which proves (2.12) for m = n − 1. Hence, the set ∆ does not cover the interval
In−1

Z(n−1). There must be real numbers in the interval In−1
Z(n−1) that belong to no

interval of ∆.

Lemma 2.4.10. The number Z is computable and absolutely normal.

Proof. In our construction we need only to compute the measure of the sets ∆pm ∩
Im

Z(m). Then, by Lemma 2.4.8, Z is computable.
Let us prove that Z is external to every interval of ∆. Suppose not. Then,

there must be an open interval I ∈ ∆ such that Z ∈ I. Consider the intervals
IZ(0)

0 , IZ(1)
1 , IZ(2)

2 , . . . By our construction, Z belongs to every In
Z(n). Let us call J

the first interval IZ(n)
n of the sequence such that IZ(n)

n ⊆ I. Such an interval exists
because the measure of IZ(n)

n goes to 0 as n increases. But then the interval J is
covered by ∆. This contradicts that in our construction at each step n we choose
an interval IZ(n)

n not fully covered by ∆. Thus, Z belongs to no interval of ∆, so by
Sierpinski’s result, Z is absolutely normal.

This completes the proof of the whole result.

Finally, it follows from Theorem 2.4.3 that the bound s on µ (∆) is also com-
putable.

Corollary 2.4.11. The real s is computable.

Proof. Let us define the sequence of rationals in the scale of 2, an = s5ε2n−1 . By
Theorem 2.4.3 we have |s− an| = s − s5ε2n−1 = r5ε2n−1 < 2−n. Then, it is possible
to approximate s by a computable sequence of rationals an such that the first n
digits of an coincide with the first n digits of s. Therefore, s is computable.

30 2. Absolutely normal numbers

2.5 About Sierpinski’s and other examples

Sierpinski takes ξ = min(E(1)): this is his example of an absolutely normal number
of [69]. We can consider the family of numbers that are definable using Sierpinski’s
idea for different values of ε. Fix ε to be any rational real in (0, 1] and let Z̃ =
min(E(ε)). Following the idea of the construction of Theorem 2.4.9, we can define

Z̃ = Z̃(0) Z̃(1) . . .

in the following way:

Z̃(n) =

{
0 if µ

(
∆ ∩ I0

n

)
< 1/2n+1;

1 otherwise.

where, as in the proof of Theorem 2.4.9, the intervals I0
n and I1

n are defined recur-

sively as are the two halves of IZ̃(n−1)
n−1 and they have measure 1/2n+1.

Since µ
(
∆ ∩ I0

n

)
can be computably approximated from below (for example,

via the computable approximation ∆k of Definition 2.4.1), the number Z̃ (an in
particular Sierpinski’s ξ) turns out to be left-c.e. Here is the sketch of that fact.
Defining the computable sequence of rationals

Z̃i = Z̃i(0) Z̃i(1) . . . Z̃i(i)

where

Z̃i(n) =

{
0 if µ

(
∆i ∩ I0

n,i

)
< 1/2n+1;

1 otherwise.

and where the intervals I0
n,i and I1

n,i are defined as before but relative to the approx-

imation ∆i instead of ∆. If ever µ
(
∆i ∩ I0

n,i

)
grows too much and becomes greater

than or equal to 1/2n+1, then we have to change the bit at position n from 0 to 1
and maybe all the bits at positions greater than n. This just means that Z̃i ≤ Z̃i+1

and since Z̃i → Z̃ when i→∞, we have that Z̃ is left-c.e..

The construction we presented in section 2.4 defines Z, a computable absolutely
normal number in the scale of 2. We can adapt the construction to define numbers
in any other scale: to compute a number in the scale of q ≥ 2, at each step we
must divide the interval selected in the previous step in q parts. In the n-th step we
determine the n-th digit defining the intervals I0

n, I1
n, . . . , I

q−1
n (of measure 1/qn),

where

In
i =

 i

qn
+

n−1∑
j=1

Z(j − 1)
qj

,
i+ 1
qn

+
n−1∑
j=1

Z(j − 1)
qj


for 0 ≤ i < q. We will choose pm = 5 (q − 1) 22m and following the same steps as in
the construction of a number in the scale of 2, there must be an index i such that

µ
(
∆pn−1 ∩ Ii

n−1

)
<

1
qn

ε+ (q − 1)
n−1∑
j=0

2jrpj

− rpn−1 .

2.6. Turing’s unpublished manuscript 31

As before, we define Z(n − 1) as the first index corresponding to the interval least
covered by ∆pm : Z(n− 1) is the least i ∈ {0, . . . , q − 1} such that µ

(
∆pn−1 ∩ Ii

n−1

)
is least amongst all µ

(
∆pn−1 ∩ I

j
n−1

)
for j ∈ {0, . . . , q − 1}.

In principle, for different scales the numbers will be distinct (they will not be
Z expressed in different scales), while they will all be examples of computable ab-
solutely normal numbers. The definition of absolute normality is asymptotic, that
is, it states a property that has to be true in the limit. Thus, given an absolutely
normal number, we can alter it by adding or removing a finite number of digits of
its fractional expansion to obtain an absolutely normal number. For example, we
could fix an arbitrary number of digits of the fractional expansion and complete the
rest with the digits of Z.

2.6 Turing’s unpublished manuscript

The aim of the next three sections is to reconstruct Alan Turing’s manuscript en-
titled A note on normal numbers which remained unpublished until 1992, when it
was included in the “Collected works of Alan Turing” edited by J.L. Britton [76, pp.
117–119, with notes of the editor in pp. 263–265]. Britton remarks the difficulties
to make the transcript because the originals are incomplete and quite hard to read.
The original manuscript is in Turing’s archive in King’s College, Cambridge, and a
scanned version of it is available on the Web from www.turingarchive.org. Our
motivation for this work was to explore and make explicit the techniques used by
Turing in relation to normal numbers especially because there are still no known gen-
eral methods to prove normality of given real numbers nor there are fast algorithms
to construct absolutely normal numbers (see [3, 4, 17]).

In his manuscript Turing presents two results (here transcribed as Theorems 2.6.1
and 2.6.2) with incomplete proofs. The first states that there is a computable con-
struction showing that almost all real numbers are absolutely normal.

Theorem 2.6.1 (Turing’s first theorem). There is a computable function c : N ×
N→ P ((0, 1)), such that

1. c(k, n) is a finite union of intervals with rational endpoints;

2. c(k, n+ 1) ⊆ c(k, n);

3. µ (c(k, n)) > 1− 1/k.

and for each k, E(k) =
⋂

n c(k, n) has measure 1 − 1/k and consists entirely of
absolutely normal reals.

The function c is computable in the sense that given k and n we can compute

a1 < b1 < a2 < b2 < · · · < am < bm

(m depending on n and k) such that ai, bi are rationals in (0, 1) and

c(k, n) = (a1, b1) ∪ · · · ∪ (am, bm).

Turing’s second theorem is an algorithm to produce absolutely normal numbers.

www.turingarchive.org

32 2. Absolutely normal numbers

Theorem 2.6.2 (Turing’s second theorem). There is an algorithm that given an
infinite sequence θ ∈ {0, 1}ω, produces an absolutely normal real number α ∈ (0, 1)
in the scale of 2, in such a way that the first n digits of θ determine α to within
2−n. In case θ is computable, so is α.

In the next two sections we successfully reconstruct Turing’s first and second
theorems. Our proof of the first theorem is indeed a completion of Turing’s proof,
except that some actual bounds we obtain do not fully coincide with those in
the manuscript. To reconstruct the second theorem we introduce more dramatic
changes. Both, Turing’s intended algorithm and our reconstruction of it, are highly
exponential, as with the algorithm of Theorem 2.4.9.

Whenever possible, we keep the notation used by Turing. Throughout the next
two sections we will consistently use the following convention:

Convention 2.6.3. R ∈ N will be used for denoting the length of prefixes after the
fractional point; n will be a natural number, generally between 0 and R; t ∈ N, t ≥ 2
will denote a scale; γ will denote a word in the scale of t; r will be the length of
γ; ε ∈ R will denote a (small) real used to bound certain deviations from expected
values.

We shall fix a bijection between words of length r in the scale of t with digits in
the scale of tr.

2.7 Turing’s first theorem

Turing gives a uniform method to, given k ∈ N large enough, construct a set E(k)
of points in (0, 1) that are absolutely normal such that µ(E(k)) = 1 − 1/k. E(k)
is an infinite countable intersection of certain computably defined sets of intervals
c(k, n) that contain the reals that are candidates to be absolutely normal. Given
k, n, the notion of candidate is a computable property on a real α. It says that
in the initial segment of the fractional expansion of α of size R expressed in each
scale up to T , every word with length up to L, occurs the expected number of
times plus or minus ∆, where R, T , L, and ∆ are computable functions of k, n (see
section 2.8). The sets c(k, n) are defined as a finite boolean combination of intervals
with rational endpoints, and they are defined as to have Lebesgue measure equal to
1− 1/k + 1/(k + n).

In Turing’s manuscript the proof that the sets c(k, n) have this desired measure
depends on an unproved statement: Lemma 2.7.2. This lemma gives an upper bound
for the number of words of a given length in which a given word occurs too often or
too seldom.

We have not been able to prove nor disprove Turing’s assertion. Instead, in
Lemma 2.7.7 we provide an alternative bound, less sharp than Turing’s but still
allowing for the same construction.

Definition 2.7.1. Let t, γ and r as in Convention 2.6.3.

• Q(w, γ) is the number of occurrences of γ in w;

2.7. Turing’s first theorem 33

• P (t, γ, n,R) = {w ∈ {0, . . . t− 1}R : Q(w, γ) = n};

• N(t, γ, n,R) = ‖P (t, γ, n,R)‖.

The symbolic expression of the function N is not a simple one because of the
possible overlapping of different occurrences of γ when |γ| > 1; for instance, the word
γ = 00 occurs once in 1100, twice in 1000 and three times in 0000. However, in any
scale t, the symbolic expression for the function N considering the exact number of
occurrences of a given digit is simple: the number of words of length R in the scale
of t with exactly n occurrences of the digit d in assigned places is (t−1)R−n. Hence,
the number of words of length R in the scale of t with exactly n occurrences of the
digit d in some place is

N(t, d, n,R) =
(
R

n

)
(t− 1)R−n (2.14)

and hence ∑
0≤n≤R

N(n) = tR. (2.15)

Lemma 2.7.2 (Turing, unproved). Let t, γ and r be as in Convention 2.6.3, and
let δ ∈ R be such that δ tr

R < 0.3. Then,∑
|n−R/tr|>δ

N(t, γ, n,R) < 2tRe−
δ2tr

4R .

We will substitute it with Lemma 2.7.7 below. We first need some auxiliary
results.

Lemma 2.7.3 (adapted from Harman’s [42, Lemma 1.1]). Let d be a digit in the
scale of t, t ≥ 2. Assuming R > 6t and with ε such that 6/R ≤ ε ≤ 1/t, both∑

n≥R/t+εR

N(t, d, n,R) and
∑

n≤R/t−εR

N(t, d, n,R)

are at most tRe−tε2R/6.

Proof. Since t, d and R are fixed, we write N(n) for N(t, d, n,R). Recalling from
(2.14) the symbolic expression for N(n), it is easy to see that

N(n)
N(n+ 1)

=
(n+ 1)(t− 1)

R− n
. (2.16)

For all n ≤ R/t we have N(n) > N(n − 1) and for all n > R/t, N(n) ≤ N(n − 1).
It is not difficult to see that the quotients in (2.16) increase as n increases.

Let a = R/t− εR and b = R/t+ εR. The strategy is to shift the first sum to the
right by m = bεR/2c positions, and the second sum to the left by m+ 1 positions.

Let us compute the stated upper bound for the first sum. For any n

N(n) =
N(n)

N(n+ 1)
· N(n+ 1)
N(n+ 2)

· . . . · N(n+m− 1)
N(n+m)

·N(n+m) (2.17)

34 2. Absolutely normal numbers

and for each i such that
i ≤ bac+m− 1 (2.18)

we have

N(i)
N(i+ 1)

≤ N(bac+m− 1)
N(bac+m)

=
(bac+m)(t− 1)
R− bac −m+ 1

<
(R/t− εR/2)(t− 1)
R−R/t+ εR/2

= 1− εt/2
1− 1/t+ ε/2

.

Since ε ≤ 1/t we conclude

N(i)
N(i+ 1)

< 1− εt/2

< e−tε/2. (2.19)

If n ≤ a then n ≤ bac and hence i = n+m− 1 satisfies condition (2.18). Since the
greatest quotient among the ones which appear in equation (2.17) is the last one,
we can apply (2.19) to each factor in (2.17) to obtain

N(n) < e−tεm/2 N(n+m)
≤ e−tε(εR/2−1)/2 N(n+m)

= e−tε2R/4+tε/2 N(n+m)

≤ e−tε2R/6 N(n+m) (2.20)

where we use the definition of m, and in the last inequality (2.20) we have ε2tR/6 ≤
ε2tR/4− εt/2, since εR ≥ 6. Hence by (2.15) we have∑

n≤a

N(n) < e−tε2R/6
∑
n≤a

N(n+m)

≤ tRe−tε2R/6.

To bound the second sum, we use the same strategy, but now we shift the sum
to the left by m+ 1 positions. For any n,

N(n) =
N(n)

N(n− 1)
· N(n− 1)
N(n− 2)

· . . . · N(n−m)
N(n−m− 1)

·N(n−m− 1) (2.21)

(with these ratios increasing as n− i decreases), and for each i such that

i ≥ dbe −m (2.22)

2.7. Turing’s first theorem 35

we have

N(i)
N(i− 1)

≤ N(dbe −m)
N(dbe −m− 1)

=
R− dbe+m+ 1
(dbe −m)(t− 1)

≤ R−R/t− εR/2 + 1
(R/t+ εR/2)(t− 1)

< 1− εt/3.

The last inequality is just equivalent to εt− 2/t− ε < 1− 6
εtR and since εt ≤ 1 and

ε > 0 it is sufficient to prove that 1−2/t < 1− 6
εtR , which clearly holds for ε > 3/R.

Therefore,
N(i)

N(i− 1)
< e−tε/3. (2.23)

If n ≥ b, then n ≥ dbe and hence i = n − m satisfies condition (2.22). Since the
greatest quotient among those which appear in equation (2.21) is the last one, we
can apply (2.23) to each factor in (2.21) to obtain, as in (2.20)

N(n) < e−tε(m+1)/3N(n−m− 1)

≤ e−
tε2R

6 N(n−m− 1)

and from this and (2.15), ∑
n≥b

N(n) < tRe−tε2R/6.

This completes the proof.

Definition 2.7.4. Let t, γ and r be as in Convention 2.6.3. For j ∈ {0, . . . , r − 1}
we define

• Qj(w, γ) as the number of occurrences of γ in w at positions of the form r ·q+j
(i.e. congruent to j modulo r);

• Pj(t, γ, n,R) = {w ∈ {0 . . . t− 1}R : Qj(w, γ) = n}.

Lemma 2.7.5. Let t, γ and r as in Convention 2.6.3 and let w ∈ P (t, γ, n,R).
There is j ∈ {0, . . . , r− 1} such that w ∈ Pj(t, γ,m,R) for some m ≤ n/r and there
is j ∈ {0, . . . , r − 1} such that w ∈ Pj(t, γ,m,R) for some m ≥ n/r.

Proof. Suppose w ∈ P (t, γ, n,R), i.e., γ has n occurrences in w. For each j ∈
{0, . . . , r − 1} let nj ≥ 0 be the number of occurrences of γ in w at positions
congruent to j modulo r. Then, w ∈ Pj(t, γ, nj , R), and clearly

∑
0≤nj≤r−1 nj = n.

This equality implies that nj ≤ n/r for some j, and not all njs can be strictly smaller
than n/r.

The following lemma makes a correspondence between sums of N(t, γ, n,R) and
sums of N(tr, d, n, bR/rc), where d is the digit in the scale of tr corresponding to
the word γ.

36 2. Absolutely normal numbers

Lemma 2.7.6. Let t, γ and r be as in Convention 2.6.3 and let d be the digit
corresponding to the word γ in the scale of tr. Then∑

n≤a

N(t, γ, n,R) ≤ tr−1r
∑

m≤a/r

N(tr, d,m, bR/rc)

and ∑
n≥a

N(t, γ, n,R) ≤ tr−1r
∑

m≥a/r

N(tr, d,m, bR/rc).

Proof. For any j = 0, . . . , r − 1 we define a translation fj which transforms words
w, of length R written in the scale of t into words of length bR/rc written in the
scale of tr.

Here is the translation fj . Let w ∈ {0, . . . , t − 1}R and let k = bR/rc. We
consider the k − 1 blocks

b1 = w(j) . . . w(j + r − 1);
b2 = w(j + r) . . . w(j + 2r − 1);

...
bk−1 = w(j + r(k − 2)) . . . w(j + (k − 1)r − 1);

and a last k-th block

bk = w(j + r(k − 1)) . . . w(l) u

where l = min(j + rk − 1, R − 1) and u is the least word (in lexicographic order)
such that |bk| = l + |u| = r and bk is different from γ. Each bi has length r and so
it can be seen as a single digit in the scale of tr.

Observe that any word v of length R and written in the scale of t and such that

v(j) . . . v(j + kr − 1) = b1 . . . bk

has the same translation than w, i.e. fj(v) = fj(w). The only digits that v may
differ from w are in positions 0, . . . , j − 1 and j + kr, . . . , R− 1, so in total there are
r − 1 such digits. Hence there are at most tr−1 such words v with fj(v) = fj(w).
This implies that

‖Pj(t, γ,m,R)‖ ≤ tr−1N(tr, p,m, k).

Suppose w has exactly n occurrences of γ. By the first part of Lemma 2.7.5
we know that for all n there is j ∈ {0, . . . , r − 1} and m ≤ bn/rc such that w ∈
Pj(t, γ,m,R). Therefore,⋃

n≤a

P (t, γ, n,R) ⊆
⋃

0≤j<r

⋃
m≤a/r

Pj(t, γ,m,R)

2.7. Turing’s first theorem 37

and hence ∑
n≤a

N(t, γ, n,R) = ‖
⋃

0≤n≤a

P (t, γ, n,R)‖

≤
∑
j<r

∑
m≤a/r

‖Pj(t, γ,m,R)‖

≤ tr−1r
∑

m≤a/r

N(tr, d,m, bR/rc).

This completes the proof of the first part. The second part is similar, applying the
last assertion in Lemma 2.7.5.

Lemma 2.7.7. Let t, γ and r be as in Convention 2.6.3 and let ε such that
6/bR/rc ≤ ε ≤ 1/tr. Then∑

|n−R/tr|≥εR

N(t, γ, n,R) < 2tR+2r−2r e−
trε2R

6r .

Proof. Lemma 2.7.3 ensures that, for any digit p in the scale of t, whenever 6/R ≤
ε ≤ 1/t, ∑

n≥R/t+εR

N(t, p, n,R) < tRe−tε2R/6. (2.24)

The idea is to use (2.24) with t̃ = tr, R̃ = R/r, and the digit d corresponding to γ
in the scale of t̃. By the second part of Lemma 2.7.6 we know∑

n≥R/tr+εR

N(t, γ, n,R) ≤ tr−1r
∑

n≥R̃/t̃+εR̃

N(t̃, d, n, bR̃c).

Since bR̃c = R̃−x/r for some x ∈ {0, . . . , r− 1} and since bR̃c ≤ R̃, applying (2.24)
we obtain ∑

n≥R/tr+εR

N(t, γ, n,R) ≤ tr−1r
∑

n≥bR̃c/t̃+εbR̃c

N(t̃, d, n, bR̃c)

≤ tr−1r t̃bR̃c e−t̃ε2bR̃c/6

= tr−1r t̃R̃−x/re−ε2 t̃(R̃−x/r)/6

= tR+r−1r e
−ε2trR

6r e
ε2trx

6r t−x

≤ tR+r−1r e−
ε2trR

6r . (2.25)

To check the last inequality observe that, since ε ≤ 1/tr, the expression eε
2trx/(6r)t−x

is at most 1 (indeed, ε/(6r) ≤ ln t because ε is at most 1/2 and 6r ln t is at least 4).
The other sum is more tricky. Lemma 2.7.3 ensures that for any digit p in the

scale of t, whenever 6/R ≤ ε ≤ 1/t,∑
n≤R/t−εR

N(t, p, n,R) < tRe−tε2R/6. (2.26)

38 2. Absolutely normal numbers

By the first part of Lemma 2.7.6 and the definitions of d, t̃ and R̃ used above, we
know ∑

n≤R/tr−εR

N(t, γ, n,R) ≤ tr−1r
∑

n≤R̃/t̃−εR̃

N(t̃, d, n, bR̃c)

≤ tr−1r
∑

n≤R̃/t̃−εR̃

N(t̃, d, n, dR̃e). (2.27)

Let R = bR̃cr + x where x ∈ {0, . . . , r − 1}. If x 6= 0, since dR̃e = R̃ + (r − x)/r
there is y ∈ {1, . . . , r − 1} such that dR̃e = R̃ + y/r, and if x = 0 then y = 0 also
satisfies the condition. Thus

dR̃e
t̃

− εdR̃e =
R̃

t̃
+
y

t̃r
− εR̃− εy

r

≥ R̃

t̃
− εR̃, (2.28)

where the last inequality holds because y/(t̃r) ≥ εy/r when ε ≤ 1/tr. From (2.27),
using (2.28) and (2.26), we get∑

n≤R/tr−εR

N(t, γ, n,R) ≤ tr−1r
∑

n≤dR̃e/t̃−εdR̃e

N(t̃, d, n, dR̃e)

≤ tr−1t̃dR̃er e−t̃ε2dR̃e/6

= tR+r−1r e−trε2dR̃e/6 ty

≤ tR+2r−2r e−
trε2R

6r . (2.29)

The last inequality follows from the fact that ty ≤ tr−1 and dR̃e ≥ R̃. Joining (2.25)
and (2.29), we obtain the desired upper bound.

Recall the meaning of Q from Definition 2.2.1.

Definition 2.7.8. We denote by B(ε, γ, t, R) the set of reals α ∈ (0, 1) such that

|Q(α, t, γ,R)−R/tr| < εR.

Proposition 2.7.9. Let t, γ and r be as in Convention 2.6.3 and let ε and R be
such that 6/bR/rc ≤ ε ≤ 1/tr. Then

µ (B(ε, γ, t, R)) > 1− 2t2r−2r e−
trε2R

6r .

Proof. Let B(ε, γ, t, R) = (0, 1) \ B(ε, γ, t, R). Observe that if a real α ∈ (0, 1)
belongs to B(ε, γ, t, R) then every real β ∈ (0, 1) such that the first R digits of α
(written in the scale of t) coincide with the first R digits of β (written in the scale
of t) also belongs to B(ε, γ, t, R), which means that the interval

[0.α � R 000 . . . , 0.α � R (t− 1)(t− 1)(t− 1) . . .]

2.7. Turing’s first theorem 39

of measure t−R is included in B(ε, γ, t, R). Here α � R denotes the first R digits of
the fractional expansion of α in the scale of t. Then

B(ε, p, t, R) =
⋃

|n−R/t|≥εR

⋃
w∈P (t,γ,n,R)

[0.w000 . . . , 0.w(t− 1)(t− 1)(t− 1) . . .] .

Since the intervals in the right hand side are disjoint for different words w, we have:

µ
(
B(ε, γ, t, R)

)
= t−R

∑
|n−R/t|≥εR

N(t, γ, n,R)

< 2t2r−2r e−
trε2R

6r . (2.30)

For the last equation apply Lemma 2.7.7. The proof is completed by taking com-
plements.

Definition 2.7.10. For any ε, T , L and R, let

A(ε, T, L,R) =
⋂

2≤t≤T

⋂
1≤r≤L

⋂
γ∈{0,...,t−1}r

B(ε, γ, t, R).

Since each B(ε, γ, t, R) is a finite union of intervals with rational endpoints, then
so is each of the sets A(ε, T, L,R).

Proposition 2.7.11. For any ε, T , L and R, such that 6/bR/Lc ≤ ε ≤ 1/TL,

µ (A(ε, T, L,R)) > 1− 2LT 3L−1 e−
ε2R
3L .

Proof. Let A and B denote the complements of the sets A, B, respectively, in the
interval (0, 1).

µ
(
A(ε, T, L,R)

)
≤
∑

2≤t≤T

∑
1≤r≤L

∑
γ∈{0,...,t−1}r

µ
(
B(ε, γ, t, R)

)
.

Observe that in the third summand there are tr many γs and that∑
2≤t≤T

∑
1≤r≤L

tr =
∑

2≤t≤T

tL+1 − 1
t− 1

≤ TL+1.

The upper bound for µ
(
B(ε, γ, t, R)

)
in (2.30) yields the following uniform upper

bound in terms of the present parameters ε, T,R, L:

µ
(
B(ε, γ, t, R)

)
< 2T 2L−2L e−

2ε2R
3L

valid for all 2 ≤ t ≤ T , 1 ≤ r ≤ L and γ ∈ {0, . . . , t− 1}r. Indeed, from 1 ≤ r ≤ L,
we get 2r/L ≤ 2 ≤ tr; hence, ε2R/(3L) ≤ ε2Rtr/(6r), which gives

µ
(
B(ε, γ, t, R)

)
< 2t2r−2r e−

trε2R
6r < 2T 2L−2 e−

ε2R
3L .

Hence we obtain,

µ
(
A(ε, T, L,R)

)
< 2LT 3L−1 e−

ε2R
3L .

The proof is completed by taking complements.

40 2. Absolutely normal numbers

We now define A(ε, T, L,R) for specific values of its parameters.

Definition 2.7.12. Let Ak = A(ε, T, L,R) for R = k, L =
√

ln k/4, T = eL and
ε = 1/TL.

Proposition 2.7.13. There is k0 such that for all k ≥ k0, µ (Ak) ≥ 1− 1
k(k−1) .

Proof. Let R, T , L and ε be the functions of k given in Definition 2.7.12. Observe
that TL = 16

√
k. Since ε ≥ 6/bR/Lc for all k ≥ 2, the hypothesis of Proposi-

tion 2.7.11 is satisfied. We now prove that

2LT 3L−1 e−
ε2R
3L ≤ 1

k(k − 1)

for large enough k. It suffices to prove T 3Lk2 ≤ e
ε2R
3L because 2L ≤ T . This is

equivalent to
1/ε2 · (9L2 lnT + 6L ln k) ≤ k. (2.31)

Since 1/ε2 = T 2L = 8
√
k, 9L2 lnT = (9/64)(ln k)3/2 and 6L ln k = (3/2)(ln k)3/2,

(2.30) reduces to
(105/64) 8

√
k(ln k)3/2 ≤ k (2.32)

which can be proved to hold for any k ≥ 1.

Remark 2.7.14. Observe that the assignment of Definition 2.7.12 gives initial values
of T smaller than 2 and the initial values of L smaller than 1. This implies that the
initial intersections in Ak will have an empty range. However, as k increases, these
variables will take greater and greater values.

One can give different assignments for L = L(k), T = T (k) and ε = ε(k), where
limk L(k) = ∞, limk T (k) = ∞ and limk ε(k) = 0 and such that L ≥ 1, T ≥ 2 and
Proposition 2.7.13 is verified for suitable large k.

From now on let k0 be the value determined in Proposition 2.7.13 (or Re-
mark 2.7.14).

Theorem 2.7.15. The set
⋂

k≥k0
Ak contains only absolutely normal numbers.

Proof. Assume α ∈
⋂

k≥k0
Ak and α is not normal to the scale of t. This means that

lim
R→∞

Q(α, t, γ,R)
R

6= 1
tr

for some word γ of length r in the scale of t. Hence there is δ > 0 and there are
infinitely many Rs such that

|Q(α, t, γ,R)−R/tr| > Rδ. (2.33)

Let T (k), L(k) and ε(k) be the assignments of Definition 2.7.12 or Remark 2.7.14.
Now fix k1 ≥ k0 large enough such that T (k1) ≥ t, L(k1) ≥ r and ε(k1) ≤ δ. This is
always possible because T (k) →∞, L(k) →∞ ε(k) → 0 when k →∞.

2.8. Turing’s second theorem 41

For any k ≥ k1, α ∈ Ak, and by Definition 2.7.10, α ∈ B(ε(k), γ, t, k). By
Definition 2.7.8 we have

|Q(α, t, γ, k)− k/tr| < kε(k)
≤ kδ.

for any k ≥ k1. Now, any R ≥ k1 satisfying (2.33) leads to a contradiction.

Turing defines c(k, n) as intersections of finitely many Ak and he restricts these
sets so that they have measure exactly 1− 1/k + 1/(k + n).

Definition 2.7.16. The computable function c : N ×N → P ((0, 1)), is defined as
follows. For any k ≥ k0 let c(k, 0) = (0, 1) and

c(k, n+ 1) = Ak+n+1 ∩ c(k, n) ∩ (βn, 1)

where (βn, 1) is an interval so that µ (c(k, n+ 1)) = 1− 1/k + 1/(k + n+ 1).

Remark 2.7.17. It is worth noting that some interval (βn, 1) as above always exists
and it is unique. This is because

µ (Ak+n+1 ∩ c(k, n)) ≥ 1− 1/k + 1/(k + n+ 1).

Since c(k, n) and Ak+n+1 are finite unions of intervals with rational endpoints, their
respective measures are effectively computable; βn is rational and it can be deter-
mined effectively. Hence c(k, n) may be represented by a finite union of disjoint
intervals

(a1, b1) ∪ · · · ∪ (am, bm)

such that ai, bi ∈ Q ∩ (0, 1), ai < bi < ai+1 and such that (a1, b1, a2, b2, . . . , am, bm)
is computable from k and n.

We finally arrive to the proof of Turing’s first theorem.

Proof of Theorem 2.6.1. Clearly, conditions 1, 2 and 3 follow from the definition of
c(k, n) (Definition 2.7.16). Since E(k) ⊆

⋂
i≥k Ai, by Theorem 2.7.15 we conclude

that if k ≥ k0, any real number in E(k) is absolutely normal. By condition 2 and
the fact that µ (c(k, n)) = 1− 1/k + 1/(k + n), we get

µ (E(k)) = lim
n→∞

µ (c(k, n)) = 1− 1/k.

This completes the proof.

2.8 Turing’s second theorem

We present our reconstruction of Turing’s second theorem (Theorem 2.6.2). We do
not maintain the same intervals and bounds that appear in the original manuscript,
which seem to be wrong. We keep the strategy but we introduce new bounds to
prove the correctness of the algorithm.

The idea of the algorithm is to recursively select for each integer n > 0 an interval
In with dyadic rational endpoints such that

42 2. Absolutely normal numbers

• In+1 ⊂ In

• µ (In) = 2−(n+1)

• µ (In ∩ E(k)) > 0.

The intersection of these intervals,
⋂

n In, contains exactly one number which must
be absolutely normal. The correctness of the algorithm relies on the fact that at
each stage n the measure µ (c(k, n) ∩ In) is big enough to allow to proceed with the
next stage.

We now adjust the sets c(k, n) (see Definition 2.7.16) used in Theorem 2.6.1 to
have measure 1− 1/k + 1/kn+1 in order to make them suitable for the algorithm.

Let k0 be as determined in Proposition 2.7.13 (or Remark 2.7.14).

Definition 2.8.1. We define the computable function c : N × N → P ((0, 1)), as
follows. For any k ≥ k0 let c(k, 0) = (0, 1) and

c(k, n+ 1) = Akn+2 ∩ c(k, n) ∩ (βn, 1);

where (βn, 1) is an interval so that µ (c(k, n+ 1)) = 1− 1/k + 1/kn+2.

The reader may verify that it is always possible to find such a βn for k ≥ k0,
because

µ (Akn+2 ∩ c(k, n)) ≥ 1− 1
k

+
1

kn+2
.

Hence, for all n ≥ 0, µ (c(k, n)) = 1− 1/k + 1/kn+1.

Now we proceed with our reconstruction of the proof of Turing’s second theorem.

Proof of Theorem 2.6.2. The following algorithm constructs a real α in (0, 1) in the
scale of 2. It depends on an infinite sequence θ ∈ 2ω (used as an oracle to possibly
determine some digits of α), and uses a fixed parameter k large enough (k ≥ k0 and
k ≥ 4). Here is the algorithm:

Start with I−1 = (0, 1).At stage n ≥ 0, split the interval In−1 into two halves I0
n

and I0
n. That is, if In−1 = (an−1, bn−1), then define

I0
n =

(
an−1,

an−1 + bn−1

2

)
and I1

n =
(
an−1 + bn−1

2
, bn−1

)
and let

M(k, n) = 2−n

(
1/2− 1/k − 1− (2/k)n−1

k2 − 2k
+

2n−1

kn+1

)
.

If both µ
(
c(k, n) ∩ I0

n

)
and µ

(
c(k, n) ∩ I1

n

)
are greater or equal to M(k, n) then

define α(n) = θ(n) and let

In =

{
I0

n if θ(n) = 0;
I1

n otherwise.

2.8. Turing’s second theorem 43

else, if µ
(
c(k, n) ∩ I0

n

)
≥ M(k, n) then define In = I0

n and α(n) = 0; else, define
In = I1

n and α(n) = 1.

The definition of M(k, n) gives an explicit expression for a lower bound of
µ (c(k, n) ∩ In), and verifies the inductive condition M(k, n) − 1/kn+1 + 1/kn+2 =
2M(k, n+ 1).

At each step n, In is either the left half of In−1 (denoted I0
n) or the right half of it

(denoted I1
n). As we mentioned in Remark 2.7.17, c(k, n) is computable. Therefore

we can compute its measure, and also compute the measures of both c(k, n) ∩ I0
n

and c(k, n) ∩ I1
n. All these measures are rational numbers in (0, 1).

The above algorithm defines α =
⋂

n In bit by bit, i.e. at stage n the n-th bit of
α is defined. To prove that α is absolutely normal, we show α ∈ E(k) =

⋂
n c(k, n).

We prove, by induction on n, that for every n ≥ 0,

µ (c(k, n) ∩ In) ≥M(k, n). (2.34)

For n = 0, observe that by Definition 2.8.1, c(k, 0) = (0, 1) and then

µ (c(k, 0) ∩ I0) = 1/2 = M(k, 0).

For the induction, assume (2.34) holds. Since c(k, n+ 1) ⊆ c(k, n) we have

c(k, n+ 1) ∩ In = c(k, n) ∩ In \ (c(k, n) \ c(k, n+ 1)) ∩ In

and

µ (c(k, n+ 1) ∩ In) = µ (c(k, n) ∩ In)− µ ((c(k, n) \ c(k, n+ 1)) ∩ In)
≥ µ (c(k, n) ∩ In)− µ (c(k, n) \ c(k, n+ 1)) . (2.35)

Using (2.34) and µ (c(k, n) \ c(k, n+ 1)) = k−(n+1) − k−(n+2) in (2.35) we have

µ (c(k, n+ 1) ∩ In) ≥ M(k, n)− (k−(n+1) − k−(n+2))
= 2M(k, n+ 1).

It is impossible that both µ
(
c(k, n+ 1) ∩ I0

n+1

)
and µ

(
c(k, n+ 1) ∩ I1

n+1

)
be less

than M(k, n+1). It follows that at least one of the sets c(k, n+1)∩Ii
n+1, i ∈ {0, 1},

has measure greater than or equal to M(k, n+ 1). The algorithm picks as In+1 the
set Ii

n+1 which fulfills this condition, with the oracle used to decide in case both sets
verify it.

It is not difficult to see that for all k ≥ 4, M(k, n) > 0, so at every step n,
c(k, n) ∩ In is non-empty and hence there are absolutely normal numbers in it.
Furthermore by construction, all reals in c(k, n) ∩ In have a fractional expansion
starting with α(0) α(1) . . . α(n). This completes the proof.

In his manuscript Turing keeps for the second theorem the same sets c(k, n)
used in the first theorem, where µ (c(k, n)) = 1 − 1/k + 1/(k + n + 1). We did not
succeed in proving the correctness of the algorithm using these sets. However, our

44 2. Absolutely normal numbers

reconstruction is quite close to Turing’s original idea, since for each k, limn→∞ 1−
1/k + 1/(k + n+ 1) = limn→∞ 1− 1/k + 1/kn+1 = 1− 1/k.

For both, Turing’s intended algorithm and our reconstruction of it, we lack
information about how many times the oracle θ is used to compute α. It is not proved
that in case θ is not computable, so is α. However, in section 2.9 we make a more
complex algorithm to guarantee this fact. In the original manuscript Turing uses the
oracle under a subtler condition: in case both, µ (c(k, n)) ∩ I0

n and µ (c(k, n)) ∩ I1
n

exceed the “minimum” measure required to proceed. But there is no justification
that the given amount is in fact the minimum required, nor how many times it is
reached.

Turing considers the union of all possible intervals In as we allow the first n digits
of θ to run through all possibilities, and concludes that the set of numbers α that
can be output by his algorithm is of measure at least 1− 2/k; by taking particular
sequences θ (e.g. θ(n) = 0 for all n) one obtains particular normal numbers.

2.9 Applications

It is known that all random reals are absolutely normal [18, 26]. As an application
Theorem 2.6.1, we give a simple proof that all Schnorr random reals are absolutely
normal.

Definition 2.9.1 (Schnorr test and Schnorr randomness [66]). A Schnorr test is a
Martin-Löf test (Ui)i∈N such that µ (Ui) = 2−i. The real A is Schnorr random if
A /∈

⋂
i Ui for any Schnorr test (Ui)i∈N.

It is known that random reals (as in Definition 1.5.1 or 1.5.2) are Schnorr random,
but the other inclusion is not true. The set E(k) as defined in Theorem 2.6.1 already
implies that Schnorr randomness is a stronger notion than absolute normality.

Theorem 2.9.2. Any Schnorr random real is absolutely normal.

Let us define

Ui = (0, 1) \ E(2i)

=
⋃

n∈N
(0, 1) \ c(2i, n).

Proof. Clearly µ (Ui) = 2−i. Since the sets c(k, n) are computable from k and n
(in the sense explained in Remark 2.7.17), the sequence (Ui)i∈N is a uniformly c.e.
sequence of Σ0

1-classes, hence a Schnorr test.
Since for any k, E(k) consists entirely of absolutely normal numbers, if A is

not absolutely normal then A is belongs to Ui for all i, and then A is not Schnorr
random.

Based on the algorithm obtained from either Sierpinski’s or Turing’s work, we
can prove that there is an absolutely normal number in each 1-degree.

2.9. Applications 45

We identify reals in (0, 1) with infinite sequences of 0s and 1s. For C ⊆ 2ω and
σ ∈ 2<ω we define C|σ = {X ∈ 2ω : σX ∈ C} and C ∩ σ = {X ∈ C : σ ≺ X}. Notice
that µ (C|σ) = 2|σ|µ (C ∩ σ).

Lemma 2.9.3 (Lebesgue density theorem). Let C be a measurable subset of R with
µ (C) > 0, and let δ < 1. Then there exists σ ∈ 2<ω such that µ (C|σ) ≥ δ.

For a proof of the above Lemma, the reader may refer to [64].

Theorem 2.9.4. There is an absolutely normal number r and an infinite computable
set A = {a0, a1, . . . } (ai < ai+1) such that every real q which coincides with r in
positions of N \A is also absolutely normal.

Proof. We follow some ideas about applying Lemma 2.9.3 from [37]. For every s we
define Cs and σs such that

1. Cs =
⋂

k Cs,k;

2. Cs,k+1 ⊆ Cs,k ⊆ R;

3. µ (Cs) > 0;

4. For all x1, . . . , xs ∈ {0, 1}, σ1x1 . . . σsxsCs contains only absolutely normal
numbers;

5. There are computable functions fs and gs such that

Cs,k = (fs(k, 1), fs(k, 2)) ∪ · · · ∪ (fs(k, gs(k)− 1), fs(k, gs(k))).

6. There is a computable function bs : N→ Q such that µ (Cs,k \ Cs) ≤ bs(k) and
limk bs(k) = 0.

The existence of these sets is guaranteed by the constructions introduced in sec-
tions 2.4 or 2.7.

Here is the construction:

Stage s + 1. We have already constructed σ1, . . . , σs and Cs satisfying the above
conditions. We do the following search: at stage stage n, let σ be the n-th string
in the length-lexicographic order. Let m be the least number such that bs(m) ≤
2−|σ|−2. If µ (Cs,m|σ) ≤ 3/4 then go to stage n+1; else terminate. This search must
eventually terminate because by Lebesgue density theorem there must be a σ with
µ (Cs|σ) > 3/4 and hence µ (Cs,m|σ) > 3/4 for all m. Suppose we find string σ such
that bs(m) ≤ 2−|σ|−2 and µ (Cs,m|σ) > 3/4. Then

µ (Cs ∩ σ) ≥ µ (Cs,m ∩ σ)− bs(m)

> 3 · 2−|σ|−2 − 2−|σ|−2

= 2−|σ|−1

46 2. Absolutely normal numbers

and hence

µ (Cs|σ0 ∩ Cs|σ1) ≥ µ (Cs|σ0) + µ (Cs|σ1)− 1
= 2µ (Cs|σ)− 1
> 0. (2.36)

Let us see that Cs+1 = Cs|σ0 ∩ Cs|σ1 and σs+1 = σ verify the desired properties.
Clearly 1 and 2 hold because Cs+1 =

⋂
k Cs+1,k where Cs+1,k = Cs,k|σ0 ∩ Cs,k|σ1.

Equation (2.36) shows that condition 3 is true. Since σ0Cs+1 ⊆ Cs and σ1Cs+1 ⊆ Cs, 4
is also verified. It is not difficult to see that 5 is true for some functions fs+1

and gs+1 constructed uniformly from fs and gs. We can also computably bound
µ (Cs+1,k \ Cs+1) by bs+1 = 2|σ|bs.

Now we define an = n+
∑

1≤s≤n+1 |σs| and A = {a0, a1, . . . }. We also define r =
0.σ10σ20σ30 . . . Then for every set B ⊆ N we have that 0.σ1B(0)σ2B(1)σ3B(2) . . .
is absolutely normal.

Corollary 2.9.5. There is an absolutely normal number in each 1-degree.

3. RANDOMNESS AND HALTING PROBABILITIES

We consider the question of randomness of the probability ΩU[X] that a universal
Turing machine U halts and outputs a string in a fixed set X, generalizing Chaitin’s
ΩU. We study the question “is ΩU[X] random?” for different setsX and for different
universal machines U. If the universal machine U is given, we prove that ΩU[X] is
random whenever X is Σ0

n-complete or Π0
n-complete for n ≥ 2. However, for n ≥ 2,

ΩU[X] is not n-random when X is Σ0
n or Π0

n. If we can fix the universal machine,
then there are more negative answers. It is shown that there are universal machines
for which ΩU[{σ}] is just 21−K(σ). For such universal machines there exists a co-c.e.
set X such that ΩU[X] is neither left-c.e. nor random.

We also look at the range of ΩU as an operator. The set {ΩU[X] : X ⊆ 2<ω}
is proved to be a finite union of closed intervals. It follows that for any universal
machine U and any sufficiently small real r, there is a set X ⊆ 2<ω computable in
∅′⊕ r, such that ΩU[X] = r. Then there are ∆0

2 sets X such that ΩU[X] is rational,
hence far from random.

The same questions are also considered in the context of infinite computations,
and lead to similar results.

This chapter comprises the joint work [9] with Verónica Becher, Serge Grigorieff
and Joseph S. Miller and also part of joint work [39] with Frank Stephan and Guohua
Wu.

3.1 Introduction

In 2002, Serge Grigorieff has put forward the following conjecture on randomness, in
the spirit of Rice’s theorem for computability, which generalizes Chaitin’s Ω num-
bers. It involves the notion of universal prefix-free Turing machine as defined in
Definition 1.4.3.

Conjecture 3.1.1. For any non-empty X ⊆ 2<ω, the probability ΩU[X] that a
universal prefix-free Turing machine U on an arbitrary input halts and gives an
output in X is random. Moreover, if X is Σ0

n-hard then this probability is n-random
(i.e. random in ∅(n−1)).

The formal definition of ΩM[X], the probability that machine M halts and gives
an output inside a set X, is the following:

Definition 3.1.2 (Halting probability). Let M : 2<ω → 2<ω denote a prefix-free

47

48 3. Randomness and halting probabilities

Turing machine. For X ⊆ 2<ω, let M−1(X) = {ρ ∈ 2<ω : M(ρ) ∈ X} and define

ΩM[X] =
∑

ρ∈M−1(X)

2−|ρ|

= µ
(
M−1(X)2ω

)
It turns out that the notion of universality considered is decisive in this conjec-

ture.
The sense in which ΩU[X] is a genuine probability is considered in section 3.2.

Section 3.3 is devoted to the notion of universal machine and introduces some par-
ticularizations. In section 3.4 we mention some known positive instances of the
conjecture and we reproduce two proofs of randomness: the original one introduced
by Chaitin [23] and a simpler version.

In section 3.5 we prove that the first part of the conjecture is false as stated,
showing that there are ∆0

2 sets that do not lead to randomness, whatever be the
universal machine. We improve this result showing that the second part is also false.
In fact, no Σ0

n sets can be n-random.
Section 3.6 gives positive instances of Conjecture 3.1.1. We show that the con-

jecture holds for Σ0
n-complete sets and Σ0

n-complete sets with randomness, whatever
be the universal machine.

In section 3.7 we prove that for any universal machine U and any sufficiently
small real A, there is a set X ⊆ 2<ω computable in ∅′ ⊕ A, such that ΩU[X] = A.
In particular, this result asserts that for any universal machine U there are ∆0

2 sets
X such that ΩU[X] is a rational number, the farthest to be random that it can
be. This also yields that the range {ΩU[X] : X ⊆ 2<ω} is a finite union of closed
intervals. We also show that for any given left-c.e. random real r, and for any given
c.e. set X, there is a universal machine U such that r = ΩU[X].

Finally, in section 3.8 we study the version of the conjecture for infinite com-
putations on monotone machines, a landscape where more positive instances have
been obtained.

3.2 Uniform probability on (2<ω,�) and ΩU[X]

As done in the above Conjecture 3.1.1, it is usual to name ΩU[X] as the probability
that U halts and produces an output in X. In which precise sense is this real ΩU[X]
a probability? The function ρ 7→ 2−|ρ| induces the usual uniform probability on the
set 2n of words of fixed length n, for any n. However, as concerns the whole space
of words 2<ω, it induces a measure which takes value +∞ on 2<ω, hence ΩU is not
a probability.

There are two ways to look at ΩU[X] as a probability. Using the fact that
U−1(X) is prefix-free (as is the domain of U), a first simple solution is to embed
finite inputs into infinite ones and to consider the usual Lebesgue measure on 2ω.
This amounts to the equality stated in Definition 3.1.2:

ΩU[X] =
∑

ρ∈U−1(X)

2−|ρ| = µ
(
U−1(X)2ω

)
.

3.2. Uniform probability on (2<ω,�) and ΩU[X] 49

Another solution, which keeps within the space of finite words, is to consider a notion
of probability on ordered sets for which the additivity axiom p(A∪B) = p(A)+p(B)
is not supposed for general disjoint events A,B ⊆ 2<ω but only for incompatible ones
with respect to the ordering. In case of (2<ω,�), this means A2<ω ∩B2<ω = ∅.

The next Proposition shows that µ (A2ω) can me seen as the probability of A
defined for the discrete case, in the limit: the number of elements of length (up to)
n extending some string of A divided by the total number of elements of length (up
to) n.

Proposition 3.2.1. For all A ⊆ 2<ω,

µ (A2ω) = lim
n→∞

‖A2<ω ∩ 2n‖
2n

= lim
n→∞

‖A2<ω ∩ 2≤n‖
2n+1 − 1

Proof. Let minA be the prefix-free set of minimal elements of A relative to the prefix
ordering. Then µ (A2ω) =

∑
ρ∈min A 2−|ρ| and for every n,

A2<ω ∩ 2n =
⋃

ρ∈(min A)∩2≤n

ρ2n−|ρ|

and
‖A2<ω ∩ 2n‖

2n
=

∑
ρ∈(min A)∩2≤n

2−|ρ|

This proves that ‖A2<ω∩2n‖
2n is monotone non-decreasing in n with limit µ (A2ω).

Also it is not difficult to see that

‖A2<ω ∩ 2≤n‖
2n+1

= a+ b

where

a =
‖A2<ω ∩ 2≤k‖

2n+1
;

b =
∑

k<m≤n

‖A2<ω ∩ 2m‖
2m

2−(n−m+1).

Given ε > 0, fix k such that 0 ≤ µ (A2ω) − ‖A2<ω∩2m‖
2m ≤ ε/3 for all m ≥ k. Then,

for n ≥ k + log(3/ε),

a ≤ 2k+1 − 1
2n+1

≤ 2−(n−k) ≤ ε/3

and

µ (A2ω)− b = µ (A2ω) 2−(n−k) + µ (A2ω)
∑

k<m≤n

2−(n−m+1)

−
∑

k<m≤n

‖A2<ω ∩ 2m‖
2m

2−(n−m+1).

50 3. Randomness and halting probabilities

Hence, |µ (A2ω)− b| is at most

2−(n−k) +
∑

k<m≤n

∣∣∣∣µ (A2ω)− ‖A2<ω ∩ 2m‖
2m

∣∣∣∣ 2−(n−m+1)

and this is bounded by ε/3 + ε/3. Hence∣∣∣∣µ (A2ω)− ‖A2<ω ∩ 2≤n‖
2n+1

∣∣∣∣ ≤ a+ |µ (A2ω)− b| ≤ ε.

This proves that
‖A2<ω ∩ 2≤n‖

2n+1

also tends to µ (A2ω) when n→∞.

Definition 3.2.2. We let π : P (2<ω) → [0, 1] be the function such that, for all
A ⊆ 2<ω,

π(A) = lim
n→∞

‖A2<ω ∩ 2n‖
2n

A straightforward application of Proposition 3.2.1 shows that π is a probability
on the ordered set (2<ω,�).

Proposition 3.2.3. In the sense of the ordered set (2<ω,�), π is a probability, i.e.
π(∅) = 0, π(2<ω) = 1 and, for all A,B ⊆ 2<ω

π(A ∪B) ≤ π(A) + π(B)
π(A ∪B) = π(A) + π(B) ⇔ A2<ω ∩B2<ω = ∅

Also, π(A) = π(min(A)) = π(A2<ω) and, if A is prefix-free then π(A) =
∑

ρ∈A 2−|ρ|.

Since for any prefix-free machine M, dom(M) is prefix-free, we see that ΩM[X]
is the probability of M−1(X) relative to π.

Proposition 3.2.4. Let M : 2<ω → 2<ω be a prefix-free Turing machine and X ⊆
2<ω. Then, ΩM[X] = π(M−1(X)).

3.3 On the notion of universality

For some sets the validity of Conjecture 3.1.1 depends on the machine U used to
define ΩU; we shall consider the usual notion of universality of Definition 1.4.3 and
also a refinement that we name universality by adjunction.

As in section 1.4 assume (Te)e∈N is a computable enumeration of all prefix-free
Turing machines.

Definition 3.3.1 (Universality by adjunction). Let U : 2<ω → 2<ω be a prefix-free
Turing machine. U is universal by adjunction if and only if

(∀e)(∃γe)(∀ρ)U(γeρ) = Te(ρ).

Hence, in terms of Definition 1.4.3 we are in the special situation where, ce = |γe|
and γe,ρ = γeρ.

3.3. On the notion of universality 51

Clearly every universal by adjunction machine is universal. We say that U is
effectively universal if there is a total computable function c : N× 2<ω → 2<ω such
that we can take γe,p = c(e, p) in Definition 1.4.3. This means that γe,p not only
exists, but it can be computably generated from e and p. The next proposition shows
that, under some hypothesis being effectively universal already implies universal by
adjunction.

Proposition 3.3.2. Let V be effectively universal such that the associated c : N ×
2<ω → 2<ω is injective and has computable range. Then there exists a machine U
universal by adjunction such that

(∀σ ∈ 2<ω) ΩU[{σ}] = ΩV[{σ}]. (3.1)

Proof. Since V is universal, ΩV[2<ω] is random, hence less than 1 and so there exists
k such that ΩV[2<ω] < 1 − 2−k. Fix such a k. The idea of the proof is as follows:
first, define U on a prefix-free subset of 0k+12<ω in a way that ensures that U is
universal by adjunction. Then define U on a prefix-free subset of 0≤k12<ω to get
condition (3.1).

For (e, ρ) such that c(e, ρ) ∈ dom(V), and n ∈ N such that |c(e, ρ)| ≤ |ρ| + n,
we set

U(0k+1+n 1e+1 0 ρ) = V(c(e, ρ)). (3.2)

Since V(c(e, ρ)) = Te(ρ) we see that U(0k+1+n1e+10ρ) = Te(ρ) for all n ≥ |c(e, ρ)|−
|ρ|. The universality of V ensures that there exists ce such that |c(e, ρ)| ≤ |ρ| + ce
for all ρ. Then U(0k+1+ce1e+10ρ) = Te(ρ) for all ρ. This proves that U is universal
by adjunction with σe = 0k+1+ce1e+10. Observe that for given e and ρ,

∑
n≥max(0,|c(e,ρ)|−|ρ|)

2−|0
k+1+n1e+10ρ| = 2−(k+e+3)

∑
n≥max(0,|c(e,ρ)|−|p|)

2−(n+|ρ|)

= 2−(k+2+e+max(|ρ|,|c(e,ρ)|)).

Let Qe,ρ be the finite subset of N such that

∑
j∈Qe,ρ

2−j = 2−|c(e,ρ)| − 2−(k+2+e+max(|p|,|c(e,ρ)|)).

To define U on
⋃

n≤k 0n12<ω, we introduce the following Kraft-Chaitin set

W = {〈j, ,V(c(e, ρ))〉 : (e, ρ) ∈ dom(V ◦ c), j ∈ Qe,ρ} ∪
∪ {〈|γ|,V(γ)〉 : γ ∈ dom(V) \ ran(c)}.

Since the range of c is computable, there is a computable enumeration (ln, σn)n∈N

52 3. Randomness and halting probabilities

of W . Let us show that W is indeed a Kraft-Chaitin set.

wt (W) =
∑

(e,ρ)∈dom(V ◦c)

∑
j∈Qe,p

2−j +
∑

γ∈dom(V)\ran(c)

2−|γ|

≤
∑

(e,ρ)∈dom(V◦c)

2−|c(e,ρ)| +
∑

γ∈dom(V)\ran(c)

2−|γ|

≤
∑

γ∈dom(V)∩ran(c)

2−|γ| +
∑

γ∈dom(V)\ran(c)

2−|γ|

< 1− 2−k.

A straightforward extension of the Kraft-Chaitin theorem shows that there is a c.e.
set {ρn : n ∈ N} which is a prefix-free subset of 0≤k12<ω and |ρn| = ln for all n. We
complete the definition of U on 0≤k12<ω by setting for all n

U(ρn) = σn. (3.3)

Observe that U, as defined by (3.2) and (3.3), has prefix-free domain. Also, for
σ ∈ 2<ω, we have

ΩV[{σ}] =
∑

{2−|γ| : γ ∈ dom(V) ∩ ran(c) ∧V(γ) = σ} (3.4)

+
∑

{2−|γ| : γ ∈ dom(V) \ ran(c) ∧V(γ) = σ}. (3.5)

Take γ as in (3.4). Since c is injective, there is a unique pair (e, ρ) such that
γ = c(e, ρ). Thus, the sum (3.4) is exactly∑

V(c(e,ρ))=σ

2−|c(e,ρ)|.

The U-descriptions of type (3.2) of σ add 2−(k+2+e+max(|ρ|,|c(e,ρ)|)) to ΩU[{σ}], for
any (e, ρ) such that V(c(e, ρ)) = σ; the U-descriptions of type (3.3) add 2−|c(e,ρ)| −
2−(k+2+e+max(|ρ|,|c(e,ρ)|)) to ΩU[{σ}] for any (e, ρ) such that V(c(e, ρ)) = σ. So, in
total, for every (e, ρ) such that V(c(e, ρ)) = σ contributes 2−|c(e,ρ)| to ΩU[{σ}].

For γ ∈ dom(V) \ ran(c) we have U(γ) = V(γ) so there are additional U-
descriptions that contributes to ΩU[{σ}] exactly with (3.5). Thus, ΩU[{σ}] =
ΩV[{σ}].

Remark 3.3.3. In the proposition above, the condition that c has computable image
is used to see that W is c.e. This condition can be replaced by the c.e. character of
dom(V) \ ran(c).

3.4 Known positive instances of the Conjecture

The first result supporting the conjecture is Chaitin’s [23] random real Ω, and corre-
sponds to the case ΩU[X] where X = 2<ω. The real Ω depends on U, the universal
machine, but independently of the universal machine U used in the definition, each
ΩU is random. We now give Chaitin’s original proof and a simpler version of the
fact that ΩU is random.

3.4. Known positive instances of the Conjecture 53

Theorem 3.4.1 (Chaitin [23]). For any universal prefix-free machine U, ΩU is
random.

Proof. (Chaitin’s version). Let U be given. For simplicity, let us write Ω for ΩU.
Let (ρi)i∈N be a computable enumeration of the set {ρ : U(ρ) ↓} and let Ωs be the
following computable approximation of Ω:

Ωs =
∑
|ρi|≤s

2−|ρi|.

Let M be the following machine with input ρ:

1. Simulate U(ρ) until it halts. Let σ = U(ρ) and let n = |σ|.

2. Find a stage s such that .σ − Ωs < 2−n.

3. Let A = {U(ρi) : i ≤ s ∧ |ρi| ≤ n− 1}.

4. Return the least string not in A.

Assume ρ is a minimal program for Ω � n, that is U(ρ) = Ω � n and |ρ| = K(Ω �
n). Then at step 2, the machine M finds a stage s such that .Ω � n − Ωs < 2−n.
Observe that it is always possible to find such an s because Ωs → Ω from below, so
there is an s with Ω− Ωs < 2−n and .Ω � n ≤ Ω.

Lemma 3.4.2. A = {σ : K(σ) ≤ n− 1}.

Proof. Suppose σ ∈ A, as defined in step 3. Then σ = U(ρi) for some i ≤ s and
|ρi| ≤ n− 1. Hence clearly, K(σ) ≤ |ρi| ≤ n− 1.

Suppose σ such that K(σ) ≤ n − 1 and assume by way of contradiction that
σ 6∈ A. Since K(σ) ≤ n − 1 then there is a program γ such that U(γ) = σ and
|γ| ≤ n − 1. Now, γ cannot be in the set {ρi : i ≤ s} because otherwise γ = ρi for
some i ≤ s and this would mean that σ ∈ A. Therefore, γ does not contribute to
Ωs, but it certainly contributes to Ω, as U(γ) ↓. So we have

Ω ≥ Ωs + 2−|γ| ≥ Ωs + 2−n+1

and thus

Ω− .Ω � n = Ω− Ωs + Ωs − .Ω � n

≥ 2−n+1 − (.Ω � n− Ωs)
> 2−n+1 − 2−n = 2−n.

This is a contradiction.

By Lemma 3.4.2, at step 4, M outputs a string τ such that K(τ) > n−1. Hence,
if c is the constant for M, we have

n− 1 < K(τ) ≤ |ρ|+ c = K(Ω � n) + c,

and so Ω is random.

54 3. Randomness and halting probabilities

Observe that in step 2, what one would really like is to find some s such that
Ωs � n = σ. However, in case Ω is a dyadic rational this might not be possible.
Indeed, suppose Ω = .01. Then Ωs might take values .0, .001, .0011, .00111 . . . as s
increases. In this case, there is no s such that Ω � 2 = Ωs � 2.

Next, we show Nies’ proof that Ω is random [61]. It is based in computation
steps rather than in outputs. A similar proof can be found in [31, 32]. However in
that proof the Recursion Theorem is used, instead it is not used in the following
one.

Proof of Theorem 3.4.1 (another version). Let U be given. For simplicity, let us
write Ω for ΩU. Let Ut(ρ) be the simulation of U(ρ) by stage s with the additional
restriction that if Us(ρ) ↓ then s > |U(ρ)|. That is, in case U(ρ) ↓, then the
simulation of U(ρ) takes more than n steps to reach the halting state, where n is
the length of the output. Let

Ωs =
∑

Us(ρ)↓

2−|ρ|

and let M be the following machine with input ρ:

1. Find the least stage t such that Ut(ρ) ↓. Let σ = Ut(ρ) and let n = |σ|.

2. Find the least stage s ≥ t such that .σ − Ωs < 2−n.

3. Return 0s+1.

Let c be the constant for machine M. Suppose that K(Ω � n) < n− c− 1. There is
a program ρ such that U(ρ) = Ω � n and |ρ| ≤ n − c − 1. Let s be as in step 2, so
that Us(ρ) = Ω � n and .Ω � n− Ωs < 2−n. Then M(ρ) = 0s+1 and therefore there
is γ such that U(γ) = 0s+1 and |γ| ≤ |ρ| + c ≤ n − 1. This computation cannot
be defined by stage s because the output is too large, but it will eventually become
defined later, so it contributes to Ω. So we have

Ω ≥ Ωs + 2−|γ| ≥ Ωs + 2−n+1. (3.6)

The proof now goes on as in the last part of the proof of Lemma 3.4.2 yielding a
contradiction from (3.6).

Chaitin observed [25] that if U is universal and X is infinite and c.e. then ΩU[X]
is random. Here is a proof of this fact.

Theorem 3.4.3. Let U be universal. If X ⊆ 2<ω is c.e. and infinite then ΩU[X]
is random.

Proof. Follow Chaitin’s proof of Theorem 3.4.1, replacing ΩU by ΩU[X]. Observe
that sinceX is c.e. we can computably approximate ΩU[X], as we did it with Ω in the
cited proof. We let (ρi)i∈N be a computable enumeration of the set {ρ : U(ρ) ∈ X}
and at step 4, M outputs the least string in X \A. Since X is infinite and c.e., this
is always possible.

3.5. Negative results about the Conjecture 55

Becher et al. [14] proved that in case U is universal by adjunction, the above
Theorem also applies for finite sets X 6= ∅.

Theorem 3.4.4. Let U be universal by adjunction. If X ⊆ 2<ω is non-empty and
c.e. then ΩU[X] is random.

Proof. Let σ ∈ X Let M be the prefix-free machine which on input ρ it executes
U(ρ) and, if defined, it outputs σ. Observe that M(ρ) ∈ X if and only if U(ρ) ↓.
Since U is universal by adjunction, there is γ such that for all ρ, U(γρ) = M(ρ).
Now,

ΩU[X] =
∑

U(ρ)∈X

2−|ρ|

=
∑

U(γρ)∈X

2−|γρ| +
∑

U(ρ)∈X,γ 6�ρ

2−|ρ|

=
∑

U(ρ)↓

2−|γρ| +
∑

U(ρ)∈X,γ 6�ρ

2−|ρ|

= 2−|γ|ΩU + r

where r is a left-c.e. real. In [21] it was proved that if a and b are both left-c.e. and
a is random then a+ b is random. This implies that ΩU[X] is random.

By Definition 1.4.3 we know that U is able to simulate M in an optimal way, in
the sense that for all ρ there is γ such that U(γ) = M(ρ) and |γ| ≤ |ρ|+ c, for some
constant c depending only on M. Although one might think that if U is universal
then the execution of U(γ) needs to take at least as many steps as the execution of
M(ρ), nothing is said in the definition about this constraint. Let us call a machine
U universal by time if it is universal and, following the notation of Definition 1.4.3,

min{t : Ut(γe,ρ) ↓} ≥ min{t : Te,t(ρ) ↓}.

Observe that in the second version of Theorem 3.4.1 there is nothing special for
returning 0s+1 at step 3. It would be feasible to output any string such ν for which
the simulation of M in U is not defined by stage s. Following the same idea as in the
second proof of Theorem 3.4.1 it is possible to prove that if U is universal by time
and X 6= ∅ is c.e. then ΩU[X] is random: roughly, replace Ωs by the approximation
ΩU[X]s of the left-c.e. real ΩU[X]. At step 3, M makes sure to have made at least
s + 1 steps and returns any string of X. Since the computation of M(ρ) takes at
least s + 1 steps, U(γ) also does and hence this computation cannot be defined by
stage s.

3.5 Negative results about the Conjecture

In this section we show some negative instances of the Conjecture. We first see that
if we can freely choose the underlying universal machine then the conjecture fails.

56 3. Randomness and halting probabilities

Proposition 3.5.1. There is a universal Turing machine U such that ΩU[{σ}] =
21−KU(σ) for all σ ∈ 2<ω.

Proof. Let V be a universal prefix-free Turing machine. The new universal machine
U is constructed by the following Kraft-Chaitin set:

W = {〈n, σ〉 : σ ∈ 2<ω ∧ n > KV(σ)}.

Notice thatW is a Kraft-Chaitin set in the sense that there is a computable enumera-
tion 〈n0, σ0〉, 〈n1, σ1〉, . . . of W which satisfies the preconditions of the Kraft-Chaitin
Theorem: on the one hand, KV may be approximated from above and therefore
〈n0, σ0〉, 〈n1, σ1〉, . . . exists and on the other hand, one can choose this enumeration
to be one-one. Then

wt (W) =
∑
m≥0

2−nm

≤
∑

σ∈2<ω

2−KV(σ)

≤ ΩV < 1.

Let U be the prefix-free machine whose existence is guaranteed by the Kraft-Chaitin
Theorem.

Now, for each σ and each m there is exactly one program ρσ,m of length KV(σ)+
m + 1 such that U(ρσ,m) = σ and no program of length up to KV(σ) generates σ.
Thus, for every σ ∈ 2<ω, we have KU(σ) = KV(σ) + 1 and then U is universal
because V is. Also

ΩU[{σ}] =
∑

n>KV(σ)

2−n

= 2−KV(σ) = 21−KU(σ),

and this completes the proof.

Notice that by Theorem 3.4.4, the constructed U cannot be universal by adjunc-
tion since ΩU [{σ}] is rational.

Proposition 3.5.2. Every prefix-free Turing machine M has a restriction M′ to
some c.e. set such that KM = KM′ (hence M′ is universal whenever M is) and
ΩM′ [X] is rational (hence not random), for every finite set X ⊆ 2<ω.

Proof. Let (ρi, σi)i∈N be a computable enumeration of the graph of M. Define a
total computable function f : N→ N such that f(i) is the smallest j ≤ i satisfying

σj = σi , |ρj | = min{|ρk| : k ≤ i ∧ σk = σi}.

Let M′ be the prefix-free machine with graph {(ρf(i), σf(i)) : i ∈ N}. Clearly, M′

is a restriction of M to some c.e. set. Also, for every σ ∈ 2<ω, if j is the least
such that σ = σj and |ρj | = KM(σ) then f(i) = j for all i ≥ j such that σi = σ.
Therefore, M′−1({σ}) is finite, so ΩM′ [{σ}] =

∑
ρ∈M′−1(σ) 2−|ρ| is a finite sum of

rational numbers and hence is rational. The same is true for finite sets X ⊆ 2<ω.

3.5. Negative results about the Conjecture 57

Applying the above Proposition to a universal machine U, we get the following
straightforward corollary, also a consequence of Proposition 3.5.1.

Corollary 3.5.3. There is a universal Turing machine U such that for every finite
set X ⊆ 2<ω the real ΩU[X] is rational, hence not random.

The following proposition shows the existence of an infinite co-c.e. set X ⊆ N
such that for any two elements x, y ∈ X with x < y, the program-size complexity
of y and beyond is guaranteed to be much larger than the one of the strings x and
the elements smaller than x. The basic idea of the construction is to check in every
stage for every current elements x, y with x < y whether the strings beyond y are
much more complicated than x in the way specified below and to enumerate y into
the complement of X whenever it turns out that this is not the case. Note that
the construction of X does not make any requirements on U, so it works for every
universal machine.

We asked if there is an analog of Theorem 3.4.3 for co-c.e. sets. This question
appeared later in [58, Question 8.10]. Of course we know that it is not true for finite
sets, but we might analyze the randomness ΩU[X] for infinite co-c.e. sets. Using the
next Proposition 3.5.4, we obtain a partial negative answer to this question for a
specific universal machine. But this is not an answer of this question since Question
8.10 considers only machines which are universal by adjunction. Such machines are
more difficult to handle.

Proposition 3.5.4. There is an infinite co-c.e. set X ⊆ N such that for no x, y ∈ X
with x < y there are v, w such that y ≤ w, K(w) ≤ v and K(v) ≤ x.

Proof. One constructs the complement Y of X by stages:

Stage 0: Let Y0 = ∅.
Stage s+1: A number y ∈ {0, 1, . . . , s+1} \Ys is enumerated into Ys+1 iff there are
x, v, w ≤ s with

x < y ∧ x /∈ Ys ∧ y ≤ w ∧Ks(w) ≤ v ∧Ks(v) ≤ x. (3.7)

It is easy to see that the so constructed enumeration is computable and thus X is a
co-c.e. set. Furthermore, if x, y ∈ X and x < y there cannot be any v, w such that
y ≤ w, K(w) ≤ v and K(v) ≤ x since there is a state s where Ks(v) = K(v) and
Ks(w) = K(w) and so Ks(v) ≤ x and Ks(w) ≤ v.

It remains to show that X is infinite. So assume by way of contradiction that X
is finite and let a0 = maxX. Then the following maxima and minima exist:

a1 = max{u : K(u) ≤ a0};
a2 = max{u : K(u) ≤ a1};
t = min{s : {0, 1, . . . , a2} ⊆ X ∪ Ys};
y = min{z : z /∈ X ∪ Yt}.

By assumption y is enumerated into Y at some stage s ≥ t and so there are x, v, w ≤ t
witnessing this fact in the sense that conditions (3.7) hold. Then Ks(v) ≥ K(v) and
Ks(w) ≥ K(w).

58 3. Randomness and halting probabilities

Observe that x /∈ Ys and then x /∈ Yt; so if x /∈ X then y ≤ x and this is not
the case. Hence x ∈ X. Now, if K(v) > a0 then K(v) would be greater than all
z ∈ X, in particular K(v) > x and this contradicts (3.7). So K(v) ≤ a0 and then
v ≤ a1, and from (3.7) we conclude K(w) ≤ v ≤ a1. By definition of a2 and (3.7),
y ≤ w ≤ a2. Since {0, 1, . . . , a2} ⊆ X ∪ Yt, we have y ∈ X ∪ Yt but by definition
y /∈ X ∪ Yt. From this contradiction we conclude that X is infinite.

Theorem 3.5.5. There is a universal machine U and a co-c.e. set X such that
ΩU[X] is neither left-c.e. nor random.

Proof. Let U as in Proposition 3.5.1 and X as in Proposition 3.5.4. Let K = KU.
We prove that ΩU[X] is as required.

Proposition 3.5.6. ΩU[X] is not random.

Proof. Note that for x, y ∈ X with x < y, we have x < K(K(y)). Indeed, assume
K(K(y)) ≤ x. Take v = K(y) and w = y. By the definition of X this cannot be
possible. So, for large enough x, y ∈ X with x < y, K(x) < x < K(y). This follows
from the fact that for all σ ∈ 2<ω K(σ) < 2|σ| + O(1) and then K(n) < n + O(1)
for almost all n ∈ N. So

ΩU[X] =
∑
x∈X

21−K(x)

satisfies that all ones (except finitely many) in its binary representation correspond
to some term 21−K(x) and that between two ones there is at least one zero, namely,
the one corresponding to 21−x. Thus one knows that after every 1 in the binary
representation comes a 0. Therefore ΩU[X] is not normal in the scale of 2 and hence
not random.

Proposition 3.5.7. ΩU[X] is not left-c.e.

Proof. Assume by way of contradiction that ΩU[X] is left-c.e. via an approximation
b0, b1, . . . and let X = {x1, x2, . . . } such that xi < xi+1. For large enough i, let

a =
∑

y∈X∩{0,1,...,xi}

21−K(y).

Observe that a is a rational number and can be represented with the first K(xi)+ 1
bits because, as explained in Proposition 3.5.6, for large enough j, K(xj) < K(xj+1).
Then the last bit 1 in the binary expansion of a is at position K(xi).

Given xi and a, one can compute numbers s, v such that s is the first number with
bs > a and v the least number with bs > a+22−v. Note that ΩU[X] ≤ a+22−K(xi+1)

and thus 22−K(xi+1) > 22−vx . It follows that

K(xi+1) < v. (3.8)

Since we can represent a with 2(K(xi) + 1) many bits and we can represent xi with
K(xi) many bits, we obtain

K(v) ≤ 3K(xi) +O(1) ≤ xi (3.9)

3.5. Negative results about the Conjecture 59

for large enough i. Take x = xi, y = w = xi+1 refer to the definition of X,
from Proposition 3.5.4. From (3.8) and (3.9) we obtain that xi+1 will eventually
be enumerated into the complement of X. This is a contradiction and then ΩU[X]
cannot be left-c.e.

This completes the proof of the whole result.

There might be an alternative approach to prove this result. If one succeeds to
construct U, X such that ΩU[X] is neither left-c.e. nor right-c.e., then ΩU[X] is not
random: as ΩU[X] is the difference of the two left-c.e. reals ΩU and ΩU[2<ω \X],
this follows from a result of Rettinger and Zheng [65].

We now show that the Conjecture also fails for some ∆0
2 sets regardless of the

underlying universal machine.
As Recall that by the Coding Theorem 1.4.6 we have

(∃c1)(∀σ) 2−KU(σ) ≤ ΩU[{σ}] ≤ 2−KU(σ)+c1 . (3.10)

(observe that, according to our definitions, PU(σ) = ΩU[{σ}]). Recall also that
Chaitin [23] proved

(∃c2)(∀σ)KU(σ) < |σ|+KU(|σ|) + c2 (3.11)

and
(∃c3) ‖{σ ∈ 2m : KU(σ) < m+KU(m)− k}‖ ≤ 2m−k+c3 . (3.12)

The next lemma can be found in an unpublished work of Solovay [73, IV-20].
We include the proof because Solovay’s notes are not universally available.

Lemma 3.5.8. If U is universal then (∃c4)(∀n)(∃m ≤ n) [n ≤ m+KU(m) ≤ n+c4].

Proof. Choose c4 ∈ N such that c4 > KU(0) and KU(m+ 1) ≤ KU(m) + c4− 1, for
all m ∈ N. Given n ∈ N, let m ∈ N be the least number satisfying n ≤ m+KU(m),
which clearly holds for some m ≤ n. We claim that m + KU(m) < n + c4. This
holds because 0 + KU(0) < c4 ≤ n + c4 and, since m − 1 + KU(m − 1) < n, then
m+KU(m) ≤ m− 1 +KU(m− 1) + c4 < n+ c4.

Putting these two lemmas together, we get the following result.

Lemma 3.5.9. If U is universal then (∃d)(∀n)(∃σ) [2−n−d ≤ ΩU[{σ}] ≤ 2−n+d].
In fact, for some constant d′ there are at least 2n/(d′ n2) strings σ ∈ 2<ω satisfying
the inequalities.

Proof. Let c1, c2, c3, c4 be constants as in equations 3.10, 3.11, 3.12 and Lemma 3.5.8.
Then ‖{σ ∈ 2m : KU(σ) < m + KU(m) − (c3 + 1)}‖ ≤ 2m−1, for all m ∈ N. For
n+c3+1, there is anm ≤ n+c3+1 such that n+c3+1 ≤ m+KU(m) ≤ n+c3+1+c4.
In particular, all strings σ in 2m satisfyKU(σ) ≤ m+KU(m)+c2 ≤ n+c2+c3+c4+1.

Now, there are at least 2m−1 strings σ ∈ 2m such that KU(σ) ≥ m+KU(m)−
(c3 +1) hence such that KU(σ) ≥ n+c3 +1− (c3 +1) = n. For such strings, we then
have n ≤ KU(σ) ≤ n+ c2 + c3 + c4 + 1. Therefore, for d = max(c1, c2 + c3 + c4 + 1),

60 3. Randomness and halting probabilities

there are at least 2m−1 strings σ such that 2−n−d ≤ ΩU[{σ}] ≤ 2−n+d. Finally, note
that

m− 1 ≥ n+ c3 −KU(m) ≥ n− 2 log(m)−O(1).

Therefore, at least O(1)2n/n2 strings σ ∈ 2<ω satisfying

2−n−d ≤ ΩU[{σ}] ≤ 2−n+d.

This completes the proof.

With this lemma we can prove that Conjecture 3.1.1 fails for ∆0
2 sets.

Theorem 3.5.10. For every universal U there is a ∆0
2 set X ⊆ 2<ω such that

ΩU[X] is not random.

Proof. Let d, d′ ∈ N be the constants from Lemma 3.5.9 and let k be such that
i < 2i/(d′ i2) for i ≥ k. Letting c = k + d, Lemma 3.5.9 ensures the existence of
a sequence (σi)i∈N of distinct strings such that 2−i−c−1 < ΩU[{σi}] ≤ 2−i+c, for
all i ∈ N. Note that ∅′ can compute such a sequence (and even compute the set of
strings in the sequence). Indeed, denoting by Us the computable approximation of U
obtained within s computation steps, ΩU[{τ}]s =

∑
Us(ρ)=τ 2−|ρ| is non-decreasing

in s and tends to ΩU[{τ}] when s → ∞. Thus, for any rational r, ΩU[{τ}] > r iff
(∃s) ΩU[{τ}]s > r. Hence it is decidable in ∅′ whether ΩU[{τ}] > r or not. Notice
that ∅′ can take all strings of (σi)i∈N distinct because there are 2n/(d′n2) many such
strings.

We build a ∆0
2 set X in stages {Xs}s∈N. At stage s+ 1 we determine if σs is in

X in order to ensure that the block of bits of ΩU[X] from s− c to s+ c+ 1 is not
all zeros.

Stage 0. Let X0 = ∅.

Stage s+1. If s < c thenXs+1 = Xs. Else, using ∅′, decide if the 2c+2 bits of ΩU[Xs]
from s− c to s+ c+ 1 are all zero. If these bits are all zero, let Xs+1 = Xs ∪ {σs}.
Otherwise, let Xs+1 = Xs. Consider the first case. Because ΩU[{σs}] > 2−s−c−1

there exists j ≤ s + c + 1 such that the j-th bit of ΩU[{σs}] is 1. On the other
hand, because ΩU[{σs}] ≤ 2−s+c, we have ΩU[{σs}] � s − c − 1 = 0s−c−1. Then
there is s − c ≤ j ≤ s + c + 1 such that the j-th bit of ΩU[{σs}] is 1. Notice
that if bit s − c is 1 then all the bits of positions greater than s − c are 0. Hence,
ΩU[Xs+1] � s− c− 1 = ΩU[Xs] � s− c− 1. Therefore, the work of earlier stages has
been preserved and also ΩU[Xs+1] is not all zeros on the block of bits from s− c to
s+ c+ 1.

It follows inductively that, for every s, the block of bits of ΩU[X] from s− c to
s+ c+1 is not all zeros. Therefore, ΩU[X] is not normal in the scale of 2 and hence
not random.

Notice that this construction works independently of the universal machine cho-
sen U and the binary representation of ΩU[Xs] in case such real is a dyadic ratio-
nal.

3.5. Negative results about the Conjecture 61

The above result can be dramatically improved: Theorem 3.7.2 shows that there
are ∆0

2 sets X such that ΩU[X] is a rational number. Another improvement shows
that hardness is not enough to get randomness.

Theorem 3.5.11. For every universal U and any A ⊆ N, there is a set Z ≡T A′

such that ΩU[Z] is not random.

Proof. First observe that there is a constant b such that

2−bΩU[{0σ}] ≤ ΩU[{σ}] ≤ 2bΩU[{0σ}].

As in the proof of Theorem 3.5.10, let (σi)i∈N be the sequence of distinct strings
such that

2−i−c−1 < ΩU[{σi}] ≤ 2−i+c

for an appropriate constant c and such that all σi start with a 0. Let Y = {e+1: e ∈
A′} be a set which codifies A′ with all strings starting with 1. So no σi belongs to
Y .

The construction of X is similar to the one in the proof of Theorem 3.5.10, but
now it is relative to A′: at stage s+1 we may or may not put the string σs depending
whether the block of bits of ΩU[Y ∪Xs] from s−c to s+c+1 are all zeroes. Observe
that ΩU[Y ∪Xs] is A′-computable because

ΩU[Y ∪Xs] = ΩU[Y] + ΩU[Xs] (3.13)

is a left-c.e. real relative to A. Define Z = X ∪ Y and note that by construction
Z ≤T A′ and since A′ is codified inside Z using strings starting with 1, Z ≥T A′.

Corollary 3.5.12. If n ≥ 1 there is a set X ≡T ∅(n) such that ΩU[X] is not random.

Since not random implies not n-random and X ≡T ∅(n) is Σ0
n-hard, the second

part of the Conjecture 3.1.1 is also false.

The next theorem implies that if n ≥ 2 and X is any Σ0
n or Π0

n then ΩU[X] is
not n-random, showing again that the second part of the Conjecture is false.

Theorem 3.5.13. Let A ⊂ N be such that ∅′ ≤T A. If U is any universal machine
and X ⊆ 2<ω is Σ0,A

1 or Π0,A
1 then ΩU[X] is not random in A.

Proof. The case X is finite is trivial since then ΩU[X] is ∆0
2 hence computable in ∅′.

Case X is infinite Σ0,A
1 . Fix m ∈ N. With oracle ∅′, we can (uniformly in m) find a

finite subset D ⊂ 2<ω such that ΩU[D] > ΩU − 2−m−1 and compute (relatively to
A) a rational ε > 0 such that ε < min{ΩU[{σ}] : σ ∈ D}. Then

ΩU[D] ≤
∑

ΩU[{σ}]>ε

ΩU[{σ}]

= ΩU −
∑

ΩU[{σ}]≤ε

ΩU[{σ}].

62 3. Randomness and halting probabilities

and so ∑
ΩU[{σ}]≤ε

ΩU[{σ}] < 2−m−1. (3.14)

Let (σs)s∈N be an injective A-computable enumeration of X and set Xs = {σt : t <
s}. We build an Martin-Löf test relative to A, (Tm)m∈N for ΩU[X]. The idea is
to define a Σ0,A

1 class Tm by laying down successive intervals covering ΩU[Xs]. Set
Tm =

⋃
s∈N Im,s where Im,s = (ΩU[Xs],ΩU[Xs] + δ) and choose δ ∈ Q+ such that

δ < ε and δ(1/ε + 1) < 2−m−1. For s big enough, ΩU[Xs] < ΩU[X] < ΩU[Xs] + δ,
so that ΩU[X] ∈ Im,s. Thus, ΩU[X] ∈ Tm.

Since ΩU[Xs+1] = ΩU[Xs] + ΩU[{σs}], we have ΩU[{σs}] ≥ δ if and only if Im,s

and Im,s+1 are disjoint. Assume there are k strings of X with probability greater
than or equal to ε, i.e.

k = ‖{σ : σ ∈ X ∧ ΩU[{σ}] > ε}‖.

Then, the set Tm consists of at least k + 1 disjoint intervals and

µ (Tm) ≤ δ(k + 1) +
∑

σ∈X∧ΩU[σ]≤ε

ΩU[σ]

< δ(k + 1) + 2−m−1

< 2−m−1 + 2−m−1 = 2−m.

The above second inequality follows from (3.14) and the last inequality follows from
the fact that

k ≤ ‖{σ : ΩU[{σ}] > ε}‖
≤ ΩU/ε ≤ 1/ε

and the definition of δ.
Thus, we have constructed a Martin-Löf test relative to A (Tm)m∈N such that

ΩU[X] ∈
⋂

m∈N Tm, proving that ΩU[X] is not random relative to A.

Case X is infinite Π0,A
1 . Since ΩU[X] = ΩU −ΩU[2<ω \X], use the above case and

the fact that ΩU is A-computable.

3.6 Positive results about the Conjecture

In this section we give positive instances of Conjecture 3.1.1.

Theorem 3.6.1. Let U be universal. If n ≥ 2 and X is Σ0
n-complete then ΩU[X]

is random.

Proof. We will build a Σ0
1 relative to ∅(n−1) set S ⊆ 2<ω; by the Recursion Theorem

we may assume that we know the computable injection f : 2<ω → 2<ω by which
S ≤1 X. Take a ∅(n−1)-computable enumeration of X; we may assume that it
agrees with the stages of our ∅(n−1)-enumeration of S. Let xs = ΩU[Xs−1].

3.6. Positive results about the Conjecture 63

We will also define a prefix-free machine M; again by the Recursion Theorem
we can assume that we know a constant c such that

(∀σ)KU(σ) ≤ KM(σ) + c.

Define M(ρ) as follows: if U(ρ) ↓, then let M(ρ) = f(ρ). Clearly M is prefix-free.
Next we must define S. Put ρ into S at stage s if:

1. Us(ρ) ↓= q (finite strings can be treated as dyadic rationals).

2. |xs − q| ≤ 2−|ρ|−c−1 (xs is ∅(n−1)-computable).

Now assume, by way of contradiction, that KU(ΩU[X] � m) < m−c−1 for some
m ∈ N. So, there is a ρ ∈ 2<ω such that U(ρ) = ΩU[X] � m and |ρ| < m − c − 1.
Let q = ΩU[X] � m. For all sufficiently large s, |xs − q| ≤ 2−m < 2−|ρ|−c−1. Let s
be the least stage such that both 1 and 2 are satisfied. At this stage, ρ goes into S
and f(ρ) goes into X. Therefore, xs+1−xs = 2−KU(f(ρ)). But M(ρ) = f(ρ) because
U(ρ) ↓, so KU(f(ρ)) ≤ KM(f(ρ))+ c ≤ |ρ|+ c. Thus, xs+1−xs ≥ 2−|ρ|−c. Together
with 2 this implies that

ΩU[X]− ΩU[X] � m ≥ xs+1 − q

≥ 2−|ρ|−c − 2−|ρ|−c−1

= 2−|ρ|−c−1 > 2−m.

This is a contradiction, so (∀m)KU(ΩU[X] � m) ≥ m− c− 1. Therefore, ΩU[X] is
random.

Here is the full argument for the paradoxical fact that we can use f , the reduction
function from S to X, though we are actually constructing S. We also justify the
assumption that the enumeration of X coincides with the enumeration of S.

Suppose (X̃)s∈N is the given ∅(n−1)-computable enumeration of X and let g be
a computable injection such that x ∈ ∅(n) iff g(x) ∈ X. Let p : N × N → N be a
computable function such that for all e ∈ N, x ∈ N and Z ⊆ N, ϕZ

e (x) = JZ(p(e, x))
(recall the definition of reduction function from 1.3).

We define, for each i, a ∅(n−1)-enumeration for Yi and Si. Start with Yi,0 = ∅
and Si,0 = ∅.

Stage 2s + 1: if some ρ enters into X̃s and there is no σ such that g(p(i, σ)) = ρ
(this can be decided using ∅(n−1)) then define

Yi,s+1 = Yi,s ∪ {ρ}. (3.15)

stage 2s+ 2: if there is a ρ of length at most s such that

1. Us(ρ) ↓= q

2. |xs − q| ≤ 2−|ρ|−c−1 (we redefine xs = ΩU[Ys−1] instead of xs = ΩU[X̃s−1])

64 3. Randomness and halting probabilities

then define

Si,s+1 = Si,s ∪ {ρ} and Yi,s+1 = Yi,s ∪ {g(p(i, ρ))}. (3.16)

Let Yi =
⋃
Yi,s and Si =

⋃
Si,s and let ψ : 2<ω×2<ω → 2<ω be a ∅(n−1)-computable

function such that on input i, x it does the following: if ever x enters into Si then
ψ(i, x) halts, else it gets undefined.

Observe that for a fixed i, Si = dom λy.ψ(i, y). We only put elements into Y
in case (3.16) or (3.15). Hence ρ ∈ Yi iff either ρ ∈ g(p(i, Si)) or both ρ ∈ X and
ρ /∈ ran(λy.g(p(i, y)).

Additionally, if σ enters into Si at stage s then g(p(i, σ)) enters into Yi at the
same stage s.

Now, by the s-m-n Theorem, there is a computable h such that for all x and i,
ψ(i, x) = ϕh(i)(x) and by the Recursion Theorem there is an e such that ψ(e, x) =
ϕh(e)(x) = ϕe(x) for all x.

Thus

x ∈ dom ϕ∅
(n−1)

e = Se ⇔ p(e, x) ∈ ∅(n) ⇔ g(p(e, x)) ∈ X. (3.17)

Hence, Ye = X. Indeed, if γ ∈ Ye then either γ ∈ X or γ ∈ p(i, g(Se)). In the
last case, there is ρ ∈ Se such that γ = g(p(i, ρ)). By equivalence 3.17, γ ∈ X. If
γ ∈ X and ρ /∈ ran(λy.g(p(i, y)) then γ ∈ Ye; if γ ∈ X and there is ρ such that
γ = g(p(i, ρ)) then this ρ is unique and ρ ∈ Se, so γ ∈ g(p(e, Se)) and hence γ ∈ Ye

Both g and λy.p(e, y) are total computable injections (recall the definition of
reduction function from section 1.3), injectivity follows from the s-m-n Theorem),
hence λy.p(e, g(y)) also is and then Se ≤1 X via λy.g(p(e, y)). Therefore, f =
λy.p(e, g(y)) is the function we are using in the proof, and Se is the set defined
there. Also (Ye,s)s∈N is the assumed enumeration of X.

The case of Π0
1-complete sets X is obtained with a similar argument.

Theorem 3.6.2. Let U be universal. If n ≥ 2 and X is Π0
n-complete then ΩU[X]

is random.

Proof. We follow the strategy used for the Σ0
n-complete case of Theorem 3.6.1. Again

define xs = ΩU[Xs−1] and define a ∅(n−1)-computable enumeration of 2<ω \S based
on the given ∅(n−1)-computable enumeration of 2<ω \X. Conditions 1 and 2 from
the proof of Theorem 3.6.1 for putting some σ into 2<ω \ S are the same. All
the argument goes through, but since this time xs → ΩU[X] from above, we have
xs − xs+1 ≥ 2−|σ|−c and then

ΩU[X]− ΩU[X] � m ≤ xs+1 − q

≤ xs − q + xs+1 − xs

< 2−|σ|−c−1 − 2|σ|−c

= −2−|σ|−c−1 < 0.

This is a contradiction because ΩU[X] ≥ ΩU[X] � m.

3.7. The set {ΩU[X] : X ⊆ 2<ω} 65

Observe that all the proofs of Theorems 3.6.1 and 3.6.2 can be relativized to
any oracle A. In this case, we obtain the following stronger result that shows that
although the conjecture was not completely true, it does have a lot of positive
instances.

Corollary 3.6.3. Let U be universal. If X ⊆ 2<ω is Σ0,A
1 -complete or Π0,A

1 -complete
for some A ⊂ N such that ∅′ ≤T A then ΩU[X] is random.

Proof. For X Σ0,A
1 -complete, follow the proof of Theorem 3.6.1. Instead of con-

structing S ∈ Σ0,∅(n−1)

1 , we construct S ∈ Σ0,A
1 . We use the computable injection

f : 2<ω → 2<ω by which S ≤1 A
′. Since A ≥T ∅′, we can still compute xs and decide

whether condition 2 holds.
For X Π0,A

1 -complete, follow the proof of Theorem 3.6.2.

3.7 The set {ΩU[X] : X ⊆ 2<ω}

The following Lemma states that for a sequence of real numbers which goes to zero
but not very fast, it is always possible to find a subserie of the sequence which tends
to any real small enough.

Lemma 3.7.1. Let (ai)i∈N be a sequence of strictly positive real numbers satisfying

1. limi→+∞ ai = 0;

2. ai ≤
∑

j>i aj for all i.

Let α =
∑

i∈N ai (which may be +∞). Then
{∑

i∈I ai : I ⊆ N
}

= [0, α]. Further-
more, for every r ∈ [0, α] there exists I(r) ⊆ N such that

∑
i∈I(r) ai = r and which

is computable (non-uniformly) from r and (ai)i∈N.

Proof. Take r ∈ [0, α]. We define a monotone increasing sequence (It(r))t∈N of finite
subsets of N by the following induction:

I0(r) = ∅ , It+1(r) =

{
It(r) ∪ {t} if at +

∑
i∈It(r)

ai ≤ r;
It(r) otherwise.

Let I(r) =
⋃

t∈N It(r). Since inequality
∑

i∈It(r)
ai ≤ r is true for all t, we get∑

i∈I(r) ai ≤ r. We show that r =
∑

i∈I(r) ai.

Case r = α. Then I(r) = N and the equality is trivial.

Case r < α and there are infinitely many ts such that It+1(r) = It(r). For such ts
we have ∑

i∈It(r)

ai ≤ r < at +
∑

i∈It(r)

ai.

Taking limits over such ts and using condition 1 on the sequence (ai)i∈N, we get
equality

∑
i∈I(r) ai = r.

66 3. Randomness and halting probabilities

Case r < α and there are finitely many ts such that It+1(r) = It(r). We show that
this case does not occur. Since r < α we have I(r) 6= N so that there is at least one t
such that It+1(r) = It(r). Let u be the largest such t. Then,

∑
i∈Iu(r) ai ≤ r < au +∑

i∈Iu(r) ai and, for all v > u, Iv+1 = Iv ∪ {v}. Therefore, I(r) = Iu(r) ∪ {i : i > u}.
Since condition 2 of the hypothesis ensures au ≤

∑
i>u ai, we get

r <
∑
i>u

ai +
∑

i∈Iu(r)

ai =
∑

i∈I(r)

ai,

which contradicts inequality
∑

i∈I(r) ai ≤ r.
The last assertion of the Lemma about the relative computability of I(r) is

trivial if I(r) is finite. Since the ats are strictly positive, if I(r) is infinite then
r 6= at +

∑
i∈It(r)

ai for all t. Thus, enumerating the digits of r and at +
∑

i∈It(r)
ai,

we get at some finite time either r < at +
∑

i∈It(r)
ai or r > at +

∑
i∈It(r)

ai, which
proves that the test in the definition of It+1(r) can be done computably in r and
(ai)i∈N.

Point 2 of the following theorem gives an alternative proof of Theorem 3.5.10
above.

Theorem 3.7.2. Let U be universal.

1. The set {ΩU[X] : X ⊆ 2<ω} is the union of finitely many pairwise disjoint
closed intervals with positive lengths, i.e.

{ΩU[X] : X ⊆ 2<ω} = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [an, bn]

where 0 = a1 < b1 < · · · < an < bn = ΩU.

2. Every real s ∈ {ΩU[X] : X ⊆ 2<ω} is of the form ΩU[Y] for some Y which is
computable in s ⊕ ∅′. In particular, there exists some ∆0

2 set X ⊆ 2<ω such
that ΩU[X] is rational, hence not random.

Proof. For item 1, let us first see that we can get α > 0 such that

{ΩU[X] : X ⊆ 2<ω} ⊇ [0, α].

Let d, d′ ∈ N be the constants of Lemma 3.5.9 and let k be such that 22d+1(i+ 1) ≤
2i/(d′i2) for i ≥ k. Using this inequality and Lemma 3.5.9, one can inductively
define a sequence of pairwise disjoint sets of strings (Si)i≥k such that ‖Si‖ = 22d+1

and 2−i−d−1 < ΩU[{σ}] ≤ 2−i+d for every σ ∈ Si. Notice that, as in Theorem 3.5.10,
the sequence (Si)i≥k is computable in ∅′.

We define an enumeration ψ of S =
⋃

i∈N Si: for i,m ∈ N and m < 22d+1, let
ψ(22d+1i+m) be the m-th element of Sk+i.

Set ai = ΩU[{ψ(i)}], it is clearly positive and limi→+∞ ai = 0. Observe that for
any m ∈ [0, 22d+1), 2−(k+j)−d−1 < a22d+1j+m ≤ 2−(k+j)+d and it is computable in ∅′.
Then, for any such m we have

3.7. The set {ΩU[X] : X ⊆ 2<ω} 67

∑
j>22d+1q+m

aj ≥
∑
j>q

∑
s<22d+1

a22d+1j+s

>
∑
j>q

22d+12−(k+j)−d−1

= 2−(k+q)+d ≥ a22d+1q+m.

Thus, the conditions of Lemma 3.7.1 are satisfied: {ΩU[Y] : Y ⊆ S} = [0, α] where∑
i∈N ai = α > 0.
Now,

{ΩU[X] : X ⊆ 2<ω} = {ΩU[Y] + ΩU[Z] : Y ⊆ S, Z ∩ S = ∅}
= [0, α] + {ΩU[Z] : Z ∩ S = ∅}
=

⋃
r∈R

[r, r + α]

where R = {ΩU[Z] : Z ∩ S = ∅} and 0 ∈ R.
Let Ri = R∩ [iα, (i+1)α). Observe that if r, r′ ∈ Ri then [r, r+α] and [r′, r′+α]

have non-empty intersection. Hence the union
⋃

r∈Ri
[r, r + α] is an interval Ji (a

priori not necessarily closed). Since Ri = ∅ for iα > 1, we see that R = R1∪· · ·∪Rk

where k ≤ d1/αe. Thus,

{ΩU[X] : X ⊆ 2<ω} = J1 ∪ · · · ∪ Jk.

Grouping successive intervals Jis having non-empty intersection, we get the repre-
sentation

{ΩU[X] : X ⊆ 2<ω} = I1 ∪ · · · ∪ In

where the Iis are pairwise disjoint intervals in [0, 1].
Since the map X 7→ ΩU[X] is continuous from the compact space P (2<ω) (with

the Cantor topology) to [0, 1], its range {ΩU[X] : X ⊆ 2<ω} is compact. In particu-
lar, the intervals Iis may be taken closed. This proves item 1 of the Theorem.

For item 2, first, observe that if I ⊆ N is computable in ∅′ then so is {ψ(n) : n ∈
I}. Given σ ∈ 2<ω, using ∅′, one can check whether 2−j < ΩU[{σ}]. Hence one
can compute i and m such that σ is the m-th element of Sk+i, i.e. such that
σ = ψ(22d+1i+m). Then σ ∈ {ψ(n) : n ∈ I} if and only if 22d+1i+m ∈ I

Case s ∈ [0, α]. Lemma 3.7.1 ensures that there is a set I(s) ⊆ N, computable from
s⊕ ∅′, such that

∑
i∈I(s) ai = s. Let X = {ψ(n) : n ∈ I(s)}. Then X is computable

from s⊕ ∅′ and ΩU[X] = s.

Case s ∈ [r, r+α) for some r ∈ R. Let s = ΩU[Z]+β where r = ΩU[Z] and Z∩S = ∅
and β < α. Let Z ′ be a finite subset of Z such that ΩU[Z \ Z ′] < α− β. Then the
real ΩU[Z ′] is computable in ∅′ and ΩU[Z \ Z ′] + β = s − ΩU[Z ′] is computable in
s ⊕ ∅′. Since ΩU[Z \ Z ′] + β < α, Lemma 3.7.1 yields X ⊆ S which is computable

68 3. Randomness and halting probabilities

in s ⊕ ∅′ such that ΩU[Z \ Z ′] + β = ΩU[X]. Since Z ′ is finite, we see that X ∪ Z ′

is computable in s⊕ ∅′. Finally, s = ΩU[X ∪ Z ′].

Case s ∈ [aj , bj) with 1 ≤ j ≤ n. Observe that
⋃

r∈Ri
[r, r + α) is equal to Ji with

the right endpoint removed. Suppose Ij = Ji ∪ · · · ∪ Ji+m. Then

[aj , bj) =
⋃

i≤p≤i+m

⋃
r∈Rp

[r, r + α).

Thus, s ∈ [r, r + α) for some r ∈ R and the previous case applies.

Case s = bj with 1 ≤ j ≤ n. Let bj = ΩU[X]. If σ /∈ X then ΩU[X ∪ {σ}] > bj
hence ΩU[X∪{σ}] ≥ aj+1. In particular, ΩU[{σ}] ≥ aj+1−bj , which proves that the
complement of X contains at most d 1

aj+1−bj
e elements. Thus, X is cofinite, hence

computable.

In relation with Theorem 3.7.2, we consider the following question: how much
disconnected is {ΩU[X] : X ⊆ 2<ω}?

Proposition 3.7.3. For each n ≥ 1 there exists a universal machine U such that
the set {ΩU[X] : X ⊆ 2<ω} is not the union of less than n intervals.

Proof. Let V be universal and define the universal machine U0 as follows:

U0(0) = λ;
U0(10ρ) = V(ρ).

Then ΩU0 [{λ}] = 1/2+ΩV[{λ}]/4 and for any X such that λ /∈ X we have ΩU[X] =
ΩV[X]/4. Hence,

{ΩU0 [X] : X ⊆ 2<ω} = {ΩU0 [X] : λ /∈ X} ∪ {ΩU0 [X] : λ ∈ X}
= {ΩV[X]/4: λ /∈ X} ∪ {1/2 + ΩV[X]/4: λ ∈ X}
⊆ 002ω ∪ 102ω.

So, {ΩU0 [X] : X ⊆ 2<ω} has at least two disjoint components because neither
{ΩV[X]/4: λ /∈ X} nor {1/2 + ΩV[X]/4 : λ ∈ X} are empty.

Using the same idea, we can define an optimal machine Un such that

{ΩUn [X] : X ⊆ 2<ω} ⊆
⋃

|σ|=n+1

σ02ω

and for each σ of length n+ 1,

{ΩUn [X] : X ⊆ 2<ω} ∩ σ02ω 6= ∅.

Hence for any n, the optimal machine Un will have to be such that {ΩUn [X] : X ⊆
2<ω} contains at least 2n+1 disjoint intervals.

3.7. The set {ΩU[X] : X ⊆ 2<ω} 69

Here are the details of the inductive construction of Un. For any n > 0, define
the optimal machine Un in the following way:

Un(0i1) = 0i−1 for 1 ≤ i ≤ n;
Un(0n0) = 0n;
Un(1ρ) = Un−1(ρ).

For any X ⊆ 2<ω and i ∈ N, let us define Xi = 1 if 0i ∈ X and Xi = 0 otherwise.
We will prove by induction on n that

∅ 6= {ΩUn [X] : X0 . . . Xn = σ} ⊆ σ02ω.

It clearly holds for n = 0. Fix any σ of length n. By inductive hypothesis we know
that

A = {ΩUn−1 [X] : X0 . . . Xn−1 = σ} ⊆ σ02ω.

Thus, for j ∈ {0, 1}

{ΩUn [X] : X0 . . . Xn−1Xn = σj} = A/2 +

(
n−1∑
i=0

σ(i)2−(i+2)

)
+ j2−(n+1)

⊆ 0σ02ω + .0σ + .0nj

= σ002ω + .0nj = σj02ω.

For convenience, in the last two lines, we have used addition of sets of reals us-
ing binary notation. The inequality of the second line follows from the inductive
hypothesis. Since

{ΩUn [X] : X ⊆ 2<ω} =
⋃

|σ|=n+1

{ΩUn [X] : X0 . . . Xn = σ}

we conclude
{ΩUn [X] : X ⊆ 2<ω} ⊆

⋃
|σ|=n+1

σ02ω

and also that each {ΩUn [X] : X0 . . . Xn = σ} is non-empty, as we wanted.

From Theorem 3.7.2 we know that for every universal machine U and for each
sufficiently small but positive computable real number R there is a X ∈ ∆0

2 such that
ΩU[X] = R. If one can choose the universal machine freely then one can even get
that the corresponding X is a co-c.e. set. To prove this we first need the following
lemma:

Lemma 3.7.4. There is a universal machine U such that for almost all n there is
an x ∈ N such that Kx(x) = K(x) = n, where K = KU and x is the largest number
with K(x) ≤ n.

70 3. Randomness and halting probabilities

Proof. Let V be any universal machine and Vs be a computable approximation such
that if Vs(ρ) ↓= σ then str−1(σ) ≤ 2s+1 and |ρ| ≤ s. Observe that if σ = x is a
natural number then str−1(x) ≥ 2x and so if Vs(ρ) ↓= x then x ≤ 2s. This last
property will be used in the following construction.

We define U in the following way: for every ρ such that Vs(ρ) ↓= σ, define

U(ρ00) = σ and (3.18)
U(ρ1k0) = 2s · 3k for every k > 0 (3.19)

by the stage s of U. Observe that U is universal since V is.
For short, we write K instead of KU. Let n large enough and let x be the largest

number with K(x) ≤ n. There is a program γ such that U(γ) = x and |γ| = K(x).
This γ was defined at some stage s of U following either definition (3.18) or (3.19).

Suppose γ was defined by case (3.18). Then γ = ρ00 for some ρ such that
V(ρ) = x. By the assumption on V, x ≤ 2s. Observe that U(ρ10) = 2s · 3,
|ρ10| = |ρ00| ≤ n and 2s · 3 > 2s ≥ x. So 2s · 3 > x has the property that
K(2s · 3) ≤ n and hence x was not the largest, a contradiction.

Hence γ was defined by case (3.19) and γ = ρ1k0 for some k > 0 and x = 2s · 3k.
If |γ| < n then |ρ1k+10| ≤ n and K(2s · 3k+1) ≤ n. But this is impossible because
2s · 3k+1 > x. So |γ| = K(x) = n.

To show that Kx(x) = K(x), we first need to establish Ks the computable
approximation of K from above. First define

K̃s(σ) = {|ρ| : |ρ| ≤ s ∧Us(ρ) = σ}

as usual, and then define

Ks(σ) = min{2 + K̃s(σ)} ∪ {|ρ|+ k + 1: |ρ| ≤ s ∧Vs(ρ) ↓} (3.20)

if σ is of the form 2s · 3k and

Ks(σ) = min{2 + K̃s(σ)}

if σ is not of the form 2s · 3k. It is not difficult to see that for all σ ∈ 2<ω, Kt(σ) →
K(σ) from above when t→∞.

Recall from the previous paragraphs that γ, a shortest U-description of x = 2s·3k

was defined at stage s of V and that γ = ρ0k1. Then |γ| = |ρ| + k + 1 for some ρ
such that Vs(ρ) ↓, and in particular |ρ| ≤ s. By (3.20) this means that Ks(x) has
already reached |γ| = K(x). Since s ≤ x = 2s · 3k, this proves that

Ks(x) = Kx(x) = K(x) = n

and this completes the proof.

Theorem 3.7.5. There is a universal machine U and an integer m such that for
every K-trivial real R between 0 and 2−m there is a co-c.e. set X with R = ΩU[X].

3.7. The set {ΩU[X] : X ⊆ 2<ω} 71

Proof. Let W be the constructed U from Theorem 3.7.4. If we let the starting
machine V of the proof of Theorem 3.5.1 be W, we end up with a universal ma-
chine U such that ΩU[{σ}] = 21−K(σ) for all σ ∈ 2<ω and U has the properties of
Lemma 3.7.4, that is, there is some m ≥ 2 such that for all n ≥ m, we have

Kxn(xn) = K(xn) = n,

where K = KU and
xn = max{z : K(z) ≤ n}.

Let R be a K-trivial real with 0 < R < 2−m. The aim is now to build a co-c.e.
set X such that

R =
∑
r∈R

2−1−r =
∑
x∈X

21−K(x) = ΩU[X]

where this goal is by choosing

X ⊆ {xm, xm+1, . . .} (3.21)

such that
xn ∈ X ⇔ n− 2 ∈ R. (3.22)

The further construction makes use of the fact that there is a c.e. K-trivial set
Q ≥T R [62, Theorem 7.4]. This fact guarantees that R has a computable approxi-
mation R0, R1, . . . such that the function cR(n) that computes the step in which the
approximation of the length n prefix stabilizes, defined as

cR(n) = max{s : s = 1 ∨ (∃m < n)Rs−1(m) 6= R(m)}

can be computed relative to Q. For all n let

yn = max{z ≤ cR(n− 2) : z = 0 ∨Kz(z) = n}.

Note that the sequence y0, y1, . . . can be computed relative to Q and then

KQ(yn) ≤ K(n) +O(1). (3.23)

Since Q is K-trivial, by Nies’ Theorem [62], we know that KQ differs from K only
by a constant, and so

n = K(xn) ≤ KQ(xn) +O(1) (3.24)

From (3.23) and (3.24) we conclude that for almost all n, KQ(yn) < KQ(xn). Also,
since Kyn(yn) = n and xn is the largest such, we have yn < xn. If xn < cR(n − 2)
then yn ≥ xn and this is a contradiction. Then xn ≥ cR(n− 2) and therefore

Rxn(n− 2) = R(n− 2). (3.25)

Without loss of generality one can assume this property for all n ≥ m since a finite
modification of the approximation R0, R1, . . . would enforce it. After ensuring this
property, one defines the co-c.e. set

X = {x : Kx(x) ≥ m ∧Rx(Kx(x)− 2) = 1 ∧ (∀y > x)(∀t)Kt(y) > Kx(x)]}.

Now (3.21) and the connection (3.22) between X and R is verified:

72 3. Randomness and halting probabilities

Lemma 3.7.6. X ⊆ {xm, xm+1, . . .}.

Proof. Consider any x ∈ X and let n = K(x). Then the condition

(∀y > x)(∀t)Kt(y) > Kx(x)

enforces that K(y) > n for all y > x and thus x = xn. Also, by definition of X,
n ≥ m.

Lemma 3.7.7. For all n, xn ∈ X if and only if n− 2 ∈ R.

Proof. On the one hand, since Kxn(xn) = K(xn) = n, one has by (3.25) that
Rxn(n− 2) = R(n− 2) = 1, so n− 2 ∈ R.

On the other hand, for n ≥ m, if n − 2 ∈ R then there is some xn such that
Kxn(xn) = n and so xn ∈ X. Since by choice of R no number below m is in R, the
equivalence xn ∈ X ⇔ n− 2 ∈ R holds for all n.

Finally we have the following equalities:

ΩU[X] =
∑
x∈X

Rx(Kx(x)− 2)21−K(x)

=
∑
x∈X

R(K(x)− 2)21−K(x)

=
∞∑

n=m

R(n− 2)21−n = R.

This completes the proof.

We now prove that at least ΩU[X] can be made n-random for some ∆0
n+1 sets.

As a corollary of Theorem 3.7.2, we get the following result which is in contrast with
Theorems 3.5.10, 3.5.11 and 3.5.13.

Corollary 3.7.8. Let U be any universal machine.

1. For any A ⊆ N there is a set X ≤T A′ such that ΩU[X] is random in A.

2. For every n ≥ 2 there is a ∆0
n+1 set X such that ΩU[X] is n-random. For

n = 1, there is a computable such X.

Proof. For item 1, let b1 be as in Point 1 of Theorem 3.7.2, let ΩA be the Chaitin
real ΩUA [2<ω] associated to the universal machine UA with oracle A and let k ∈ N
be such that ΩA2−k < b1. Then ΩA and ΩA2−k are A′-computable and random
in A. Theorem 3.7.2 ensures that there exists some set X which is computable in
ΩA2−k ⊕ ∅′ ≤T A′ such that ΩA2−k = ΩU[X].

For item 2: If n = 1, set X = 2<ω and apply Chaitin’s result that Ω is random.
If n ≥ 2, apply Point 1 with A = ∅(n−1).

3.8. Conjecture for infinite computations 73

Also as a consequence of Theorem 3.7.2, we can see that, for any given universal
machine U, every small enough left-c.e. random real r is ΩU[X] for some X ⊆ 2<ω

which is ∆0
2. We now show that if we fix r left-c.e. and random, and we fix a Σ0

1 set
X, we can pick an appropriate universal machine U for which ΩU[X] = r.

To prove this, we need some well-known facts. In [21] Calude et al. showed that
for any left-c.e. real a there exists a prefix-free set R ⊆ 2<ω such that a = µ (R2ω).

Let us recall the definition of Solovay’s domination between left-c.e. reals: let
a and b be left-c.e. reals. We say that a dominates b, and write b ≤S a iff there is a
constant c and a partial computable function f : Q→ Q such that for each rational
q < a, f(q) is defined and f(q) < b and b− f(q) ≤ c(a− q).

In [33], Downey et al. proved that if a and b are left-c.e. reals such that b ≤S a,
then there is a left-c.e. real d and constant c such that ca = b+ d.

Using these results, we can prove the following:

Theorem 3.7.9. Let X ⊆ 2<ω be Σ0
1, X 6= ∅, and let r ∈ (0, 1) be left-c.e. random.

There is a universal machine U such that r = ΩU[X].

Proof. Let V be any universal machine. By Chaitin’s Theorem, ΩV[X] is a left-c.e.
random real and following [48] we know that r ≡S ΩV[X] (this just means that
r ≤S ΩV[X] and ΩV[X] ≤S r). Hence, from the above mentioned result of [33],
there is a constant c̃ and a left-c.e. real d such that

2c̃r = ΩV[X] + d̃. (3.26)

Let c ≥ c̃ large enough such that 2−cΩV < r and 2−cΩV < 1−r. By equation (3.26)
we have 2cr = ΩV[X] + d where d = d̃+ r(2c − 2c̃) is a left-c.e. random real. Hence
r− 2−cΩV[X] is a left-c.e. random real in (0, 1). From [21] there is a c.e. prefix-free
set R such that r − 2−cΩV[X] = µ (R2ω). We define the Kraft-Chaitin set for U
with the axioms

W = {〈|ρ|, σ〉 : ρ ∈ R} ∪ {〈|ρ|+ c,V(ρ)〉 : V(ρ) ↓},

where σ is any string of X. Observe that

wt (W) = µ (R2ω) + 2−cΩV

= r − 2−cΩV[X] + 2−cΩV < 1.

Since for any ρ, if V(ρ) ↓ then V(ρ) = U(γ), for some γ with |γ| = |ρ| + c, we
conclude that U is universal. By construction, we have

ΩU[X] = µ (R2ω) + 2−cΩV[X] = r.

and this completes the proof.

3.8 Conjecture for infinite computations

In chapter 4 we will introduce the possibly infinite computations for monotone ma-
chines in full detail. In this section we analyze the validity of the conjecture 3.1.1
for this scheme of infinite computations.

74 3. Randomness and halting probabilities

In a monotone machine the output grows with respect to the prefix ordering in
2<ω as the computational time increases because the output tape only moves to the
left. See [51, 67, 14] the complete architecture of a monotone machine and more
details of this model of computation. In section 4.2 we work with this model.

Definition 3.8.1. Let M be a monotone machine. For Z ∈ 2ω, Mt(Z) is the current
output of M on input Z by stage t. For ρ ∈ 2<ω, Mt(ρ) is the current output of M
by stage t if M has not read beyond the end of ρ; otherwise Mt(ρ) ↑.

One can then define the behavior of monotone machines for infinite computa-
tions, in the following way:

Definition 3.8.2. Let M be a monotone machine. The input/output behavior of
M for possibly infinite computations is the map M∞ : 2ω → 2≤ω given by M∞(Z) =
limt→∞ Mt(Z)

Notice that we now consider not only finite strings as outputs but also infinite
sequences. The output space is 2≤ω = 2<ω ∪ 2ω.

Considering possibly non-halting computations, one can associate to a universal
monotone Turing machine U (see [14] for more details) a total map U∞ : 2ω → 2≤ω,
and for X ⊆ 2≤ω, define

Ω∞
U [X] = µ

(
(U∞)−1(X)

)
,

i.e. Ω∞
U [X] is the probability that the infinite computation of U gives an output in

X .
An analog of Conjecture 3.1.1 can be stated for infinite computations on universal

monotone machines.

Conjecture 3.8.3. For any proper subset X of 2≤ω, the probability Ω∞
U [X] that an

arbitrary infinite input to a universal monotone machine performing infinite com-
putations gives an output in X is random. Moreover, if X is Σ0

n-hard (for an
appropriate notion of hardness) then this probability is n-random.

Relatively to monotone Turing machines which are universal by adjunction, this
conjecture has been proved in [14, 12] for many X ⊆ 2≤ω, considering the effective
levels of the Borel hierarchy on 2≤ω with a spectral topology (for which the basic
open sets are of the form σ2≤ω, for σ ∈ 2<ω).

Theorem 3.8.4 ([14, 12]). Let X ⊆ 2≤ω be Σ0
n(spectral) and hard for the class

Σ0
n(2ω) with respect to effective Wadge reductions, for any n ≥ 1. Then, Ω∞

U [X] is
n-random.

We now prove that the conjecture fails in about the same way as Conjecture 3.1.1.
The key fact is that for any computable injective prefix-free codification of strings
f : 2<ω → 2<ω (for example f(σ) = 0|σ|1σ) the reals ΩU[{σ}] and Ω∞

U [{f(σ)}] are
very similar:

3.8. Conjecture for infinite computations 75

Theorem 3.8.5. Let U be a monotone universal by adjunction machine. Let
f : 2<ω → 2<ω be an injective computable function with computable and prefix-free
range. Then there exists k such that for every σ ∈ 2<ω,

2−kΩU[{σ}] ≤ Ω∞
U [{f(σ)}] ≤ 2kΩU[{σ}].

Proof. Consider the following prefix-free machine M which on input ρ simulates
U(ρ) step by step until the current output is of the form f(σ). If this ever happens
then M(ρ) = σ, else it becomes undefined. If U∞(Z) = f(σ) then there is n such
that the constructed M guarantees that M(Z � n) = σ. Since U is universal by
adjunction, there is γ such that for all ρ, U(γρ) = M(ρ). Therefore,

Ω∞
U [{f(σ)}] ≤ µ ({Z ∈ 2ω : (∃n)M(Z � n) = σ})

=
∑

U(γρ)=σ

2−|ρ|

≤ 2|γ| ΩU[{σ}].

For the other inequality, let N : 2<ω → 2<ω be the prefix-free machine such that
N(ρ) = f(U(ρ)) and let ν be such that U(νρ) = N(ρ) = f(U(ρ)). We have
U(ρ) = σ if and only if U(νρ) = f(σ). Then

ΩU[{f(σ)}] ≥
∑

U(νρ)=f(σ)

2−|νρ|

= 2−|ν|
∑

U(ρ)=σ

2−|ρ|

= 2−|ν| ΩU[{σ}].

To conclude, observe that for any τ , Ω∞
U [{τ}] ≥ ΩU[{τ}] and take k = max(|γ|, |ν|).

Using the above result, Lemma 3.5.9 can be easily transferred to infinite com-
putations.

Lemma 3.8.6. Let U be a monotone universal by adjunction machine. Then
(∃d)(∀n)(∃σ) 2−n−d ≤ Ω∞

U [{σ}] ≤ 2−n+d. In fact, for some constant d′, there are at
least 2n/(d′ n2) strings σ ∈ 2<ω satisfying the inequalities.

From Lemma 3.8.6, the proofs of Theorems 3.5.10 and 3.5.11 adapt easily to Ω∞
U ,

giving counterexamples which are included in the subset 2<ω of 2≤ω.

Theorem 3.8.7. For every universal by adjunction U there is a ∆0
3 set X ⊆ 2<ω

such that Ω∞
U [X] is not random.

Proof. Follow the proof of Theorem 3.5.10. Recall the definition of U∞
t (ρ) from

Definition 3.8.1. Observe that for a finite output σ ∈ 2<ω, if U∞(Z) = σ then there
is least ρ ≺ Z such that U∞(ρY) = σ for any Y ∈ 2ω. This ρ is precisely the prefix
of Z read by U∞ at some stage t when the last bit of σ has been written in the
output. This ρ can be characterized by

76 3. Randomness and halting probabilities

• (∃t)U∞
t (ρ) = σ: at some point U∞(ρ) produces σ;

• (∀t)U∞
t (ρ) � σ: U∞(ρ) does not extend σ;

• (∃t)U∞
t (ρ � (|ρ| − 1)) ↑: U∞(ρ) needs to read the whole ρ.

All these three conditions are ∅′-computable, and hence Ω∞
U [{σ}] is left-c.e. relative

to ∅′ via some ∅′-computable approximation Ω∞
U [{σ}]s → Ω∞

U [{σ}]. Since for any
rational r, condition Ω∞

U [{σ}] < r holds if and only if (∃s) Ω∞
U [{σ}]s, ∅′′ can compute

any bit of Ω∞
U [{σ}], and any bit of Ω∞

U [X] for finite X ⊆ 2<ω. This gives a shift to
∆0

3 instead of ∆0
2.

Theorem 3.8.8. For every universal by adjunction U and any A ⊆ N, there is a
set X ⊆ 2<ω such that A′ ≤T X ≤T A′ ⊕ ∅′′ and such that Ω∞

U [X] is not random.

Proof. Follow the proof of Theorem 3.5.11, replacing ΩU[X] by Ω∞
U [X]. Observe

that the real number in equation (3.13) is no longer left-c.e. relative to A because
we also need ∅′′ to calculate it (see the explanation in the proof of Theorem 3.8.7).
Hence this number in equation (3.13) is A′ ⊕ ∅′′-computable.

4. INFINITE COMPUTATIONS

In this chapter we define a program-size complexity function K∞ as a variant of the
prefix-free program-size complexity, based on Turing monotone machines performing
possibly unending computations. We consider definitions of randomness and trivi-
ality for sequences in 2ω relative to the K∞ complexity. We prove that the classes
of random sequences and K∞-random sequences coincide, and that the K∞-trivial
sequences are exactly the computable ones. We also study some properties of K∞

and compare it with other complexity functions. In particular, K∞ is different from
KA, the prefix-free complexity of monotone machines with oracle A. Furthermore,
we consider some properties of the program-size complexity for infinite computations
for plain machines.

This chapter comprises joint work [10] with Verónica Becher, Silvana Picchi and
André Nies, and joint work [8] with Verónica Becher.

4.1 Introduction

We consider monotone Turing machines (a one-way read-only input tape and a
one-way write-only output tape) performing possibly infinite computations, and we
define a program-size complexity function K∞ : 2<ω → N as a variant of the classical
prefix-free program-size complexity: given a universal monotone machine U, for any
string σ ∈ 2<ω, K∞(σ) is the length of a shortest string ρ ∈ 2<ω read by U, which
produces σ via a possibly infinite computation (either a halting or a non-halting
computation), having read exactly ρ from the input.

The classical prefix-free complexity K (recall Definition 1.4.2) is an upper bound
of the function K∞ (up to an additive constant), since the definition of K∞ does
not require that the machine U halts. We prove that K∞ differs from K in that it
has no monotone decreasing computable approximation and it is not subadditive.

The complexity K∞ is closely related with the monotone complexity Km, in-
dependently introduced by Levin [53, 51] and Schnorr [67] (see [68] and [54] for
historical details and differences between various monotone complexities). Levin
defines Km(σ) as the length of the shortest halting program that provided with n
(0 ≤ n ≤ |σ|), outputs σ � n. Equivalently Km(σ) can be defined as the least num-
ber of bits read by a monotone machine U which via a possibly infinite computation
produces any finite or infinite extension of σ.

Km is a lower bound of K∞ (up to an additive constant) since the definition of
K∞ imposes that the machine U reads exactly the input ρ and produces exactly the
output σ. Every computable A ∈ 2ω is the output of some monotone machine with
no input, so there is some c such that (∀n)Km(A � n) ≤ c. Moreover, there exists

77

78 4. Infinite Computations

n0 such that (∀n,m ≥ n0)Km(A � n) = Km(A � m). We show this is not the case
with K∞, since for every infinite B = {b1, b2, . . .} ⊆ 2<ω, limn→∞K∞(bn) = ∞.
This is also a property of the classical prefix-free complexity K, and we consider it
as a decisive property that distinguishes K∞ from Km.

The formal definitions for an infinite computation are stated in section 4.2 and
in section 4.3 we formally define the complexity K∞.

The prefix-free complexity of a universal machine with oracle ∅′, the function
K∅′ , is also a lower bound of K∞ (up to an additive constant). In section 4.4 we
analyze some properties of the K∞-complexity of strings and compare it with K and
K∅′ showing that these three complexities are different. In addition we show that
for every oracle A, K∞ differs from KA, the prefix-free complexity of a universal
machine with oracle A (recall Definition 1.4.7).

In sections 4.5 and 4.6 we turn from strings to infinite sequences and we study the
K∞ complexity along the initial segments of infinite sequences in 2ω. We consider
definitions of randomness and triviality based on the K∞ complexity. A sequence is
K∞-random if its initial segments have maximal K∞ complexity. Since Km gives
a lower bound of K∞ and Km-randomness coincides with randomness as defined in
section 1.5 [51], the classes of random, K∞-random and Km-random coincide. We
argue for a definition of K∞-trivial sequences as those whose initial segments have
minimal K∞ complexity. While every computable A ∈ 2ω is both K-trivial and
K∞-trivial, we show that the class of K∞-trivial sequences is strictly included in
the class of K-trivial sequences. Moreover, we prove that the computable sequences
coincide with those which are K∞-trivial.

Finally, in section 4.7 we investigate some properties of the graph of the com-
plexity function C∞, the plain version of K∞, and we compare them with those of
C and C∅′ .

4.2 Infinite computations on monotone machines

A monotone machine, defined by Levin [51], is a Turing machine with a one-way
read-only input tape, some work tapes, and a one-way write-only output tape. The
input tape contains a first dummy cell (representing the empty input) and then a
one-way infinite sequence of 0s and 1s, and initially the input head scans the leftmost
dummy cell. The output tape is written one symbol, 0 or 1 at a time. Notice that
the output grows with respect to the prefix ordering in 2<ω as the computational
time increases because the output tape only moves to the left (or, equivalently, the
output head only moves to the right).

A possibly infinite computation is either a halting or a non-halting computation.
If the machine halts, the output of the computation is the finite string written on
the output tape. Else, the output is either a finite string or an infinite sequence
written on the output tape as a result of a never ending process. This leads us to
consider 2≤ω = 2<ω ∪ 2ω as the output space.

In this chapter we restrict ourselves to possibly infinite computations on mono-
tone machines which read just finitely many symbols from the input tape. However,

4.2. Infinite computations on monotone machines 79

one might consider the more general scenario, where the monotone machine could
read either finite or infinite many bits from the input tape [13, 14].

For convenience, in this chapter we will use a definition of step computation as
in Definition 3.8.1. This definition is slightly different from the one described in
section 1.4:

Definition 4.2.1. Let M be a monotone machine. Mt(ρ) is the current output of
M on input ρ ∈ 2<ω by stage t if it has not read beyond the end of ρ. Otherwise,
Mt(ρ) is undefined.

Notice that Mt(ρ) does not require that the computation on input ρ halts.

Remark 4.2.2. Observe that:

1. If Mt(ρ)↑ then Mu(γ)↑ for all γ � ρ and u ≥ t.

2. If Mt(ρ)↓ then Mu(γ)↓ for any γ � ρ and u ≤ t. Also, if at stage t, M reaches
a halting state without having read beyond the end of ρ, then Mu(ρ)↓ = Mt(ρ)
for all u ≥ t.

3. Since M is monotone, Mt(ρ) � Mt+1(ρ), in case Mt+1(ρ)↓.

4. Mt(ρ) has computable domain, in the sense that the function which takes a ρ
and t, and decides whether Mt(ρ) ↓ or Mt(ρ) ↑ is computable.

The following definition states the precise meaning of the infinite behavior for
the computations we study in this chapter.

Definition 4.2.3 (Infinite computation). Let M be a monotone machine.

1. The input/output behavior of M for halting computations is the partial com-
putable map M : 2<ω → 2<ω given by the usual computation of M, i.e.,
M(ρ)↓ iff M enters into a halting state on input ρ without reading beyond ρ.
If M(ρ)↓ then M(ρ) = Mt(ρ) for some stage t at which M entered a halting
state.

2. The input/output behavior of M for possibly infinite computations is the map
M∞ : 2<ω → 2≤ω given by M∞(ρ) = limt→∞ Mt(ρ).

Proposition 4.2.4.

1. dom(M) is closed under extensions and its syntactical complexity is Σ0
1.

2. dom(M∞) is closed under extensions and its syntactical complexity is Π0
1.

3. M∞ extends M.

Proof. 1. is trivial.

2. M∞(ρ)↓ iff for all t M on input ρ does not read ρ0 and does not read ρ1 at
stage t. Clearly, dom(M∞) is closed under extensions since if M∞(ρ)↓ then
M∞(γ)↓ = M∞(ρ) for every γ � ρ.

80 4. Infinite Computations

3. Since in the input/output behavior of M for possibly infinite computations,
the machine M is not required to halt, M∞ extends M.

Remark 4.2.5. An alternative definition of the functions M and M∞, would be to
consider them with prefix-free domains (instead of closed under extensions):

1. M(ρ)↓ iff at some stage t M enters a halting state having read exactly ρ. If
M(ρ)↓ then its value is Mt(ρ) for such stage t.

2. M∞(ρ)↓ iff there exists t at which M has read exactly ρ and for every t′ M
does not read ρ0 nor ρ1. If M∞(ρ)↓ then its value is limt→∞ Mt(ρ).

As we mentioned in section 1.4, there is an effective enumeration (Te)e∈N of
all monotone machines. We fix any monotone universal machine U as in Defini-
tion 1.4.3.

By Shoenfield’s Limit Lemma every M∞ : 2<ω → 2<ω is computable in ∅′. How-
ever, possibly infinite computations on monotone machines cannot compute all ∅′-
computable functions. For instance, the characteristic function of the Halting Prob-
lem cannot be computed in the limit by a monotone machine. In contrast, the Busy
Beaver function in unary notation bb : N→ 1∗:

bb(n) =
the maximum number of 1’s produced by any Turing machine
with n states which halts with no input

is just ∅′-computable and bb(n) is the output of a non-halting computation which on
input n, simulates every Turing machine with n states and for each one that halts
updates, if necessary, the output with more 1s.

4.3 Program size complexities on monotone machines

Let M be a monotone machine, and M, M∞ the respective maps for the in-
put/output behavior of M for halting computations and possibly infinite compu-
tations as in Definition 4.2.3. We define the program-size complexity for infinite
computations associated to M in the same way as in Definition 1.4.2, but consider-
ing the mapping M∞:

Definition 4.3.1 (Prefix-free program-size complexity for infinite computations).
K∞

M : 2≤ω → N, the program-size complexity for infinite computations based on ma-
chine M, is defined as:

K∞
M(σ) =

{
min{|ρ| : M∞(ρ) = σ} if σ is in the range of M∞;
∞ otherwise.

For U we drop subindexes and we simply write K and K∞. The Invariance
Theorem 1.4.4 holds for K∞: for all monotone machine M there exists a constant c
such that

(∀σ ∈ 2≤ω)K∞(σ) ≤ K∞
M(σ) + c.

4.3. Program size complexities on monotone machines 81

The complexity function K∞ was first introduced in [6] without a detailed study
of its properties. Notice that if we take monotone machines M according to Re-
mark 4.2.5 instead of Definition 4.2.3, we obtain the same complexity functions KM

and K∞
M.

In this work we only consider the K∞ complexity of finite strings, that is, we
restrict our attention to K∞ : 2<ω → N. We will compare K∞ with these other
complexity functions:

• KA : 2<ω → N is the program-size complexity function for UA, a monotone
universal machine with oracle A (recall Definition 1.4.7). We pay special at-
tention to A = ∅′.

• Km : 2≤ω → N, where

KmM(σ) = min{|ρ| : M∞(ρ) � σ}

is the monotone complexity function defined by Levin [53, 51] for a monotone
machine M and, as usual, for U we simply write Km.

Schnorr [67] worked with monotone machines which are discrete, that is, mapping
strings to strings. If Ũ is a universal discrete machine, the discrete monotone pro-
gram-size complexity complexity or process complexity (as Schnorr called it) is defined
as KmD(σ) = {|ρ| : Ũ(ρ) = σ}. Levin [53, 51] (see also [40]) showed that a real A
is random if and only if there is a constant c such that for all n Km(A � n) > n− c.
Schnorr used his process complexity to characterize the same class of random reals.
Chaitin’s characterization of computable reals by the plain C complexity [24], works
for the discrete monotone complexity: A is computable if and only if there is a
constant c such that for all n, KmD(A � n) ≤ KmD(1n) + c. The proof of this can
be found in [32].

In [6], Becher et al. proved that:

Proposition 4.3.2. For all strings σ ∈ 2<ω, K∅′(σ) ≤ K∞(σ)+O(1) and K∞(σ) ≤
K(σ).

Proof. K∞(σ) ≤ K(σ) is trivial because for halting computations U(ρ) = U∞(ρ).
That is, according to Definition 4.2.3 if there is a stage t where Ut(ρ) ↓ then U has
read all the input ρ and will not write or read any other symbol, so U∞(ρ) = U(ρ).
Therefore if ρ is a minimal U- description of σ then it is a U∞-description of σ
(possibly not minimal).

To see K∅′(σ) ≤ K∞(σ) + O(1), observe that any infinite computation can
be simulated with the help of the ∅′ oracle. Suppose the machine M with oracle
∅′ and input ρ executes Ut(ρ) for t = 0, t = 1, . . . until it finds a t such that
(∀s ≥ t)Us(ρ) = Ut(ρ) (this question can be answered by ∅′). Once this happens,
it writes Ut(ρ) in the output and terminates. Suppose now that ρ is a minimal
U∞-description of σ, that is U∞(ρ) = σ and |ρ| = K∞(σ). Then M(ρ) = U∞(ρ)
and hence K∅′(σ) ≤ K∞(σ) +O(1).

82 4. Infinite Computations

4.4 Properties of K∞

It can be seen that K∞ shares a lot of properties with K. The following properties
of K∞ are in the spirit of those of K.

Proposition 4.4.1. For all strings σ and τ

1. K(σ) ≤ K∞(σ) +K(|σ|) +O(1).

2. For any n, ‖{σ ∈ 2<ω : K∞(σ) ≤ n}‖ < 2n+1.

3. K∞(τσ) ≤ K∞(σ) +K(τ) +O(1).

4. K∞(σ) ≤ K∞(στ) +K(|τ |) +O(1).

5. K∞(σ) ≤ K∞(στ) +K∞(|σ|) +O(1).

Proof. 1. Let ρ, γ ∈ 2<ω such that U∞(ρ) = σ and U(γ) = |σ|. Then there is a
machine that first simulates U(γ) to obtain |σ|, then it starts a simulation of
U∞(ρ) writing its output on the output tape, until it has written |σ| symbols,
and then it halts.

2. It follows immediately from the fact that there are at most 2n+1− 1 strings of
length less than or equal to n.

3. Let ρ, γ ∈ 2<ω such that U∞(ρ) = σ and U(γ) = τ . Then there is a machine
that first simulates U(γ) until it halts and prints τ on the output tape. Then,
it starts a simulation of U∞(ρ) writing its output on the output tape. This
process will finally fill the output tape with the string τσ.

4. Let ρ, γ ∈ 2<ω such that U∞(ρ) = στ and U(γ) = |τ |. Then there is a
machine that first simulates U(γ) until it halts to obtain |τ |. Then it starts a
simulation of U∞(ρ) such that at each stage s of the simulation it writes the
symbols needed to leave Us(ρ) � (|Us(ρ)| − |τ |) on the output tape, that is, it
does not write the last |τ | bits at any stage.

5. Consider the following monotone machine M:

1. set t = 1, ρ = λ and γ = λ

2. repeat

a. if Ut(ρ) asks for reading then append to ρ the next bit in the input of
M

b. if Ut(γ) asks for reading then append to γ the next bit in the input of
M

c. extend the actual output to Ut(γ) � (Ut(ρ))
d. set t = t+ 1

4.4. Properties of K∞ 83

If ρ̃ and γ̃ are shortest programs such that U∞(ρ̃) = |σ| and U∞(γ̃) = στ
respectively, then we can interleave ρ̃ and γ̃ in a way such that at each stage t,
ρ � ρ̃ and γ � γ̃ (notice that eventually ρ = ρ̃ and γ = γ̃). Thus, this machine
M computes σ and it never reads more than K∞(στ) +K∞(|σ|) bits.

This completes the proof.

As we explained in section 1.4, K is computably approximable from above. The
following results show that this is not the case with K∞.

Proposition 4.4.2. There is no effective decreasing approximation of K∞.

Proof. Suppose there is a computable function h : 2<ω ×N→ N such that for every
string σ, limt→∞ h(σ, t) = K∞(σ) and (∀t)h(σ, t) ≥ h(σ, t+ 1). We write ht(σ) for
h(σ, t). Consider the monotone machine M with coding constant d ≥ 0 given by the
Recursion Theorem, which on input ρ does the following:

1. set t = 1 and print 0

2. repeat forever

a. let n be the number of bits read by Ut(ρ)

b. print σ for each string σ not yet printed, |σ| ≤ t and ht(σ) ≤ n+ d

c. set t = t+ 1

Let ρ be a program such that U∞(ρ) = χ and |ρ| = K∞(χ). Notice that, as t→∞,
the number of bits read by Ut(ρ) goes to |ρ| = K∞(χ). Let t0 be such that for all
t ≥ t0, Ut(ρ) reads no more from the input. Since there are only finitely many strings
σ such that K∞(σ) ≤ K∞(χ) + d, there is a t1 ≥ t0 such that for all t ≥ t1 and for
all those strings σ, ht(σ) = K∞(σ). Hence, every string σ with K∞(σ) ≤ K∞(χ)+d
will be printed (in some order).

Let χ̃ = M∞(ρ). On one hand, we have K∞(χ̃) ≤ |ρ| + d = K∞(χ) + d. On
the other hand, by the construction of M, χ̃ cannot be the output of a program
of length at most K∞(χ) + d (because χ̃ is different from each string σ such that
K∞(σ) ≤ K∞(χ)+d). So it must be that K∞(χ̃) > K∞(χ)+d, a contradiction.

The following Lemma states a critical property that distinguishes K∞ from K.
It implies that K∞ is not sub-additive, i.e., there is no constant c such that for every
pair of strings σ and τ , K∞(στ) ≤ K∞(σ) +K∞(τ) + c. It also implies that K∞ is
not invariant under computable permutations 2<ω → 2<ω.

Lemma 4.4.3. For every total computable function f there is a natural k such that

K∞(0k1) > f(K∞(0k)).

Proof. Let f be any computable function and let M be the following monotone
machine with coding constant d given by the Recursion Theorem:

1. set t = 1

84 4. Infinite Computations

2. do forever

a. for each ρ such that |ρ| ≤ max{f(i) : 0 ≤ i ≤ d}
b. if Ut(ρ) = 0j1 then print enough 0s to leave at least 0j+1 on the output tape

c. set t = t+ 1

Let n = max{f(i) : 0 ≤ i ≤ d}. We claim there is a k such that M∞(λ) = 0k.
Since there are only finitely many programs of length less than or equal to n which
output a string of the form 0j1 for some j, then there is some stage t at which M
has written 0k, with k greater than all such js. From that stage t on, M∞ does
not print anything else. Therefore, there is no program ρ with |ρ| ≤ n such that
U∞(ρ) = 0k1.

If M∞(λ) = 0k then K∞(0k) ≤ d. So, f(K∞(0k)) ≤ n. Also, for this k, there
is no program ρ of length at most n such that U∞(ρ) = 0k and thus K∞(0k1) > n.
Hence, f(K∞(0k)) ≤ n < K∞(0k1).

Note that K(0k) = K(0k1) = K∞(0k1) up to additive constants, so the above
lemma gives an example of a string where K∞ is much smaller that K. Here much
smaller means that even when we apply an arbitrary computable function f to
K∞(0k), this is still below K(0k).

Proposition 4.4.4. K∞ is not sub-additive

Proof. Suppose there is a constant c such that for every two strings σ and τ ,
K∞(στ) ≤ K∞(σ)+K∞(τ)+c. Take the computable injection f(n) = n+K∞(1)+c.
By Lemma 4.4.3 there is k such that K∞(0k1) > K∞(0k) +K∞(1) + c. This con-
tradicts the assumption for σ = 0k and τ = 1.

The complexity function K is invariant under computable injections, in the sense
that for any computable one-one function g : 2<ω → 2<ω there is a constant c such
that (∀σ ∈ 2<ω) |K(g(σ))−K(σ)| ≤ c. It is immediate from Lemma 4.4.3 that this
is not the case with K∞.

It is known that the complexity function K is smooth in the length and lexico-
graphic order over 2<ω in the sense that there is a constant c such that

|K(str(n))−K(str(n+ 1))| ≤ c.

However, this is not the case for K∞.

Proposition 4.4.5. K∞ is not smooth in the length and lexicographical order over
2<ω.

Proof. Notice that there is a constant c such that (∀n > 1)K∞(0n1) ≤ K∞(0n−11)+
c, because if U∞(ρ) = 0n−11 then there is a machine that first writes a 0 on
the output tape and then simulates U∞(ρ). By Lemma 4.4.3, for each c there
is an n such that K∞(0n1) > K∞(0n) + c. Joining the two inequalities, we obtain
(∀c)(∃n)K∞(0n−11) > K∞(0n) + c− d. Since str−1(0n−11) = str−1(0n) + 1, K∞ is
not smooth.

4.4. Properties of K∞ 85

However, K∞ is smooth in a less restrictive way:

Proposition 4.4.6. (∀n) |K∞(str(n))−K∞(str(n+ 1))| ≤ K(|str(n)|) +O(1).

Proof. Consider the following monotone machine M with input ργ:

1. obtain m = U(ρ)

2. simulate σ = U∞(γ) till it outputs m bits

3. write str(str−1(σ) + 1)

Let ρ, γ ∈ 2<ω such that U(ρ) = |str(n)| and U∞(γ) = str(n). Then, M∞(ργ) =
str(n+ 1) and

K∞(str(n+ 1)) ≤ K∞(str(n)) +K(|str(n)|) +O(1).

Similarly, if M, instead of writing str(str−1(σ) + 1), writes str(str−1(σ) − 1), we
conclude

K∞(str(n)) ≤ K∞(str(n+ 1)) +K(|str(n+ 1)|) +O(1).

Since |K(|str(n)|)−K(|str(n+ 1)|)| ≤ O(1), it follows that

|K∞(str(n))−K∞(str(n+ 1))| ≤ K(|str(n)|) +O(1).

This completes the proof.

Proposition 4.3.2 states that K∞ is between K and K∅′ . The following result
shows that K∞ is really strictly in between them, in the sense that it can be sepa-
rated from those upper and lower bounds.

Proposition 4.4.7. For every c there is σ ∈ 2<ω such that

K∅′(σ) + c < K∞(σ) < K(σ)− c.

Proof. Let τn = min{σ ∈ 2n : K(σ) ≥ n} and consider a machine M which on input
i does the following:

1. set j = 0

2. repeat

a. write j in binary

b. search for a program ρ, |ρ| ≤ 3i, such that U(ρ) = j. If found, go to the next
step.

c. set j = j + 1

86 4. Infinite Computations

If M∞(i) outputs the string 01 . . . ki, then K(ki) > 3i and for all j, 0 ≤ j < ki we
have K(j) ≤ 3i. We define σi = τi01 . . . ki. Let us see that both K∞(σi)−K∅′(σi)
and K(σi)−K∞(σi) grow arbitrarily when increasing i.

On one hand, we can construct a machine which on input i and ρ executes
U∞(ρ) till it outputs i bits and then halts. Now suppose we instantiate ρ in the
shortest U∞-program for σi. Since the first i bits of σi corresponds to τi and
K(i) ≤ 2|i| +O(1), we have i ≤ K(τi) ≤ K∞(σi) + 2|i| +O(1). But with the help
of the ∅′-oracle we can compute σi from i, so K∅′(σi) ≤ 2|i| +O(1). Thus we have
K∞(σi)−K∅′(σi) ≥ i− 4|i| − O(1).

On the other hand, given i and σi, we can effectively compute ki. Hence, we have
3i < K(ki) ≤ K(σi) + 2|i|+O(1) for all i. Also, given τi, we can compute σi in the
limit using the idea of machine M, and hence K∞(σi) ≤ 2|τi| +O(1) = 2i +O(1).
Then, for all i K(σi)−K∞(σi) > i− 2|i| − O(1).

Not only K∞ is different from K∅′ but it differs from KA (the prefix-free com-
plexity of a universal monotone machine with oracle A), for every A.

Theorem 4.4.8. There is no oracle A such that
∣∣K∞ −KA

∣∣ ≤ c for some fixed
constant c.

Proof. Immediate from Lemma 4.4.3 and from the standard result that for all A,
KA is sub-additive, so in particular there is a c such that for every k, KA(0k1) ≤
KA(0k) + c.

The advantage of K∞ over K can be seen along the initial segments of every
computable sequence: if A ∈ 2ω is computable then there are infinitely many ns
such that K(A � n)−K∞(A � n) > c, for an arbitrary c.

Proposition 4.4.9. Let A ∈ 2ω be a computable sequence. Then

1. lim supn→∞K(A � n)−K∞(A � n) = ∞

2. lim supn→∞K∞(A � n)−Km(A � n) = ∞

Proof.

For 1, consider the following monotone machine M with input ρ:

1. obtain n = U(ρ)

2. write A � (str−1(0n)− 1)

3. for every string σ of length n in lexicographic order

a. write A(str−1(σ))

b. search for a program γ such that |γ| < n and U(γ) = σ. If never found, get
undefined.

4.5. K∞-triviality 87

Recall that A(n) denotes the n-th bit of A (starting with 0). If U(p) = n, then
M∞(p) outputs A � kn for some kn such that 2n− 1 ≤ kn < 2n+1− 1, since for all n
there is a string of length n with K-complexity greater than or equal to n. Let us fix
n. On one hand, K∞(A � kn) ≤ K(n)+O(1). On the other, K(A � kn) ≥ n−O(1),
because we can compute the first string in the lexicographic order withK-complexity
greater than or equal to n from a program for A � kn. (Indeed, from A � kn, we can
compute kn, and, from it, n by taking logarithms. Knowing n we can drop the first
2n bits of A � kn and the obtained string will have complexity greater than or equal
to n.) Hence, for each n, K(A � kn)−K∞(A � kn) ≥ n−K(n)−O(1).

Item 2 is trivial because for each computable sequence A there is a constant c
such that Km(A � n) ≤ c and limn→∞K∞(B � n) = ∞ for every B ∈ 2ω.

4.5 K∞-triviality

As we mentioned in section 1.4, there is a standard convention to use K with ar-
guments in N. That is, for any n ∈ N, K(n) is written instead of K(f(n)) where
f is some particular representation of the natural numbers in 2<ω. This convention
makes sense because K is invariant (up to a constant) for any computable repre-
sentation of the natural numbers. That is, one can codify the natural n with its
binary representation, σn, or with 0n, and one knows that K(0n) = K(σn) up to an
additive constant.

Recall from Definition 1.6.1 that A ∈ 2ω is K-trivial if and only if there is a con-
stant c such that for all n, K(A � n) ≤ K(n)+c. The idea is that K-trivial sequences
are exactly those whose initial segments have minimal K-complexity. Considering
the above convention, A is K-trivial if and only if

(∃c)(∀n)K(A � n) ≤ K(0n) + c.

In general K∞ is not invariant for computable representations of N. We propose
the following definition that ensures that computable sequences are K∞-trivial.

Definition 4.5.1 (K∞-triviality). A ∈ 2ω is K∞-trivial if and only if

(∃c)(∀n)K∞(A � n) ≤ K∞(0n) + c.

Our choice of the right hand side of the above definition is supported by the
following proposition.

Proposition 4.5.2. Let f : N → 2<ω be computable and strictly increasing with
respect to the length and lexicographical order over 2<ω. Then

(∀n)K∞(0n) ≤ K∞(f(n)) +O(1).

Proof. Notice that, since f is strictly increasing, f has computable range. We con-
struct the following monotone machine M with input ρ:

1. set t = 0

88 4. Infinite Computations

2. repeat

a. if Ut(ρ)↓ is in the range of f then let n = f−1(Ut(ρ))

b. print the needed 0s to leave 0n on the output tape

c. t = t+ 1

Since f is increasing in the length and lexicographic order over 2<ω, if ρ is a program
for U such that U∞(ρ) = f(n), then M∞(ρ) = 0n.

Chaitin observed that every computable A ∈ 2ω is K-trivial [24] and that K-
trivial sequences are ∆0

2. However, K-triviality does not characterize the class ∆0
1

of computable sequences: Solovay [73] constructed a ∆0
2 sequence which is K-trivial

but not computable (see also [34] for the construction of a strongly left-c.e. real
with the same properties). Our next result implies that K∞-trivial sequences are
∆0

2, as it happens with K-triviality. Theorem 4.5.6 characterizes ∆0
1 as the class of

K∞-trivial sequences.

Theorem 4.5.3. Suppose that A is a sequence such that, for some b ∈ N,

(∀n)K∞(A � n) ≤ K(n) + b.

Then A is K-trivial.

Proof. The idea is to define a ∆0
2 tree T such that A ∈ [T], and a Kraft-Chaitin set

W showing that each path of T is K-trivial (recall Definition 1.4.5 of a Kraft-Chaitin
set). For σ ∈ 2<ω and t ∈ N, let

K∞
t (σ) = min{|ρ| : Ut(ρ) = σ}
Kt(σ) = min{|ρ| : Ut(ρ) = σ and U(ρ) halts in at most t steps}

be effective approximations of K∞ and K respectively. Notice that for all σ ∈ 2<ω,
limt→∞K∞

t (σ) = K∞(σ) and limt→∞Kt(σ) = K(σ).
Given s, let

Ts = {σ : |σ| < s ∧ (∀m ≤ |σ|)K∞
s (σ � m) ≤ Ks(m) + b} .

Then (Ts)s∈N is an effective approximation of a ∆0
2 tree T , and [T] is the class of

sequences A satisfying
(∀n)K∞(A � n) ≤ K(n) + b.

Let r = Ks(|σ|). We define a Kraft-Chaitin set W as follows: if σ ∈ Ts and either

1. there is u < s greatest such that σ ∈ Tu and r < Ku(|σ|), or

2. σ /∈ Tu for all u < s,

4.5. K∞-triviality 89

then put an axiom 〈r + b + 1, σ〉 into W . That is, in case 2 we put an axiom
〈Ks(|σ|) + b + 1, σ〉 when σ enters Ts for the first time and in case 1 we put the
axiom each time the approximation to K(|σ|) goes down.

Once we show that W is indeed a Kraft-Chaitin set, we are done: by Chaitin’s
result, there is d such that 〈k, σ〉 ∈W implies K(σ) ≤ k + d. Thus, if A ∈ [T], then

K(σ) ≤ K(|σ|) + b+ d+ 1

for each initial segment σ of A. This is true because for any prefix σ of A, there
is some stage s such that the approximation of K(σ) and K(τ) for every τ ≺ σ is
stable.

To show that W is a Kraft-Chaitin set, define the string Ds(σ) as the more recent
U-description found of σ by stage s. That is, when we put an axiom 〈r + b+ 1, σ〉
into W at stage s,

• let Ds(σ) be a shortest ρ such that Us(ρ) = σ (recall from Definition 4.2.1
that it is not required that U halts at stage s);

• if τ ≺ σ, we have not defined Ds(τ) yet and Ds−1(τ) is defined as a prefix of
ρ, then let Ds(τ) be a shortest γ such that Us(γ) = τ .

In all other cases, if Ds−1(τ) is defined then we let Ds(τ) = Ds−1(τ).

Lemma 4.5.4. For each s, all the strings Ds(τ) are pairwise incompatible (i.e.,
they form a prefix-free set).

Proof. For contradiction, suppose that γ ≺ ρ, where γ = Ds(τ) was defined at stage
u ≤ s, and ρ = Ds(σ) was defined at stage t ≤ s. Thus, τ = Uu(γ) and σ = Ut(ρ).
By the definition of monotone machines and the minimality of ρ, u < t and τ ≺ σ.
But then, at stage t we would have redefined Du(τ), a contradiction.

If we put an axiom 〈r + b+ 1, σ〉 into W at stage t, then for all s ≥ t, Ds(σ) is
defined and has length at most Kt(|σ|) + b (by the definition of the tree Ts). Define
W̃s as the set of axioms 〈kσ, σ〉 in Ws where kσ is minimal for each σ and let us call
tσ ≤ s the stage at which 〈kσ, σ〉 enters into Ws. Thus

wt
(
W̃s

)
=

∑
〈kσ ,σ〉∈fWs

2−kσ

≤
∑

〈kσ ,σ〉∈fWs

2−Ktσ (|σ|)−b−1

≤
∑

〈kσ ,σ〉∈fWs

2−|Ds(σ)|−1 ≤ 1
2
.

The last inequality follows from Lemma 4.5.4. Since all axioms weigh at most twice
as much as the minimal ones,

wt (Ws) ≤ 2wt
(
W̃s

)
≤ 1

90 4. Infinite Computations

and Ws is a Kraft-Chaitin set for each s. Hence W is a Kraft-Chaitin set and this
completes the proof.

Corollary 4.5.5. If A ∈ 2ω is K∞-trivial then A is K-trivial, hence in ∆0
2.

Proof. If A is K∞-trivial then K∞(A � n) ≤ K∞(0n)+O(1) and K∞(0n) ≤ K(0n)+
O(1) so we can apply Theorem 4.5.3 to conclude that A is K-trivial, and by [23] it
is in ∆0

2.

Theorem 4.5.6. Let A ∈ 2ω. A is K∞-trivial iff A is computable.

Proof. From right to left, it is easy to see that if A is a computable sequence then A
is K∞-trivial: we can think of a machine M with input σ such that M∞(σ) = A � n
when U∞(σ) = 0n.

For the converse, let A beK∞-trivial via some constant b. By Corollary 4.5.5 A is
∆0

2, hence, there is a computable approximation (As)s∈N such that lims→∞As = A.
Recall from the proof of Theorem 4.5.3 that

K∞
t (σ) = min{|ρ| : Ut(ρ) = σ}.

Consider the following program with coding constant c given by the Recursion The-
orem:

1. set k = 1, s0 = 0 and print 0

2. while ∃sk > sk−1 such that K∞
sk

(Ask
� k) ≤ c+ b do

a. print 0

b. k = k + 1

Let us see that the above program prints out infinitely many 0’s. By contradiction,
suppose it writes 0k for some k. Then, on one hand, K∞(0k) ≤ c, and on the other,

(∀s > sk−1)K∞
s (As � k) > c+ b.

Also, K∞
s (As � k) = K∞(A � k) for s large enough. Hence,

K∞(A � k) > K∞(0k) + b,

which contradicts the fact that A is K∞-trivial via b.
Hence, the program enters infinitely many times into the loop and so for each k,

there is some γ ∈ 2<ω with |γ| ≤ c+ b such that Usk
(γ) = Ask

� k. Since there are
only 2c+b+1 − 1 strings of length at most c + b, there must be at least one γ such
that, for infinitely many k, Usk

(γ) = Ask
� k. Let us call I the set of all these ks.

We show that such a γ necessarily computes A. Suppose not. Then, there is a t such
that for all s ≥ t, Us(γ) is not an initial segment of A. Thus, noticing that (sk)k∈N
is increasing and I is infinite, there are infinitely many k ∈ I such that sk ≥ t and
Usk

(γ) = Ask
� k 6= A � k. This contradicts that Ask

� k → A when k →∞.

4.6. K∞-randomness 91

Corollary 4.5.7. The class of K∞-trivial sequences is strictly included in the class
of K-trivial sequences.

Proof. By Corollary 4.5.5, any K∞-trivial sequence is also K-trivial. Solovay [73]
built an K-trivial sequence in ∆0

2 which is not computable. By Theorem 4.5.6 this
sequence cannot be K∞-trivial.

4.6 K∞-randomness

In this section, we define the notion of K∞-randomness, and we prove that it coin-
cides with the notion of randomness.

Recall from section 1.5 that A ∈ 2ω is random if and only if

(∃c)(∀n)K(A � n) > n− c.

Levin [51] defines A ∈ 2ω as Km-random when

(∃c)(∀n)Km(A � n) > n− c.

We now define K∞-randomness in the natural way:

Definition 4.6.1 (K∞-randomness). A ∈ 2ω is K∞-random if and only if

(∃c)(∀n)K∞(A � n) > n− c.

Since K∞ ≤ K up to an additive constant, it is clear that K∞-randomness
implies randomness. Using Levin’s result [53, 51] that Km-randomness coincides
with randomness, and the fact that Km gives a lower bound of K∞, it follows
immediately that the classes of K-randomness, K∞-randomness and Km-random
sequences coincide. For the sake of completeness we give here an alternative proof.

Proposition 4.6.2 (with D. Hirschfeldt). There is a b0 such that for all b ≥ b0 and
σ, if Km(σ) ≤ |σ| − b, then there is τ � σ such that K(τ) ≤ |τ | − b/2.

Proof. Consider the following machine M with coding constant c. On input γρ, first
it simulates U(γ) until it halts. Let us call b the output of this simulation. Then it
simulates U∞(ρ) till it outputs a string τ of length b+ l where l is the length of the
prefix of ρ read by U∞. Then it writes this string τ on the output and stops.

Let b0 be the first number such that 2|b0| + c ≤ b0/2 and take b ≥ b0. Suppose
Km(σ) ≤ |σ| − b. Let ρ be a shortest program such that U∞(ρ) � σ and let γ be a
shortest program such that U(γ) = b. This means that |ρ| = Km(σ) and |γ| = K(b).
On input γρ, the machine M will compute b and then it will start simulating U∞(ρ).
Since |σ| ≥ Km(σ) + b = |ρ| + b, the machine will eventually read l bits from ρ in
a way that the simulation of U∞(ρ � l) = τ and |τ | = l + b. When this happens,
the machine M writes τ and stops. Then for ρ′ = ρ � l, we have M(γρ′)↓ = τ and
|τ | = |ρ′|+ b. Hence

K(τ) ≤ |γ|+ |ρ′|+ c

≤ K(b) + |τ | − b+ c

≤ 2|b| − b+ |τ |+ c

≤ |τ | − b/2.

92 4. Infinite Computations

This completes the proof.

Corollary 4.6.3. A ∈ 2ω is random iff A is Km-random iff A is K∞-random.

Proof. Since Km ≤ K up to an additive constant, it is clear that if a sequence is
Km-random then it is random. For the opposite, suppose A is random but not Km-
random. Let b0 be as in Proposition 4.6.2 and let 2c ≥ b0 be such that (∀n)K(A �
n) > n− c. Since A is not Km-random,

(∀d)(∃n)Km(A � n) ≤ n− d.

In particular for d = 2c there is an n such that Km(A � n) ≤ n − 2c. On one
hand, by Proposition 4.6.2, there is a τ � A � n such that K(τ) ≤ |τ | − c. On the
other, since τ is a prefix of A and A is random, we have K(τ) > |τ | − c. This is a
contradiction.

Since Km ≤ K∞ ≤ K except for additive constants, the above equivalence
implies A is random iff A is K∞-random.

4.7 Oscillations of C∞

We now drop the condition of monotone machines having a prefix-free (or closed
by extensions) domain. We consider just monotone machines, where the end of the
input is now delimited with a special symbol. As before, the output tape is one-way
and write-only. For any such machine M, we define the input/output behavior of M
for possibly infinite computations in the same way as in Definition 4.2.3, that is as
the output of the computation of M, without halting states when the time goes to
infinity. We define C∞

M, the program-size complexity based on M, in the same way
as in Definition 4.3.1.

It is easy to see that an analog to Proposition 4.3.2 holds for C, C∞ and C∅′

instead of K, K∞ and K∅′ :

Proposition 4.7.1. For all strings σ ∈ 2<ω, C∅′(σ) ≤ C∞(σ)+O(1) and C∞(σ) ≤
K(σ).

First, we see that there are strings that separate the three complexity functions
C, C∅′ and C∞ arbitrarily:

Theorem 4.7.2. For every c there is a string σ ∈ 2<ω such that

C∅′(σ) + c < C∞(σ) < C(σ)− c.

Proof. We know that for every n there is a string τ of length n such that C(τ) ≥
n. Let τn be the first string of length n in the lexicographic order satisfying this
inequality, i.e.,

τn = min{τ : τ ∈ 2n ∧ C(τ) ≥ n}.

Consider a machine M which on input i does the following:

4.7. Oscillations of C∞ 93

1. k = 0

2. repeat

a. write k (in binary notation)

b. search for a program ρ, |ρ| ≤ 2i, such that U(ρ) = k. If found, go to the next
step.

c. set k = k + 1

Now, machine M on input i outputs (in the limit) 0123 . . . ki where C(ki) > 2i
and (∀z ∈ {0, . . . , ki − 1})C(z) ≤ 2i. For each i, we define σi = τi0123 . . . ki. Here
0, 1, 2, 3 are, of course, written in binary.

Let us fix k and see that there is an i1 such that (∀i ≥ i1)C∞(σi)−C∅′(σi) > k.
On the one hand, we can compute τi from i and a minimal program ρ such that
U∞(ρ) = σi by simulating U(ρ) until it outputs i bits. Then

i ≤ C(τi) ≤ C∞(σi) + 2|i|+O(1). (4.1)

On the other hand, with the help of the ∅′ oracle, we can compute σi from i. Hence

C∅′(σi) ≤ |i|+O(1). (4.2)

From (4.1) and (4.2) we have C∞(σi)− C∅′(σi) +O(1) ≥ i− 3|i| and then, there is
an i1 such that for all i ≥ i1, C∞(σi)− C∅′(σi) > k.

Let us see now that there is an i2 such that (∀i ≥ i2)C(σi)−C∞(σi) > k. Given
i and a shortest program ρ such that U(ρ) = σi we construct a classical halting
machine that computes ki:

1. obtain i

2. compute σ = U(ρ)

3. set τ = σ � i and set k = 0

4. repeat

a. set τ = τk

b. if τ = σ then write k and halt

c. set k = k + 1

Hence, for all i
2i < C(ki) ≤ C(σi) + 2|i|+O(1). (4.3)

Using the machine M described above we can construct a machine which, via an
infinite computation, computes σi from a minimal program ρ such that U(ρ) = τi.
Then, for every i

C∞(σi) ≤ C(τi) +O(1) ≤ i+O(1). (4.4)

94 4. Infinite Computations

From (4.3) and (4.4) we get C(σi) − C∞(σi) + O(1) > i − 2|i| so the difference
between C(σi) and C∞(σi) can grow arbitrarily as we increase i. Let i2 be such that
for all i ≥ i2, C(σi)− C∞(σi) > k .

Taking i0 = max{i1, i2}, we obtain

C∅′(σi) + k < C∞(σi) < C(σi)− k

for all i ≥ i0.

The above result shows that the three complexity functions separate themselves
by an arbitrary difference. This is not always the case, since C, C∅′ and C∞ also
get close infinitely many times.

Theorem 4.7.3. There is a constant c such that for every n:

(∃σ ∈ 2n) [
∣∣∣C∅′(σ)− C∞(σ)

∣∣∣ ≤ c ∧ |C∞(σ)− C(σ)| ≤ c].

Proof. Let σn be of length n such that C∅′(σn) ≥ n. From Proposition 4.7.1 and
the fact that for all σ, Cσ ≤ |σ| + O(1) (see section 1.4), there exist constants c1
and c2 such that

n ≤ C∅′(σn) ≤ C∞(σn) + c1 ≤ C(σn) + c1 ≤ n+ c1 + c2.

Take c = c1 + c2.

In the following we will use σ for denoting σ(0)0σ(1)0 . . . σ(|σ| − 2)0σ(|σ| − 1)1,
that is the string σ interleaving 0 except in the last position, where we put a 1.

For infinitely many strings, C and C∞ get close but they separate from C∅′ as
much as we want.

Theorem 4.7.4. There is a constant c such that for all m

(∃σ ∈ 2<ω) [C(σ)− C∅′(σ) > m ∧ |C∞(σ)− C(σ)| < c].

Proof. We know that ‖{σ ∈ 2n+2|n| : C(σ) < n}‖ < 2n and then

‖{σ ∈ 2n+2|n| : C(σ) ≥ n}‖ > 2n+2|n| − 2n.

Let
Sn = {nσ : σ ∈ 2n}.

Clearly, ‖Sn‖ = 2n. Assume by way of contradiction that there is an n such that

Sn ∩ {σ ∈ 2n+2|n| : C(σ) ≥ n} = ∅.

Then
2n+2|n| ≥ ‖Sn‖+ ‖{σ ∈ 2n+2|n| : C(σ) ≥ n}‖ > 2n+2|n|

which is impossible. For every n, let us define σn

σn = min{σ ∈ Sn : C(σ) ≥ n}. (4.5)

4.7. Oscillations of C∞ 95

Given a minimal program ρ such that U∞(ρ) = σn, we can compute σn in an
effective way. The idea is to take advantage of the structure of σn to know when
U∞ stops writing in its output tape: we simulate U∞(ρ) until we detect n and we
continue the simulation of U∞ until we see it writes exactly n more bits. Then for
each n, C(σn) ≤ C∞(σn) +O(1) and from Proposition 4.7.1 we have that for all n
the difference |C(σn)− C∞(σn)| is bounded by a constant.

Using the oracle ∅′, we can compute σn from n. Hence C∅′(σn) ≤ |n| + O(1).
From (4.5) we conclude C(σn) − C∅′(σn) + O(1) ≥ n − |n|. Thus, the difference
between C(σn) and C∅′(σn) can be made arbitrarily large.

Infinitely many times C∞ and C∅′ get close but they separate from C arbitrarily.

Theorem 4.7.5. There is a constant c such that for each m

(∃σ ∈ 2<ω) [C(σ)− C∞(σ) > m ∧
∣∣∣C∞(σ)− C∅′(σ)

∣∣∣ < c].

Proof. As in the proof of Theorem 4.7.2, slightly modify the machine M such that
on input i, it first writes i and then it continues writing k until it finds a ki such
that

C(ki) > 2i ∧ (∀z ∈ {0, . . . , ki − 1})C(z) ≤ 2i.

Thus, given str(n), we can compute n and then σn in the limit, that is M(str(n)) =
σn = n0011011 . . . kn . Hence for every n

C∞(σn) ≤ |str(n)|+O(1). (4.6)

Given a ∅′ oracle minimal program for σn, we can compute str(n) in an oracle
machine. Then for every n

C∅′(str(n)) ≤ C∅′(σn) +O(1). (4.7)

We define χn = min{σ ∈ 2n : C∅′(σ) ≥ n} and τn = σstr−1(χn). From (4.7) we know

n ≤ C∅′(χn) ≤ C∅′(τn) +O(1) (4.8)

and from (4.6) we have
C∞(τn) ≤ |χn|+O(1). (4.9)

From (4.8) and (4.9) we obtain C∞(τn)− C∅′(τn) ≤ O(1) and by Proposition 4.7.1
we conclude that for all n,

∣∣∣C∞(τn)− C∅′(τn)
∣∣∣ ≤ O(1). In the same way as we did

in Theorem 4.7.2, we construct an effective machine that outputs kn from a shortest
program ρ such that U(ρ) = σn, but in this case the machine gets n from the input
itself (we do not need to pass it as a distinct parameter). Hence for all n,

2n < C(kn) ≤ C(σn) +O(1)

and in particular for n = str−1(χn) we have 2str−1(χn) < C(τn) + O(1). Since for
each string σ, |σ| ≤ str−1(σ) we have 2|χn| < C(τn)+O(1). From (4.9) and recalling
that |χn| = n, we have C(τn) − C∞(τn) + O(1) > n. Thus, the difference between
C(τn) and C∞(τn) grows as n increases.

96 4. Infinite Computations

The proof of Lemma 4.4.3 applies straightforwardly to C instead of K. This
already gives us that C is not sub-additive, nor smooth in the lexicographic order
over 2<ω (to see this, follow the proofs of Propositions 4.4.4 and 4.4.5). It can be
proved an analog of 4.4.6 for C∞, but with a factor of 2.

Proposition 4.7.6. For all n

|C∞(str(n))− C∞(str(n+ 1))| ≤ 2C(|str(n)|) +O(1).

Proof. Consider the following monotone machine M with input ργ:

1. obtain y = U(ρ)

2. simulate z = U∞(γ) till it outputs y bits

3. write str(str−1(z) + 1)

Let ρ, γ ∈ 2<ω be such that U(ρ) = |str(n)| and U∞(γ) = str(n). Then, M∞(ργ) =
str(n+ 1) and C∞(str(n+ 1)) ≤ C∞(str(n)) + 2C(|str(n)|) +O(1).

Similarly, if M above instead of writing str(str−1(z)+1), it writes str(str−1(z)−
1), we conclude

C∞(str(n)) ≤ C∞(str(n+ 1)) + 2C(|str(n+ 1)|) +O(1).

Since, |C(str(n))− C(str(n+ 1))| ≤ O(1), we have

|C∞(str(n))− C∞(str(n+ 1))| ≤ 2C(|str(n)|) +O(1).

This completes the proof.

As in the proof of Proposition 4.4.9, it can be shown that the advantage of C∞

over C can be seen along the initial segments of every computable sequence: if A ∈ 2ω

is computable then there are infinitely many ns such that C(A � n)−C∞(A � n) > c,
for an arbitrary c.

5. LOWNESS PROPERTIES AND APPROXIMATIONS OF
THE JUMP

In this chapter, we study and compare two combinatorial lowness notions: strong
jump-traceability and well-approximability of the jump, by strengthening the notion
of jump-traceability and super-lowness for sets of natural numbers. A computable
non-decreasing unbounded function h is called an order function. Informally, a set
A is strongly jump-traceable if for each order function h, for each input e one may
effectively enumerate a set Te of possible values for the jump JA(e), and the number
of values enumerated is at most h(e). A′ is well-approximable if it can be effectively
approximated with less than h(x) changes at input x, for each order function h. We
prove that there is a strongly jump-traceable set which is not computable, and that
if A′ is well-approximable then A is strongly jump-traceable. For c.e. sets, the con-
verse holds as well. We characterize jump-traceability and the corresponding strong
variant in terms of program-size complexity, and we investigate other properties of
these lowness notions.

This chapter comprises the joint work [38] with André Nies and Frank Stephan.

5.1 Introduction

A lowness property of a set A says that A is computationally weak when used as
an oracle, and hence A is close to being computable. In this chapter we study and
compare some “combinatorial” lowness properties in the direction of characterizing
K-trivial sets.

A set is K-trivial when it is highly compressible in terms of program-size com-
plexity (see definition 1.6.1). In [62], Nies proved that a set is K-trivial if and only
if A is low for random (i.e. each random set is already random relative to A).

Terwijn and Zambella [74] defined a set A to be recursively traceable if there is
a computable bound p such that for every f ≤T A, there is a computable r such
that for all x, ‖Dr(x)‖ ≤ p(x), and (Dr(x))x∈N is a set of possible values of f : for all
x, we have f(x) ∈ Dr(x). They showed that this combinatorial notion characterizes
the sets that are low for Schnorr tests.

This property was modified in [60] to jump-traceability. A set A is jump-traceable
if its jump at argument e, written JA(e) = ϕA

e (e), has few possible values.

Definition 5.1.1 (Trace). A uniformly c.e. family T = {T0, T1, . . .} of sets of natural
numbers is a trace if there is a computable function h such that (∀n) ‖Tn‖ ≤ h(n).
We say that h is a bound for T . The set A is jump-traceable if there is a trace T

97

98 5. Lowness properties and approximations of the jump

such that
(∀e) [JA(e) ↓ ⇒ JA(e) ∈ Te].

We say that A is jump-traceable via a function h if, additionally, T has bound h.

Another notion studied in [60] is super-lowness, first introduced in [15, 59].

Definition 5.1.2 (ω-c.e. and super-low). A set A is ω-c.e. iff there exists a com-
putable function b such that A(x) = lims→∞ g(x, s) for a computable {0, 1}-valued
g such that g(x, s) changes at most b(x) times, i.e.

‖{s : g(x, s) 6= g(x, s+ 1)}‖ ≤ b(x).

In this case, we say that A is ω-c.e. via the function g and bound b. A is super-low
iff A′ is ω-c.e.

Recall that a set A is low if A′ ≤T ∅′. The above definition of A being super-low
is equivalent to A′ ≤tt ∅′. Hence super-lowness, clearly implies lowness.

Both jump-traceable and super-low sets are closed downward under Turing re-
ducibility and imply being generalized low (i.e. A′ ≤ A ⊕ ∅′). In [60] it was proved
that these two lowness notions coincide within the c.e. sets but that none of them
implies the other within the ω-c.e. sets.

In this chapter, we define the notions of strong jump-traceability and well-approx-
imability of the jump, strengthening the notions of super-lowness and ω-c.e. respec-
tively. A special emphasis is given to the case where the jump of A is ω-c.e. In
the strong variant of these notions consider all order functions as the bound instead
of just some computable bound. Here, an order function is a slowly growing but
unbounded computable function. Our first two results are:

• There is a non-computable strongly jump-traceable set;

• If A′ is well-approximable then A is strongly jump-traceable. The converse
also holds, if A is c.e.

Our approach is used to study interesting lowness properties related to plain and
prefix-free program-size complexity. We investigate the properties of sets A such that
the program-size complexity relative to A is only a bit smaller than the unrelativized
one. We prove some characterizations of jump-traceability and its strong variant in
terms of prefix-free and plain program-size complexity, respectively:

• A is jump-traceable if and only if there is a computable p, growing faster than
linearly such that K(σ) is bounded by p(KA(σ) + c0) + c1, for some constants
c0 and c1;

• A is strongly jump-traceable if and only if C(σ) − CA(σ) is bounded by
h(CA(σ)), for every order function h and almost all σ.

Recall that A is low for K iff K(σ) ≤ KA(σ) + O(1) for each σ ∈ 2<ω. Nies [62]
showed that this property is equivalent to being K-trivial. In particular, non-
computable low for K sets exist. The corresponding property involving C is only

5.2. Strong jump-traceability 99

satisfied by the computable sets (because it implies being C-trivial and by [24] this
is the same as computable). The characterization of strong jump-traceability is via
a property that states that CA is very close to C, while not implying computability.

A notion equivalent to jump-traceability was introduced in [62] (refer to Propo-
sition 5.2.14 for a proof):

Definition 5.1.3 (U-traceable). A is U-traceable if there is a trace T such that

(∀σ) [UA(σ) ↓ ⇒ UA(σ) ∈ T|σ|].

Using this notion of U-traceability, in [62] is was shown that K-triviality implies
jump-traceability and super-lowness, but it is unknown whether K-triviality implies
strong jump-traceability. The reverse direction is also open.

5.2 Strong jump-traceability

In this section, we introduce a stronger version of jump-traceability and we prove
that there is a promptly simple (hence simple and then non-computable) strongly
jump-traceable set. We also prove that there is no maximal order function as bound
for jump-traceability.

Definition 5.2.1 (Order function). A computable function h : N→ N+ is an order
function if h is non-decreasing and unbounded.

Notice that any reduction function is an order function.

Definition 5.2.2 (Strong jump-traceability). A set A is strongly jump-traceable iff
for each order function h, A is jump-traceable via h.

Clearly, strong jump-traceability implies jump-traceability and it is not difficult
to see that strong jump-traceability is closed downward under Turing reducibility.

Proposition 5.2.3. The set {A : A is strongly jump-traceable} is closed downward
under Turing reducibility.

Proof. Suppose A is strongly jump-traceable and B ≤T A. We prove that B is
jump-traceable via the given order function h. Let ψ be the function computable
by an oracle machine such that ψA(x) = JB(x) for all x and let α be the reduction
function such that JA(α(x)) = ψA(x). We know that A is jump-traceable via a
trace (Ti)i∈N with bound h̃, where

h̃(z) = h(min{y : y ∈ N ∧ α(y + 1) ≥ z}).

Observe that, since α is an order function, h̃ also is. Clearly,

JB(e) ↓ ⇒ JB(e) ∈ Tα(e).

Now, h̃(α(e)) = h(y) for some y such that α(y) < α(e) or y = 0. Then y ≤ e and
h̃(α(e)) = h(y) ≤ h(e). Hence (Tα(i))i∈N is a trace for the jump of B with bound
h.

100 5. Lowness properties and approximations of the jump

Clearly each computable set A is strongly jump-traceable, because we can trace
the jump by

Te =

{
{JA(e)} if JA(e) ↓;
∅ otherwise.

In Theorem 5.2.5 below we show the existence of a non-computable strongly jump-
traceable set. We need the following result, proven in [54, Theorem 2.3.1]:

Lemma 5.2.4. The function

m(x) = min{C(y) : y ≥ x}

is unbounded, non-decreasing and for every order function f there is an x0 such that
m(x) < f(x) for all x ≥ x0. Also, m(x) = lims→∞ms(x), where

ms(x) = m(s, x) = min{Cs(y) : s ≥ y ≥ x ∨ y = 0}

is computable and ms(x) ≥ ms+1(x), for all x and s.

Recall from section 1.4 that here λx, s.Cs(x) is the standard computable ap-
proximation from above of C(x) (that is λs.Cs(x) → C(x) when s → ∞ and
Cs(x) ≥ Cs+1(x)).

A c.e. set A is promptly simple [71] if A is co-infinite and there is a computable
function p and an effective approximation (As)s∈N of A such that, for each e,

‖We‖ = ∞ ⇒ (∃s)(∃x) [x ∈We,s+1 \We,s ∧ x ∈ Ap(s)].

Theorem 5.2.5. There exists a promptly simple strongly jump-traceable set.

Proof. We construct a promptly simple set A in stages satisfying the following pos-
itive requirements

Pe : ‖We‖ = ∞ ⇒ (∃s)(∃x) [x ∈We,s+1 \We,s ∧ x ∈ As+1].

These requirements will ensure that A is promptly simple. Each time we enumerate
an element into A in order to satisfy Pe, we may destroy JA(k), and then our trace for
the jump of A will grow. Hence, we must enumerate elements into A in a controlled
way, and sometimes we should restrain from putting elements into A. Formally, we
also want to satisfy the following negative requirements:

Nk : [(∃∞s) JA(k)[s] ↓] ⇒ JA(k) ↓ .

(recall the definition of JA(k)[s] from section 1.3). Since for any order function h
there has to be a trace for JA bounded by h, we will work with the function m
defined in Lemma 5.2.4, which grows slower than any order function. The rule will
be that during the construction, Pe may destroy JA(k) at stage s only if e < ms(k).
(Observe that the restriction on Pe imposed rule may strengthen as s grows, because
we may have ms(k) > ms+1(k).) In this way, we will guarantee that the size of our
trace for JA(e) will be bounded by m(e), which will suffice because m ≤ h from

5.2. Strong jump-traceability 101

some point on. As we will see, the exact choice of the trace for JA with bound h
depends on h, and is made in a non-uniform way.

Construction of A. Let ms be the non-decreasing, unbounded function defined in
Lemma 5.2.4.

Stage 0: set A0 = ∅ and declare Pe unsatisfied for all e.

Stage s+ 1: choose the least e ≤ s such that

• Pe yet not satisfied;

• There exists x such that x ∈ We,s+1 \We,s, x > 2e and for all k such that
ms(k) ≤ e, if JA(k)[s] is defined then x is greater than the use of JA(k)[s].

If such e exists, put least such x for e into As+1. We say that Pe receives attention
at stage s + 1, and declare Pe satisfied. Otherwise, As+1 = As. Finally, define
A =

⋃
sAs. We say that x injures Ne at stage s + 1 if x enters As+1, JA(e)[s] is

defined and x is below its use.
We next verify that the described construction is as desired.

Lemma 5.2.6. For all k, Nk is injured at most finitely often.

Proof. Clearly, Pe receives attention at most once. So every positive requirement
influences the enumeration of A at most once. Since Nk can be injured at stage s
only if e < ms(k) then Nk is injured at most m0(k) times.

Lemma 5.2.7. For all k, Nk is met.

Proof. By Lemma 5.2.6, choose s such that Nk is not injured after stage s. If
JA(k)[t] ↓ for some t ≥ s, then this computation is stable from stage t on.

Lemma 5.2.8. For all e, Pe is met.

Proof. Fix e such that We is infinite and let us see that Pe is met. Let s be such
that

(∀k) [m(k) ≤ e ⇒ ms(k) = m(k)]

and s′ > s such that no Pi receives attention after stage s′ for any i < e. Then,
by the construction, no computation Nk with m(k) ≤ e can be injured after stage
s′. So there is t > s′ such that for all k where mt(k) ≤ e, if JA(k) converges
then the computation is stable from stage t on. Choose t′ ≥ t such that there is
x ∈We,t′+1 \We,t′ , x > 2e and x is greater than the use of all converging JA(k) for
all k where mt′(k) ≤ e. Now either Pe was already satisfied or Pe receives attention
at stage t′ + 1. In either case Pe is met.

Lemma 5.2.9. A is strongly jump-traceable.

102 5. Lowness properties and approximations of the jump

Proof. Fix an order function h. We will prove that there exists a trace T for JA as
in Definition 5.1.1. Let h be any order function. By Lemma 5.2.4, there exists k0

such that for all k ≥ k0, m(k) ≤ h(k). Define the computable function

f(k) =

{
min{s : ms(k) ≤ h(k)} if k ≥ k0;
0 otherwise.

For k ≥ k0 and s ≥ f(k), ms(k) will be below h(k), so JA(k) may change because Pe

receives attention, for e < ms(k) ≤ h(k). Since each Pe receives attention at most
once, JA(k) can change at most h(k) times after stage f(k). So

Tk =


{JA(k)[s] : JA(k)[s] ↓ ∧ s ≥ f(k)} if k ≥ k0;
{JA(k)} if JA(k) ↓ ∧ k < k0;
∅ otherwise.

is as required.

This completes the proof of the whole result.

Next we study the size of the trace bound for jump-traceability. Given an order
function h, it is always possible to find a jump-traceable set A for which h is too
small to be a bound for any trace for the jump of A.

We use the following auxiliary Lemma:

Lemma 5.2.10. Let h be an order. There exists a computable enumeration of all
the traces with bound h.

Proof. We know that there is a computable enumeration T̃ (0), T̃ (1), . . . of all the
traces. Define the i-th trace with bound h, denoted

T (i) = {T (i)0, T (i)1, . . . },

as in Definition 5.1.1, in stages: T (i)e[0] = ∅ and

T (i)e[s+ 1] =

{
T̃ (i)e[s] if ‖T̃ (i)e[s]‖ ≤ h(e);
T (i)e[s] otherwise.

where T̃ (i)e[s] is the approximation of T̃ (i)e by stage s.

Theorem 5.2.11. For any order function h there is a c.e. set A and an order
function h̃ such that A is jump-traceable via h̃ but not via h.

Proof. We will define an auxiliary function computable by n oracle machine ψ and
we use α, the reduction function for ψ (i.e. ψX(e) = JX(α(e)) for all X and e), in
advance by the Recursion Theorem (see [71]). At the same time, we will define a c.e.
set A and a trace T̃ for JA. Finally, we will verify that there is an order function h̃
for T̃ with the desired property.

5.2. Strong jump-traceability 103

Following Lemma 5.2.10, let T (0), T (1), . . . be an enumeration of all the traces
with bound h, so that

T (e) = {T (e)0, T (e)1, . . . },

the e-th such trace, is as in Definition 5.1.1. Positive requirement Pe tries to show
that JA is not traceable via the trace T (e) with bound h, that is,

Pe : (∃x)ψA(x) /∈ T (e)α(x)

and negative requirement Ne tries to stabilize the jump when it becomes defined,
i.e.

Ne : [(∃∞s) JA(e)[s] ↓] ⇒ JA(e) ↓ .

The strategy for a single procedure Pe consists of an initial action and a possible
later action.

Initial action at stage s+ 1:

• Choose a new candidate xe = 〈e, n〉, where n is the number of times that Pe

has been initialized. Define ψA(xe)[s+ 1] = 0 with large use (that is, with use
greater than all the seen computations).

Action at stage s+ 1:

• Let xe = 〈e, n〉 be the current candidate. Put y into As+1, where y is the use
of the defined ψA(xe)[s]. Notice that the construction will guarantee that this
action will not affect JA(i)[s] for i < e because of the choice of y;

• Define ψA(xe)[s+ 1] = ψA(xe)[s] + 1 with use y′ > y and greater than the use
of all defined computations of JA(i)[s+ 1] for all i < e.

We say that Pe requires attention at stage s + 1 if ψA(xe)[s] ∈ T (e)α(xe)[s] and we
say that Ne requires attention at stage s+ 1 if JA(e)[s] becomes defined for the first
time.

Construction of A. We define T̃ = {T̃0, T̃1, . . . } by stages. The s-th stage of T̃i will
be denoted by T̃i[s]. We start with A0 = ∅ and T̃i[0] = ∅ for all i. At stage s+ 1 we
consider the procedures Nj for j ≤ s and Pj for j < s. We also initialize the new
Ps. We look at the least procedure requiring attention in the order

P0, N0, . . . , Ps, Ns.

If there is no one, do nothing. Otherwise, suppose Pe is the first one. We let Pe take
action at s+ 1, changing A below the use of ψA(xe)[s] and redefining ψA(xe)[s+ 1]
without affecting Ni for i < e. We keep the other computations of Pj with the
new definition of A, for j 6= i and large use. If Ne is the least procedure requiring
attention, there is y such that JA(e)[s] ↓= y. We put y into T̃e[s+ 1] and initialize
Pj for e < j ≤ s. In this case, we say that Ne acts. Notice that it is necessary to

104 5. Lowness properties and approximations of the jump

initialize Pj for e < j ≤ s because the use of the defined JA(e)[s] might by greater
than the use of ψA(xj)[s] and it is required that the computation of ψA(xj)[s] has
always an use greater than the computation of JA(e)[s].

We say that Ne is injured at stage s + 1 if we put y into As+1 and y is less or
equal than the use of JA(e)[s].

Lemma 5.2.12. Ne is injured finitely often and there is a computable bound cN (e)
for such number of injuries. Furthermore, h̃(e) = cN (e) is an order function and it
constitutes a bound for the trace (T̃i)i∈N.

Proof. We define cP (k) as a bound for the number of initializations of Pr, for r ≤ k;
and define cN (k) as a bound for the number of injuries to Nr, for r ≤ k. Since P0

is initialized just once and makes at most h(〈0, 0〉) changes in A, cP (0) = 1 and
cN (0) = h(〈0, 0〉). The number of times that Pk+1 is initialized is bounded by the
number of times that Nr acts, for r ≤ k, so

cP (k + 1) = cP (k) + cN (k).

Each time Nr is injured, for r ≤ k then Nk+1 may also be injured; additionally, Nk+1

may be injured each time Pk+1 changes A. The latter occurs at most h(〈k + 1, i〉)
for the i-th initialization of Pk+1. Hence

cN (k + 1) = 2cN (k) +
∑

i≤cP (k+1)

h(〈k + 1, i〉).

Once Ne is not injured anymore, if JA(e) ↓ then JA(e) ∈ T̃e. Since the number of
changes of JA(e) is at most the number of injuries to Ne, we define the function
h̃(e) = cN (e) which is clearly an order function and it constitutes a bound for the
trace (T̃i)i∈N.

Lemma 5.2.13. For all e, Pe is met.

Proof. Take s such that all JA(i) are stable for i < e. Suppose xe is the actual
candidate of Pe. Since Pe is not going to be initialized again, xe is the last candidate
it picks. Each time ψA(xe)[t] ∈ T (e)α(xe)[t] for t > s, Pe acts and changes the
definition of ψA(xe) to escape from T (e)α(xe). Since ‖T (e)α(xe)‖ ≤ h(α(xe)), there is
s′ > s such that T (e)α(xe)[s

′] = T (e)α(xe). By construction, ψA(xe)[s′+1] /∈ T (e)α(xe)

and ψA(xe)[s′ + 1] is stable.

This completes the proof of the whole result.

It is open if there is a minimal bound for jump-traceability. That is, given an
order function h, is there a set A and an order function h̃ such that A is jump-
traceable via h but not via h̃. If this fails for some order function h, then strong
jump-traceability is the same as jump traceability for that single order function.

To finish this section, we present the proof of the fact that, because of the
universality of the jump, the definition of U-traceability actually coincides with the
definition of jump-traceability.

5.3. Well-approximability of the jump 105

Proposition 5.2.14. A is U-traceable if and only if A is jump-traceable.

Proof. Recall Definition 5.1.3 of U-traceability. Suppose A is U-traceable via a trace
T with bound h and let α be a reduction function such that UA(α(x)) = JA(x).
Then if JA(x) ↓ then JA(x) ∈ T|α(x)|. So by taking T̃i = T|α(i)| we have that A is
jump-traceable via a trace T̃ with bound h(|α(i)|).

For the other direction, if A is jump-traceable via T with bound h, then there is
a reduction function α such that JA(α(x)) = str−1(UA(str(x))). Hence if UA(σ) ↓,
and x = str−1(σ) then UA(str(x)) = UA(σ) and str−1(UA(σ)) ∈ Tα(x). Hence

UA(σ) ∈ str
(
Tα(str−1(σ))

)
⊆

⋃
τ : |τ |=|σ|

str
(
Tα(str−1(τ))

)
and A is U-traceable via

T̃i =
⋃

τ : |τ |=i

str
(
Tα(str−1(τ))

)
with bound ∑

τ : |τ |=i

h(α(str−1(τ))).

This completes the proof.

5.3 Well-approximability of the jump

We strengthen the notion of super-lowness and study the relationship to strongly
jump-traceability.

Definition 5.3.1 (Well-approximability). A set D is well-approximable if and only
if for each order function b, D is ω-c.e. via b.

Clearly, if A′ is well-approximable, then A is super-low. It is not difficult to see
that well-approximability of the jump is closed downward under Turing reducibility.

Proposition 5.3.2. The set {A : A′ is well approximable} is closed downward under
Turing reducibility.

Proof. Suppose A is such that A′ is well-approximable, and let B ≤T A. We prove
that B′ is well-approximable via the given order function b. Define ψ and α as in
Proposition 5.2.3. We know that there is a computable {0, 1}-valued g such that
A′(x) = lims→∞ g(x, s) and g(x, s) changes at most b̃(x) times, where

b̃(z) = b(min{y : y ∈ N ∧ α(y + 1) ≥ z}).

Then
lim

s→∞
g(α(x), s) = A′(α(x)) = B′(x)

and g(α(x), s) changes at most b̃(α(x)) times. As in Proposition 5.2.3, b̃(α(x)) ≤
b(x).

106 5. Lowness properties and approximations of the jump

We next prove that if A is c.e. then A is strongly jump-traceable if and only if
A′ is well-approximable. We first need the following lemmas.

Lemma 5.3.3. Let f and f̂ be order functions such that f(x) ≤ f̂(x) for almost all
x.

1. If A is jump-traceable via f then A is jump-traceable via f̂ ;

2. If A is well-approximable via f then A is well-approximable via f̂ .

Proof. Assume
(∃x0)(∀x) [x ≥ x0 ⇒ f(x) ≤ f̂(x)].

For (1), suppose T is a trace for JA with bound f . We can define the trace T̂ :

T̂x =

{
Tx if x ≥ x0;
{JA(x)} otherwise.

Hence, if x ≥ x0 then ‖T̂x‖ = ‖Tx‖ ≤ f(x) ≤ f̂(x), and if x < x0 then 1 = ‖T̂x‖ ≤
f̂(x).

For (2), suppose A is well-approximable via the {0, 1}-valued g(x, s) which
changes at most f(x) times. Define

ĝ(x, s) =

{
g(x, s) if x ≥ x0;
A(x) otherwise.

If x ≥ x0 then ĝ(x, s) changes at most f(x) ≤ f̂(x) times, and if x < x0 then ĝ does
not change at all.

Lemma 5.3.4. There exists a computable f such that for all c.e. A:

1. If A is jump-traceable via an order function h then A is super-low via the order
function b(x) = 2h(f(x)) + 2;

2. If A is super-low via an order function b then A is jump-traceable via the order
function h(x) = b1

2b(f(x))c.

Proof. We follow the proof of [60, Theorem 4.1], together with Lemma 5.3.3.

1⇒2. Suppose A is jump-traceable via h. By [60] A is super-low via a {0, 1}-
valued computable g such that g(x, s) changes at most 2h(α(x)) + 2 times. Here,
α is a reduction function (hence primitive recursive) which depends on A. The
diagonal f of the Ackermann-function satisfies f(x) ≥ α(x) for almost all x [63,
Volume 2, Theorem VIII.8.10]. Since h is an order function, 2(h ◦ f)+2 also is, and
2h(f(x)) + 2 ≥ 2h(α(x)) + 2 for almost all x. By Lemma 5.3.3, A is super-low via
b(x) = 2h(f(x)) + 2.

2⇒1. Suppose A is super-low via an order function b and the {0, 1}-valued
function g. Again following [60], there is a trace for JA via b1

2(b◦f)c, for a primitive
recursive α which depends on g. As we did in the previous implication, b1

2b(f(x))c ≥
b1

2b(α(x))c for almost all x. Thus A is jump-traceable via h(x) = b1
2b(f(x))c.

5.3. Well-approximability of the jump 107

Theorem 5.3.5. Let A be a c.e. set. Then the following are equivalent:

1. A is strongly jump-traceable;

2. A′ is well-approximable.

Proof. 1⇒2. Given an order function b, let us prove that A is super-low via b. By
part 1 of Lemma 5.3.4, it suffices to define an order function h such that 2h(f(x))+
2 ≤ b(x) for almost all x. If b(x) ≥ 4 then define h(f(x)) = b b(x)−2

2 c and if b(x) < 4,
define h(f(x)) = 1. Since f can be taken strictly monotone, the above definition is
correct and we can complete it to make h an order function.

2⇒1. Given an order function h, we will prove that A is jump-traceable via
h. By part 2 of Lemma 5.3.4, it suffices to define an order function b such that
b1

2b(f(x))c ≤ h(x) for almost all x. The argument is similar to the previous case.

Later, in Corollary 5.4.4, we will improve this result and we will see that, in fact,
the implication 2⇒1 holds for any A.

We finish this section by proving that the prefixes D � n of a well-approximable
set D have low program-size complexity, of order logarithmic in n. Hence D is not
Martin-Löf random and furthermore, the effective Hausdorff dimension is 0. The
latter is just equivalent of saying that there is no c > 0 such that cn is a linear lower
bound for the prefix-free program-size complexity of D � n for almost all n.

Theorem 5.3.6. If D is well-approximable then for almost all n, K(D � n) ≤ 4|n|.

Proof. Suppose D(n) = lims→∞ g(n, s), where g is computable and changes at most
n times. Given n, there is a unique s and some m < n such that g(m, s) 6= g(m+1, s)
but g(q, t) = g(q, t+1) for all t > s and q < n. That is, s is the time when g converges
on below n and m is the place where the last change takes place. The stage s can be
computed from m and the number k of stages with g(m, t+1) 6= g(m, t). So one can
compute D � n from m,n, k. Since k,m ≤ n, one can, for almost all n, code m,n, k
in a prefix-free way in 4|n| many bits. This is done by using a prefix of the form 1q0
followed by 2q bits representing n, 2q bits representing m and 2q bits representing k
as binary numbers; here q is just the smallest number such that 2q bits are enough.
Since k,m ≤ n and since 2q ≤ |n|+ c for some constant c and since the additionally
necessary coding needed to transform the above representation into a program for
U is bounded by a constant, we have that there is a constant d such that

(∀n)K(D � n) ≤ 3|n|+ |n|/2 + d

and then the relation K(D � n) ≤ 4|n| holds for almost all n. In fact, using binary
notation to store q instead of 1q0, it would even give

K(D � n) ≤ 3|n|+ 2 log(|n|)

for almost all n.

We can prove a similar result for strongly jump-traceable sets:

108 5. Lowness properties and approximations of the jump

Theorem 5.3.7. If A is strongly jump-traceable then for almost all n, K(A � n) ≤
3|n|.

Proof. Let α be a reduction function such that JA(α(n)) = A � n and let T be a
trace for JA with bound h such that h(α(n)) ≤ n. We know that A � n ∈ Tα(n) and
‖Tα(n)‖ ≤ n. Suppose A � n is the m-th element enumerated into Tα(n). Then we
can describe A � n with m and n and so

K(A � n) ≤ |n|+ 2 log |n|+ |m|+ 2 log |n|+ c

for some constant c. Since m ≤ n we finally have K(A � n) ≤ 2|n| + 4 log |n| + c,
which implies K(A � n) ≤ 3|n| for almost all n.

Corollary 5.3.8. If A is strongly jump-traceable or A′ is well-approximable then
K(A � n) ≤ 4|n| for almost all n and hence A is not random.

Proof. It follows immediately from Theorem 5.3.7 and Theorem 5.3.6 together with
the fact that A ≤1 A

′ and Proposition 5.3.2.

5.4 Traceability and plain program-size complexity

We give a characterization of strong jump-traceability in terms of plain program-
size complexity and we show that if A′ is well-approximable then A is strongly
jump-traceable for any set A. This is a stronger result than the implication 2⇒1 of
Theorem 5.3.5.

A binary machine is a partial computable function M̃ : 2<ω × 2<ω 7→ 2<ω. Let
Ũ be a binary universal function given as

Ũ(0d1σ, τ) = M̃d(σ, τ),

where (M̃d)d∈N is an enumeration of all partial computable functions of two argu-
ments. We define the plain conditional program-size complexity C(σ|τ) as the length
of the shortest description of σ using Ũ with string τ as the second argument, that
is,

C(σ|τ) = min{|ρ| : Ũ(ρ, τ) = σ}.

Theorem 5.4.1. If A′ is well-approximable then for every order function h and
almost all σ, C(σ) ≤ CA(σ) + h(CA(σ)).

Proof. The idea of the proof is the following. Let h be any order function. Suppose
ρσ is a minimal A-program for σ. It is known (see for example [54]) that there is a
c such that

C(σ) ≤ |ρσ|+ 2C(σ|ρσ) + c.

Since |ρσ| = CA(σ), we only need to show that

2C(σ|ρσ) + c ≤ h(|ρσ|)

5.4. Traceability and plain program-size complexity 109

for almost all σ to obtain the desired upper bound on C(σ). Given ρσ and the value
of C(σ|ρσ), we can find a program γσ of length C(σ|ρσ) which describes σ with the
help of ρσ, that is Ũ(γσ, ρσ) = σ. It can be shown that there is a computable {0, 1}-
valued approximation of the bits of γσ which changes few times (in the proof, this is
done with the help of the function ψ, computable with an oracle machine). Hence,
σ can be described by ρσ and γσ, while γσ can be represented with C(σ|ρσ) and
the number of changes of the mentioned {0, 1}-valued approximation. Therefore, in
total we can represent σ with ρσ, C(σ|ρσ) and the appropriate number of changes.
This will show C(σ|ρσ) ≤ 2 log h(|ρσ|) +O(1), which is sufficient to get the desired
upper bound on 2C(σ|ρσ) + c.

Here are the details. Let ψA(m,n, ρ) be a function computable by an oracle
machine which does the following:

1. Compute σ = UA(ρ). If UA(ρ) ↑ then ψA(m,n, ρ) ↑;

2. Find the first program γ such that |γ| = n and Ũ(γ, ρ) = σ. If there is no such
γ then ψA(m,n, ρ) ↑;

3. In case m /∈ [1, n] then ψA(m,n, ρ) ↑. Otherwise, if the m-th bit of γ is 1 then
ψA(m,n, ρ) ↓, else ψA(m,n, ρ) ↑.

Let α be a reduction function such that JA(α(m,n, ρ)) = ψA(m,n, ρ). Choose an
order b such that b(α(n, n, ρ)) ≤ nh(|ρ|) for all n, ρ. We can approximate A′(x) with
a {0, 1}-valued computable function which changes at most b(x) times.

Let ρσ be a minimal A-program for σ, that is, UA(ρσ) = σ and |ρσ| = CA(σ).
Let nσ = C(σ|ρσ). Then by construction, ψA(m,nσ, ρσ) ↓ iff the m-th bit of γσ is
1, where γσ is the first program such that |γσ| = nσ and Ũ(γσ, ρσ) = σ.

Since A′ is ω-c.e. via b,

γσ = A′(α(1, nσ, ρσ)) . . . A′(α(nσ, nσ, ρσ))

changes at most

nσ max{b(α(m,nσ, ρσ)) : 1 ≤ m ≤ nσ} ≤ nσb(α(nσ, nσ, ρσ))
≤ n2

σh(|ρσ|)

many times. Since Ũ(γσ, ρσ) = σ and we can describe γσ with nσ, ρσ and the
number of changes of A′(α(1, nσ, ρσ)) . . . A′(α(nσ, nσ, ρσ)), we have

nσ = C(σ | ρσ) ≤ 2 log nσ + log(n2
σh(|ρσ|)) +O(1)

≤ 4 log nσ + log h(|ρσ|) +O(1). (5.1)

To finish, let us prove that for almost all σ, nσ ≤ 2 log h(|ρσ|) +O(1). Since C(σ) ≤
|ρσ|+ 2nσ +O(1), this upper bound of nσ will imply that

C(σ) ≤ |ρσ|+ 4 log h(|ρσ|) +O(1)
≤ |ρσ|+ h(|ρσ|)
= CA(σ) + h(CA(σ))

110 5. Lowness properties and approximations of the jump

for almost all σ, as we wanted. Hence, let us see that nσ ≤ 2 log h(|ρσ|) + O(1)
for almost all σ. There is a constant n0 such that for all n ≥ n0, 8 log n ≤ n.
Since h is non-decreasing and unbounded, we know that for almost all σ, ρσ satisfies
log h(|ρσ|) ≥ n0. Suppose σ has this property. Then either nσ ≤ log h(|ρσ|) or
4 log nσ ≤ nσ/2. In the second case nσ − 4 log nσ ≥ nσ/2 and by (5.1), nσ/2 ≤
log h(|ρσ|) + O(1). So, in both cases, we have nσ ≤ 2 log h(|ρσ|) + O(1) and this
completes the proof.

Lemma 5.4.2. For all σ ∈ 2<ω and d ∈ N,

‖{τ : C(σ, τ) ≤ C(σ) + d}‖ ≤ O(d42d).

Proof. Chaitin [23] proved that

(∀d, n ∈ N) ‖{σ : |σ| = n ∧ C(σ) ≤ C(n) + d}‖ ≤ O(2d).

We can represent σ with 0str−1(σ)1. Let c be such that (∀σ)C(σ) ≤ str−1(σ) + c.
Consider the partial computable function f(σ, τ, d) : 2<ω × 2<ω × N → 2<ω which
enumerates all strings χ such that C(σ, χ) ≤ str−1(σ) + d + c until it finds χ = τ .
If χ was the i-th string to appear in the enumeration, then f(σ, τ, d) is the number
i written in binary with initial zeroes such that |f(σ, τ, d)| = str−1(σ) + d + c + 1.
Notice that it is always possible to write f(σ, τ, d) in this way because there are at
most 2str−1(σ)+d+c+1 such strings χ. If no such χ exists, then f(σ, τ, d) ↑.

Let σ and d be given. Consider τ such that C(σ, τ) ≤ C(σ) + d. Since C(σ, τ) ≤
str−1(σ) + d+ c then f(σ, τ, d) ↓ and we can represent f(σ, τ, d) with σ, τ and d, so

C(f(σ, τ, d)) ≤ C(σ, τ) + 2 log d+O(1)
≤ C(σ) + d+ 2 log d+O(1). (5.2)

We can compute the string σ from the numbers str−1(σ) + d + c + 1 and d (recall
that c is a fixed constant) and then from 5.2 we conclude that there is a constant c′

such that

C(f(σ, τ, d)) ≤ C(str−1(σ) + d+ c+ 1) + d+ 4 log d+ c′.

Let n = str−1(σ)+d+ c+1 and d′ = d+4 log d+ c′. For fixed σ and d, the mapping
τ 7→ f(σ, τ, d) is injective and thus

‖{τ : C(σ, τ) ≤ C(σ) + d}‖ ≤ ‖{σ : |σ| = n ∧ C(σ) ≤ C(n) + d′}‖
≤ O(2d′) = O(d42d).

This completes the proof.

Theorem 5.4.3. The following are equivalent:

1. A is strongly jump-traceable;

2. For every order function h and almost every σ,

C(σ) ≤ CA(σ) + h(CA(σ)).

5.4. Traceability and plain program-size complexity 111

Proof. 1⇒2. Let h0 be a given order function. It is sufficient to show that C(σ) ≤
CA(σ) + h(CA(σ)) +O(1) for almost all σ, where h = bh0/2c. Let α be a reduction
function such that JA(α(x)) = UA(str(x)). Let T be a trace for JA with bound
g such that g(α(x)) ≤ h(|str(x)|). Let m ∈ N be such that UA(str(m)) = τ and
|str(m)| = CA(τ). Since τ ∈ Tα(m), we can code τ with m and a number not greater
than g(α(m)) representing the time in which τ is enumerated into Tα(m), using at
most

|str(m)|+ g(α(m)) ≤ CA(τ) + h(CA(τ))

many bits. Then (∀σ)C(σ) ≤ CA(σ) + h(CA(σ)) +O(1).

2⇒1. Since there are at most 2n − 1 programs of length less than n,

(∀n)(∃σ) [|σ| = n ∧ n ≤ C(σ)].

Let c be a constant such that

(∀σ) [JA(|σ|) ↓ ⇒ CA(σ, JA(|σ|)) ≤ |σ|+ c].

This last inequality holds because, given σ, we can compute JA(|σ|) relative to A.
Let h be any order function and let us prove that A is jump-traceable via h.

Define the order function g such that for almost all e, 3g(e+c) ≤ h(e). By hypothesis,
for almost all σ, if JA(|σ|) ↓ then

C(σ, JA(|σ|)) ≤ CA(σ, JA(|σ|)) + g(CA(σ, JA(|σ|)))
≤ |σ|+ g(|σ|+ c) + c. (5.3)

Define the trace

Te = {τ : (∀σ) [|σ| = e ⇒ C(σ, τ) ≤ e+ g(e+ c) + c]}.

It is clear that for almost all e, if JA(e) ↓ then JA(e) ∈ Te, because given σ such
that |σ| = e, we have by (5.3) that C(σ, JA(e)) ≤ e+ g(e+ c) + c. To verify that for
almost all e, ‖Te‖ ≤ h(e), suppose τ ∈ Te. Take σ, |σ| = e and C(σ) ≥ e. Then

C(σ, τ) ≤ e+ g(e+ c) + c

≤ C(σ) + g(e+ c) + c.

By Lemma 5.4.2, for almost all e there are at most 3g(e+c) ≤ h(e) such τs in Te.

In [60], it was proven that there is a super-low which is not jump-traceable
(namely, a super-low random set). In contrast, from Theorem 5.4.1 and Theo-
rem 5.4.3 we can conclude that the strong version of super-lowness implies strong
jump-traceability.

Corollary 5.4.4. If A′ is well-approximable then A is strongly jump-traceable.

112 5. Lowness properties and approximations of the jump

5.5 Variations on K-triviality

Throughout this section, let p : N→ N be strictly increasing such that limn p(n)−
n = ∞. We call p an estimation function if, in addition, p(n) = lims ps(n) where
ps+1(n) ≤ ps(n), and the function λs, n.ps(n) is computable. As we said before,
Nies [62] proved that A is K-trivial if and only if A is low for K. In this section we
weaken the notion of K-triviality and lowness for K:

Definition 5.5.1 (Weakly p-low and p-low). 1. A set A is weakly p-low iff

(∀n)K(A � n) ≤ p(K(n) + c0) + c1

for some constants c0 and c1. Let K[p] denote the class of such sets.

2. A set A is p-low iff

(∀σ)K(σ) ≤ p(KA(σ) + c0) + c1

for some constants c0 and c1. Let M[p] denote the class of such sets.

We say that A ≤K B if and only if (∀n)K(A � n) ≤ K(B � n) +O(1).

Proposition 5.5.2. 1. If A ∈M[p] and B ≤T A, then B ∈M[p].

2. If A ∈ K[p] and B ≤K A or B ≤wtt A, then B ∈ K[p].

3. Suppose p is an estimation function. Then no random set is in K[p].

4. If A,B ∈ K[p] and A,B are c.e., then A⊕B ∈ K[p].

5. M[p] ⊆ K[p].

Proof. 1. Since B ≤T A, there exists a constant c2 such that for each string σ,
KA(σ) ≤ KB(σ) + c2. Then

K(σ) ≤ p(KA(σ) + c0) + c1

≤ p(KB(σ) + c0 + c2) + c1.

2. This is trivial for ≤K . Now suppose B = ΓA for a weak truth-table reduction
Γ with computable bound f . Without loss of generality, we may assume f
strictly increasing. Given A � f(n) we can compute n and B � n, and then
there is a constant c2 such that for all n,

K(B � n) ≤ K(A � f(n)) + c2

≤ p(K(f(n)) + c0) + c1 + c2.

Since f is computable, we have K(f(n)) ≤ K(n) +O(1), and hence B ∈ K[p].

5.5. Variations on K-triviality 113

3. Assume (∀n)K(A � n) > n − c and A ∈ K[p] via constants c0 and c1. Define
the strictly increasing computable function p̃(0) = p0(0) and p̃(k+ 1) = p0(j),
where j = min{i : i > k ∧ p0(i) > p̃(k)}. Since p̃ ≥ p, A ∈ K[p̃]. Define the
Kraft-Chaitin set

{〈i, ni〉 : i ∈ N+ ∧ ni = p̃(i+ d+ c0) + c1 + c}

for Md with d given in advance by the Recursion Theorem. Then K(ni) ≤ i+d
and hence p̃(K(ni) + c0) ≤ p̃(i+ d+ c0). Finally,

K(A � ni) ≤ p̃(K(ni) + c0) + c1

≤ p̃(i+ d+ c0) + c1 = ni − c,

and this is a contradiction.

4. Ignoring constants, for each n,

K(A⊕B � n) ≤ K(A⊕B � 2n)
≤ max{K(A � n),K(B � n)}
≤ p(K(n)).

In the second inequality we used [35, Theorem 6.4].

5. Again ignoring constants, for all n,

K(A � n) ≤ p(KA(A � n))
≤ p(KA(n))
≤ p(K(n)).

This completes the proof.

The following proposition shows a connection between jump-traceability and
p-lowness. In Theorem 5.4.3 we proved a similar result, relating strong jump-
traceability and plain program-size complexity.

Proposition 5.5.3. 1. Suppose p is a computable function. There is a constant
c such that if A ∈ M[p] via constants c0 and c1 then A is jump-traceable via
h(x) = 2p(2 log x+c0+c)+c1+1;

2. There is a reduction function α such that if A is jump-traceable via h then
A ∈M[p] for p(z) = 3z + 2 log h(α(2z+1)).

Proof. For 1, we know that there is a constant c such that KA(JA(σ)) ≤ 2|σ| + c
because we can compute JA(σ) from σ and the oracle A. Define the trace

Tx = {U(ρ) : |ρ| ≤ p(2 log x+ c0 + c) + c1}.

Clearly ‖Tx‖ ≤ 2p(2 log x+c0+c)+c1+1. Let y = JA(x). By hypothesis K(y) ≤
p(KA(y) + c0) + c1 and then K(y) ≤ p(2 log x+ c+ c0) + c1. Hence y ∈ Tx.

114 5. Lowness properties and approximations of the jump

For 2, let α be a reduction function such that

JA(α(x)) = str−1(UA(str(x))).

Let T be a trace for JA with bound h and let us define the trace

T̃n =
⋃

x:|str(x)|=n

Tα(x).

Notice that

‖T̃n‖ ≤
∑

x:|str(x)|=n

h(α(x))

≤ 2nh(α(2n+1)),

since α is increasing. Let m ∈ N be such that UA(str(m)) = σ and |str(m)| =
KA(σ). Since str−1(σ) ∈ Tα(m), we know that str−1(σ) ∈ T̃|str(m)|, hence we describe
σ by saying “str−1(σ) is the i-th element enumerated into T̃|str(m)|”. If we code
|str(m)| in unary and we code i with

2 log i ≤ 2 log(2|str(m)|h(α(2|str(m)|+1)))
≤ 2|str(m)|+ 2 log h(α(2|str(m)|+1))

many bits, we have
K(σ) ≤ p(KA(σ)) +O(1),

for
p(z) = 3z + 2 log h(α(2z+1)).

This completes the proof.

Corollary 5.5.4. A is jump-traceable iff there exists a computable function p (of
the type considered in this section) such that A ∈M[p].

Proposition 5.5.5. Let p be an estimation function. Then there is a Turing com-
plete c.e. set A which is weakly p-low and also satisfies the corresponding property
for C, i.e. there are constants cK , cC such that K(A � x) ≤ p(K(x)) + cK and
C(A � x) ≤ p(C(x)) + cC for all x.

Proof. Construction of A. For defining an enumeration of A, fix a one-one enumer-
ation b0, b1, . . . of the Halting Problem and approximations Cs and Ks to C and K
respectively.

Stage 0: set A0 = ∅.

Stage s+ 1: let am be the m-th non-element of As in ascending order. Now the set
As+1 is computed as follows.

• Let n be the minimum of all m such that one of the following conditions holds:

1. am > s;

5.5. Variations on K-triviality 115

2. bs ≤ m;

3. ps(Ks(k))−Ks(k) ≤ m for some k with am ≤ k ≤ s;

4. ps(Cs(k))− Cs(k) ≤ m for some k with am ≤ k ≤ s.

• Let As+1 = As ∪ {x : an ≤ x ≤ s}.

The so constructed set A satisfies the following properties:

• A is co-infinite and c.e.;

• A is Turing complete;

• K(A � x) ≤ p(K(x)) + cK for some constant cK and all x;

• C(A � x) ≤ p(C(x)) + cC for some constant cC and all x.

Let us prove separately each of the statements below.

Lemma 5.5.6. A is co-infinite and c.e.

Proof. The first property states the obvious fact that A is c.e. by the construction.
The other fact that A is co-infinite needs some more thought. Assume by way of
contradiction that ‖N \ A‖ = m for some finite number m. Let a0, a1, . . . , am−1

denote the non-elements of A in ascending order and assume that s is so large that
the following conditions hold:

(i) if bt ≤ m then t < s;

(ii) for all x ∈ A \ As there is no k ≥ x and no e ≥ min{C(k),K(k)} such that
p(e)− e ≤ m;

(iii) if x ≤ am−1 + 1 then x ∈ A⇔ x ∈ As.

Because of condition (iii), one can see that the parameters a0, a1, . . . , am−1 chosen
in the definition at stage s+ 1 coincide with the m least non-elements of A and are
just not enumerated. Furthermore, am is also defined as the next non-element of As,
that is, am is the least non-element of As greater than am−1. Since by construction
s /∈ As, we have am ≤ s.

Now one can see that am is not enumerated into As+1 because the n selected at
stage s + 1 of the construction is larger than m: for all m′ < m, n 6= m′ because
otherwise a0, a1, . . . , am−1 would not remain outside A. Furthermore one can see
that n 6= m analyzing which of the search-conditions 1, 2, 3 or 4 in the definition of
A at stage s+ 1 apply for n.

• If condition 1 holds then am > s and this contradicts the fact mentioned above;

• If condition 2 holds then bs ≤ m but this cannot happen because of condition
(i) in the selection of s;

116 5. Lowness properties and approximations of the jump

• If condition 3 holds then ps(Ks(k))−Ks(k) ≤ m for some k with am ≤ k ≤ s.
For e = Ks(k) this means that m ≥ ps(e) − e ≥ p(e) − e, as ps approximates
p from above. Now this is not possible because of condition (ii);

• The same happens if condition (4) holds.

So am /∈ As+1 and one can show by induction that am /∈ At for all t > s, this
contradicts the assumption that ‖N \A‖ = m. Therefore, A is co-infinite.

Lemma 5.5.7. A is Turing complete.

Proof. It follows from the construction. If a0, a1, . . . are the non-elements of A in
ascending order, then bs ≤ m implies s ≤ am. Indeed, if bs ≤ m then m satisfies the
search-condition 2 and thus {an, . . . , s} ⊆ As+1 for some n ≤ m. If s > am then am

would be put into As+1 and this contradicts the fact that am is a non-element of A.
Thus m is in the Halting Problem if and only if m ∈ {b0, b1, . . . , bam} and so the

Halting Problem is Turing reducible to A.

Lemma 5.5.8. Let n be the number of non-elements of A below x. Then K(x)+n ≤
p(K(x)).

Proof. Let a0, . . . , an−1 be the non-elements of A below x in ascending order. Sup-
pose there exists infinitely many s such that Ks(x)+n > ps(Ks(x)). Since x > an−1,
for s large enough the search-condition 3 would become true and then an−1 would
be enumerated into A. Hence, for all sufficiently large s, Ks(x) + n ≤ ps(Ks(x)).
Therefore K(x) + n ≤ p(K(x)).

Lemma 5.5.9. K(A � x) ≤ p(K(x)) + cK for some constant cK and all x.

Proof. Given x and the shortest description ρ for x with respect to a fixed prefix-free
universal machine and, as in Lemma 5.5.8, let n be the number of non-elements of
A below x. Then one can construct a prefix-free machine which from input 1n0ρ
first evaluates the universal machine on ρ to get the value x and then searches for a
stage s such that As contains all but n elements below x. Having this x and s, the
machine outputs As � x. If ρ and n are chosen correctly, then the output is correct.
Thus one has that K(A � x) is at most K(x) +n+ cK where the constant cK comes
from translating the given prefix-free coding of K(A � x) of length K(x) + n+ 1 for
some machine into inputs for the universal machine. By Lemma 5.5.8, we conclude
that A is weakly p-low, as we wanted.

Lemma 5.5.10. C(A � x) ≤ p(C(x)) + cC for some constant cC and all x.

Proof. This can be proven analogously; here the constructed machine is not prefix-
free and ρ is the shortest input producing x with respect to some fixed universal
plain machine, nevertheless ρ and n can of course still be recovered from 1n0ρ. The
rest of the proof follows the previous item but is working with C in place of K.

This completes the proof of the whole result.

5.5. Variations on K-triviality 117

As a corollary, we obtain that the inclusion from Proposition 5.5.2 item 5 is
strict.

Corollary 5.5.11. For all estimation functions p, M[p] K[p].

Proof. Let p be any estimation function and let A ∈ K[p] be the set constructed
in Proposition 5.5.5. Since A is Turing complete, Ω ≤T A. Suppose A ∈ M[p].
Then by item 1 of Proposition 5.5.2, we have that Ω ∈ M[p] and by item 5 of
Proposition 5.5.2, Ω ∈ K[p]. This contradicts item 3 of Proposition 5.5.2.

Proposition 5.5.12. For every estimation function p there is a whole Turing degree
outside ∆0

2 contained in K[p].

Proof. For any estimation function p one can consider the estimation function q given
as q(n) = n+ (p(n)− n)/4. Observe that limn q(n)− n = ∞ and q is approximated
from above because p is an estimation function. Then one can construct a c.e. set
A as in Proposition 5.5.5 which is in K[q].

The set A is not computable. Thus, due to Yates’s version of the Friedberg-
Muchnik Splitting Theorem [63, Theorem IX.2.4 and Exercise IX.2.5], one can
construct a partial computable {0, 1}-valued function ψ with domain A such that
ψ−1(0), ψ−1(1) form a recursively inseparable pair, that is, ψ does not have a total
extension. Actually, given a one-one enumeration a0, a1, . . . of A, this function ψ
can be inductively defined on this domain by taking ψ(as) in {0, 1} such that ψ(as)
differs from ϕe,s(as) for the least e where either e = s or ϕe,s(as) is defined and
ψ(at) = ϕe,s(at) for all t < s with at ∈ dom(ϕe,s).

Let B be any total extension of ψ. Given any x, by Lemma 5.5.8 the number n of
places below x where ψ is undefined satisfies n < q(K(x))−K(x). Let x1, x2, . . . , xn

be these places and let ρ be the shortest input such that the prefix-free universal
machine computes x. Then one can code B � x by 1n0B(x1)B(x2) . . . B(xn)ρ and
thus concludes that

K(B � x) ≤ 2n+K(x) + 1
≤ 2q(K(x))−K(x)
= K(x) + (p(K(x))−K(x))/2
≤ p(K(x))

As one can take B to have hyperimmune-free Turing degree [63, Theorem V.5.34]
and as K[p] is closed under wtt-reducibility, one has that a whole Turing degree
outside ∆0

2 is contained in K[p].

Note that the above result also holds with C in place of K, the proof is exactly
the same. So given an estimation function p, one can construct a hyperimmune-free
Turing degree only consisting of sets E satisfying C(E � x) ≤ p(E(x)) for all x
up to an additive constant. Unfortunately, it is not guaranteed that this degree
is also strongly jump-traceable, it is even a bit unlikely, as only the use of total
E-computable functions but not of the jump is computably bounded in the case of
a set E of hyperimmune-free degree.

6. OPEN QUESTIONS AND FUTURE RESEARCH

We close this thesis with a list of the main questions that remain open in each
chapter.

In chapter 2 we showed two algorithms for constructing absolutely normal reals.
However these algorithms are highly exponential and do not lead to feasible computer
implementations. To determine just the first digit we would need an enormous
amount of time. One important question that remained unsolved is the existence of
polynomial time bounded algorithms for computing absolutely normal numbers. It
is known that there are such algorithms for reals that are normal to a given scale, but
nothing is known about being normal to every scale. It seems that the techniques
used in the proof of theorems 2.4.9 and 2.6.2 are not suitable for polynomial time
bounded constructions because the idea of such algorithms is to somehow detect reals
that are candidates to be normal numbers to more and more scales by looking at the
fractional expansion of larger and larger prefixes. This brute force search induces a
natural exponential solution. In this way, we can prove the absolute normality only
for numbers that are constructed on purpose to be absolutely normal. In order to
get a fast algorithm, we probably need a new technique to prove absolute normality
in a more general framework, where the digits are not so tightly dependent on the
definition of absolute normality.

Another intriguing problem that remained unanswered in chapter 2 is Turing’s
unproved Lemma 2.7.2. We were unable to prove it, and we were also unable to find
a counter example because the numbers one must deal with are very large, even for
a computer program. In case this statement is true, the proof technique should be
rather different from our strategy for proving Lemma 2.7.7.

In chapter 3 we presented Conjecture 3.1.1 on the randomness of halting proba-
bilities and we identified exhaustively the cases in which this conjecture is true and
false. A rather simple question (that later appeared in [58, Question 8.10]) remained
unsolved: is ΩU[X] random when X is co-c.e.? We know that the answer is no for
finite sets, but we might analyze what happens when X is infinite. Theorem 3.5.5
gives a partial negative answer to this question when we can fix a suitable universal
machine. We do not know what happens when U is given (for example, it would
be nice to know the answer for universal by adjunction machines). Is there always
an infinite co-c.e. set X for which ΩU[X] is not random, regardless the underlying
U? We believe that an avenue to give a positive answer may be to use a result
of Rettinger and Zheng [65] saying that any random which is the difference of two
left-c.e. reals must be either left-c.e. or right-c.e. Indeed, if X is co-c.e., ΩU[X] is

119

120 6. Open questions and future research

the difference of two left-c.e. reals (namely, ΩU and ΩU[N \X]). The idea is for any
given universal machine U, to construct a co-c.e. set X for which ΩU[X] is neither
left-c.e. nor right-c.e.

Theorem 3.5.13 shows that for any n ≥ 2, if X is Σ0
n then ΩU[X] cannot be

n-random. But Theorem 3.6.1 says that if such X is Σ0
n-complete, then ΩU[X] is

random. This leaves open the possibility that there is a shift in the second part
of Conjecture 3.1.1. It could be that n-randomness was too much, and we have
to decrease to m-randomness. In other words, is it true that for n ≥ 2, if X is
Σ0

n-complete then ΩU[X] is m-random, for some m ∈ {2, . . . , n− 1}?

In chapter 4 we talked about a new behavior of Turing machines and we defined
K∞, the associated prefix-free program-size complexity for these new unending com-
putations. In Theorem 4.5.6 we characterized the computable sequences as those
being K∞-trivial. Recall that sequences can be also seen as sets or reals. We might
think about other unending machine behaviors with the aim to characterize the c.e.
sets or the left-c.e. reals as those being K̃-trivial, where K̃ is the respective induced
prefix-free program-size complexity by each behavior. For example, one may con-
sider a monotone machine (as described in section 4.2) with some relaxing conditions
regarding the action with respect to the output tape, such as the output tape can be
overwritten but it is only permitted to put a 1 over a 0 or such as the output tape
may be overwritten but the partial output is monotone with respect to the order of
the reals, as time increases. As future research we will study if these (or a variation
of these) behaviors induce a definition of K̃-triviality which captures the notion of
c.e. set or left-c.e. real respectively.

In chapter 5 we introduced the notions of strong jump-traceability and well-
approximability with the aim to capture the class of K-trivial reals. Proposi-
tion 5.2.3, Theorem 5.2.5, Theorem 5.3.7 and Corollary 5.5.4 give some clues that
strong jump-traceability might work for our purpose. In the same way, Proposi-
tion 5.3.2 and Theorem 5.3.6 give some evidence that well-approximability can also
be suitable. Furthermore, Theorem 5.3.5 and Corollary 5.4.4 show some connection
between our two studied combinatorial notions each other. Theorem 5.4.1 shows
an interesting and peculiar relationship between strong jump-traceability and the
plain C complexity, while Corollary 5.5.4 shows some connection between jump-
traceability and a variant of the low for K sets. We were not able to characterize
the class of K-trivial reals but the results we obtained so far do not falsify this idea.
Another open question that we left in this chapter is if there is a minimal bound for
jump-traceability. In other words, is there a very slow growing order function h such
that being jump-traceable via h is equivalent to being strongly jump-traceable?

BIBLIOGRAPHY

[1] Klaus Ambos-Spies. Algorithmic randomness revisited. In B. McGuinness,
editor, Language, Logic and Formalization of Knowledge. Coimbra Lecture and
Proceedings of a Symposium held in Siena in September 1997, pages 33–52.
Bibliotheca, 1998.

[2] Klaus Ambos-Spies, Elvira Mayordomo, Yongge Wang, and Xizhong Zheng.
Resource bounded balanced genericity stochasticity and weak randomness. In
Proceedings of the 13th Symposium on Theoretical Aspects of Computer Science,
volume 1046, pages 63–74. Springer Lecture Notes in Computer Science, 1996.

[3] David H. Bailey and Richard E. Crandall. On the random character of funda-
mental constant expansions. Experimental Mathematics, 10(2):175–190, 2001.

[4] David H. Bailey and Richard E. Crandall. Random generators and normal
numbers. Experimental Mathematics, 11(4):527–546, 2004.

[5] Verónica Becher and Gregory J. Chaitin. Another example of higher order
randomness. Fundamenta Informaticae, 51(4):325–338, 2002.

[6] Verónica Becher, Sergio Daicz, and Gregory J. Chaitin. A highly random num-
ber. In Combinatorics, Computability and Logic: Proceedings of the Third Dis-
crete Mathematics and Theoretical Computer Science Conference (DMTCS’01),
pages 55–68. Springer-Verlag London, 2001.

[7] Verónica Becher and Santiago Figueira. An example of a computable absolutely
normal number. Theoretical Computer Science, 270:947–958, 2002.

[8] Verónica Becher and Santiago Figueira. Kolmogorov complexity for possibly
infinite computations. Journal of Logic, Language and Information, 14(2):133–
148, 2005.

[9] Verónica Becher, Santiago Figueira, Serge Grigorieff, and Joseph S. Miller. Ran-
domness and halting probabilities. The Journal of Symbolic Logic, 2006. To
appear.

[10] Verónica Becher, Santiago Figueira, André Nies, and Silvana Picchi. Program
size complexity for possibly infinite computations. Notre Dame Journal of
Formal Logic, 46(1):51–64, 2005.

[11] Verónica Becher, Santiago Figueira, and Rafael Picchi. Turing’s unpublished
algorithm for normal numbers. Submitted, 2006.

121

122 Bibliography

[12] Verónica Becher and Serge Grigorieff. Random reals and possibly infinite com-
putations. Part II: From index sets to higher order randomness. Manuscript,
in preparation.

[13] Verónica Becher and Serge Grigorieff. Recursion and topology on 2≤ω for possi-
bly infinite computations. Theoretical Computer Science, 322(1):85–136, 2004.

[14] Verónica Becher and Serge Grigorieff. Random reals and possibly infinite com-
putations Part I: Randomness in ∅′. The Journal of Symbolic Logic, 70(3):891–
913, 2005.

[15] Mark Bickford and Charlie F. Mills. Lowness properties of r.e. sets. Manuscript,
UW Madison, 1982.

[16] Émile Borel. Les probabilités dénombrables et leurs applications arithmétiques.
Rendiconti del Circolo Matematico di Palermo, 27:247–271, 1909.

[17] Jonathan Borwein and David H. Bailey. Mathematics by Experiment: Plausible
Reasoning in the 21st Century. A K Peters Ltd., Natick, MA, 2003.

[18] Cristian Calude. Borel normality and algorithmic randomness. In G.Rozenberg
and A.Salomaa, editors, Developments in Language Theory, pages 113–129,
Singapore, 1994. World Scientific.

[19] Cristian Calude. Information and Randomness, an Algorithmic Perspective.
Springer-Verlag, Berlin, 1994.

[20] Cristian Calude and Richard J. Coles. Program size complexity of initial seg-
ments and domination relation reducibility. In J.Karhümaki, H.Mauer, G.Paǔn,
and G.Rozenberg, editors, Jewels are Forever, pages 225–237. Springer-Verlag,
1999.

[21] Cristian Calude, Peter Hertling, Bakhadyr Khoussainov, and Yongge Wang.
Recursively enumerable reals and Chaitin Ω number. In Symposium on Theo-
retical Aspects of Computer Science, volume 1373 of Lecture Notes in Computer
Science, pages 596–606, 1998.

[22] Gregory J. Chaitin. On the length of programs for computing finite binary
sequences: statistical considerations. Journal of the ACM, 16(1):145–159, 1969.

[23] Gregory J. Chaitin. A theory of program size formally identical to information
theory. Journal of the ACM, 22:329–340, 1975.

[24] Gregory J. Chaitin. Information-theoretical characterizations of recursive infi-
nite strings. Theoretical Computer Science, 2:45–48, 1976.

[25] Gregory J. Chaitin. Algorithmic information theory. Cambridge University
Press, New York, NY, USA, 1987.

Bibliography 123

[26] Gregory J. Chaitin. Incompleteness theorems for random reals. Advances in
Applied Mathematics, 8:119–146, 1987.

[27] David G. Champernowne. The construction of decimals in the scale of ten.
Journal of the London Mathematical Society, 8:254–260, 1933.

[28] Alonzo Church. On the concept of a random sequence. Bulletin of the American
Mathematical Society, 46:130–135, 1940.

[29] Arthur H. Copeland and Paul Erdös. Note on normal numbers. Bulletin of the
American Mathematical Society, 52:857–860, 1946.

[30] Nigel Cutland. Computability, an introduction to recursive function theory.
Cambridge University Press, 1980.

[31] Rod Downey, Denis R. Hirschfeldt, André Nies, and Sebastiaan Terwijn. Cali-
brating randomness. Bulletin of Symbolic Logic, 2006. To appear.

[32] Rod G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and com-
plexity. In preparation. Accesible from http://www.mcs.vuw.ac.nz/∼downey/
randomness.pdf.

[33] Rod G. Downey, Denis R. Hirschfeldt, and André Nies. Randomness, com-
putability, and density. SIAM Journal on Computing, 31(4):1169–1183, 2002.

[34] Rod G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan. Trivial
reals. Electronic Notes in Theoretical Computer Science, 66(1), 2002. Final
version in [35].

[35] Rod G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan. Trivial
reals. In Proceedings of the 7th and 8th Asian Logic Conferences, pages 103–131.
World Scientific, River Edge, NJ, 2003.

[36] Bruno Durand and Nikolai K. Vereshchagin. Kolmogorov-loveland stochasticity
for finite strings. Information Processing Letters, 91(6):263–269, 2004.

[37] Santiago Figueira, Joseph S. Miller, and André Nies. Indifferent sets. Unpub-
lished, 2006.

[38] Santiago Figueira, André Nies, and Frank Stephan. Lowness properties and
approximations of the jump. In 12th Workshop on Logic, Language, Information
and Computation, volume 143 of Electronic Notes in Computer Science, pages
45–57, 2005.

[39] Santiago Figueira, Frank Stephan, and Guohua Wu. Randomness and universal
machines. In CCA 2005, Second International Conference on Computability and
Complexity in Analysis, volume 326, pages 103–116, Fernuniversität Hagen,
Informatik Berichte, July 2005.

http://www.mcs.vuw.ac.nz/~downey/randomness.pdf
http://www.mcs.vuw.ac.nz/~downey/randomness.pdf

124 Bibliography

[40] Péter Gács. On the symmetry of algorithmic information. Soviet Mathematics
Dolkady, 15:1477–1480, 1974.

[41] Godfrey H. Hardy and Edward M. Wright. An Introduction to the Theory of
Numbers. Oxford University press, 1979.

[42] Glyn Harman. Metric Number Theory, volume 18 of London Mathematical
Society Monographs. Oxford Universaity Press, 1998.

[43] Jr. Hartley Rogers. Theory of recursive functions and effective computability.
MIT Press, Cambridge, MA, USA, 1987.

[44] Stephen Cole Kleene. General recursive functions of natural numbers. Mathe-
matische Annalen, 112:727–742, 1936.

[45] Stephen Cole Kleene. On notations for ordinal numbers. The Journal of Sym-
bolic Logic, 3:150–155, 1938.

[46] Andrei N. Kolmogorov. Three approaches to the quantitative definition of
information. Problems of Information Transmission, 1:1–17, 1965.

[47] L. G. Kraft. A device for quantizing, grouping, and coding amplitude modulated
pulses. M.Sc. Thesis, Massachusetts Institute of Technology, 1949.

[48] Antonin Kučera and Theodore A. Slaman. Randomness and recursive enumer-
ability. SIAM Journal on Computing, 31(1):199–211, 2001.

[49] Lauwerens Kuipers and Harald Niederreiter. Uniform distribution of sequences.
Wiley Interscience, New York, 1974.

[50] Leonid A. Levin. Some theorems on the algorithmic approach to probability
theory and information theory. Dissertation in Mathematics, Moscow, 1971.

[51] Leonid A. Levin. On the concept of a random sequence. Doklady Akad. Nauk
SSSR, 14(5):1413–1416, 1973.

[52] Leonid A. Levin. Laws of information conservation (non-growth) and aspects of
the foundations of probability theory. Problems of Information Transmission,
10(3):206–210, 1974.

[53] Leonid A. Levin and A. K. Zvonkin. The complexity of finite objects and the
development of the concepts of information and randomness by means of the
theory of algorithms. Russian Mathematical Surveys, 25:83–124, 1970.

[54] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its
applications. Springer, 2nd edition, 1997.

[55] Greg Martin. Absolutely abnormal numbers. The American Mathematical
Monthly, 2000.

Bibliography 125

[56] Per Martin-Löf. The definition of random sequences. Information and Control,
9:602–619, 1966.

[57] Wolfgang Merkle. The complexity of stochastic sequences. In Conference on
Computational Complexity 2003, pages 230–235. IEEE Computer Society Press,
2003. To appear in Journal of Computer and System Sciences.

[58] Joseph S. Miller and André Nies. Randomness and computability: open ques-
tions. In Annual Meeting of the Association of Symbolic Logic in Stanford 2005,
2005. http://www.cs.auckland.ac.nz/∼nies/papers/questions.pdf.

[59] Jeanleah Mohrherr. A refinement of low n and high n for the r.e. degrees.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 32(1):5–
12, 1986.

[60] André Nies. Reals which compute little. In Proceedings of Logic Colloquium,
2002. To appear.

[61] André Nies. Personal communication, 2004.

[62] André Nies. Lowness properties and randomness. Advances in Mathematics,
197:274–305, 2005.

[63] Piergiorgio Odifreddi. Classical recursion theory, volume 1. North-Holland,
Amsterdam, 1999.

[64] John C. Oxtoby. Measure and Category. Springer, New York, 2nd edition, 1980.

[65] Robert Rettinger and Xizhong Zheng. Solovay reducibility on d-c.e. real num-
bers. In Computing and Combinatorics, Eleventh Annual International Con-
ference, COCOON 2005, Kunming, China, August 16-29, 2005, volume 3595
of Lecture Notes in Computer Science, pages 359–368, 2005.

[66] Claus-Peter Schnorr. Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in
Mathematics, 218, 1971.

[67] Claus-Peter Schnorr. Process complexity and effective random tests. Journal
of Computer Systems Science, 7:376–388, 1973.

[68] Alexander Shen’ and Vladimir A. Uspensky. Relations between varieties of
Kolmogorov complexities. Mathematical Systems Theory, 29:271–292, 1996.

[69] Waclaw Sierpinski. Démonstration élémentaire du théorème de m. borel sur
les nombres absolument normaux et détermination effective d’un tel nombre.
Bulletin de la Société Mathématique de France, 45:127–132, 1917.

[70] Waclaw Sierpinski. Elementary Theory of Numbers. Warszawa, 1964.

[71] Robert I. Soare. Recursively enumerable sets and degrees. Springer, Heidelberg,
1987.

http://www.cs.auckland.ac.nz/~nies/papers/questions.pdf

126 Bibliography

[72] Ray J. Solomonoff. A formal theory of inductive inference, Part I and Part II.
Information and Control, 7:1–22 and 224–254, 1964.

[73] Robert Solovay. Draft of a paper (or series of papers) on Chaitin’s work done for
the most part during the period Sept. to Dec. 1974. Unpublished manuscript,
IBM Thomas J. Watson Research Center, Yorktown Heights, New York. 215
pp., May 1975.

[74] Sebastiaan Terwijn and Domenico Zambella. Algorithmic randomness and low-
ness. The Journal of Symbolic Logic, 66:1199–1205, 2001.

[75] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, Series 2,
42:230–265, 1936.

[76] Alan M. Turing. A note on normal numbers. In J.L. Britton, editor, Collected
Works of A.M. Turing: Pure Mathematics, pages 117–119. North Holland, Am-
sterdam, 1992.

[77] Michael van Lambalgen. Random sequences. PhD thesis, University of Amser-
dam, 1987.

[78] Richard von Mises. Grundlagen der wahrscheinlichkeitsrechnung. Mathematis-
che Zeitschrift, 5:52–99, 1919.

[79] Abraham Wald. Die widerspruchsfreiheit des kollectivbegriffes der wahrshein-
lichkeitsrechnung. Ergebnisse eines mathematischen Kolloquiums, 8:38–72,
1937.

[80] Klaus Weihrauch. Computability. EATCS Monographs on Theoretical Com-
puter Science 9. Springer, Heidelberg, 1987.

[81] Domenico Zambella. On sequences with simple initial segments. ILLC technical
report ML 1990-05, University of Amsterdam, 1990.

INDEX OF NOTATION

N, 7
Q, 7
R, 7
N+, 7
Q+, 7
R+, 7
P, 7
brc, 7
dre, 7
2<ω, 7
2n, 7
2≤n, 7
λ, 7
|σ|, 7
σ(i), 7
〈·, ·〉, 7
str, 7
�, 7
≺, 7
2ω, 7
A � n, 7
‖A‖, 7
A⊕B, 7
[T], 7
σ2ω, 8
↑, 8
↓, 8
dom, 8
Ms, 8
Te,s, 8
ϕe, 9
Te, 9
c.e., 9
We, 9
We,s, 9
As, 9
co-c.e., 9
ϕB

e (x), 9

≤T , 10
≡T , 10
deg, 10
A′, 10
JA(e), 10
∅′, 10
A(n), 10
Σ0

n, 10
Π0

n, 10
∆0

n, 10
Σ0,B

n , 10
Π0,B

n , 10
∆0,B

n , 10
ψA(e)[s], 10
≤1, 10
≡1, 10
≤wtt, 10
≤tt, 11
Σ0

n-complete, 11
Π0

n-complete, 11
left-c.e., 11
right-c.e., 11
CM, 11
KM, 12
K, 13
C, 13
wt (W), 14
P , 14
Ks, 14
Cs, 14
KA

M, 14
CA

M, 15
CA, 15
KA, 15
ΩM, 16
Ω, 16
M−1(X), 48
ΩM[X], 48

127

128 Index of notation

2≤ω, 74
Ω∞

U [X], 74
Mt, 79
K∞, 80
Km, 81
KmD, 81
ω-c.e., 98
K[p], 112
M[p], 112

INDEX

Arithmetical Hierarchy, 10

Coding Theorem, 14
computable in B, 10
computable set, 9
computably enumerable, 9
Counting Theorem, 13

degree
1, 10
Turing, 10

domain, 8

Enumeration Theorem, 8

Gödel number, 8

halting probability, 16, 47
in infinite computations, 74

Halting Problem, 9

infinite computation, 79
Invariance Theorem, 13

jump, 10
jump-traceable, 97

strongly, 99

Kraft-Chaitin, 14

left-c.e., 11
Limit Lemma, 10
low for K, 16

p-low, 112

normal number
absolutely, 20
as defined by Borel, 21
in a given scale, 20

ω-c.e., 98
strong variant, 105

oracle, 9
order function, 99

p-low, 112
weakly p-low, 112

program-size complexity
computable approximation, 14
for infinite computations, 80
monotone, 81

dscrete, 81
plain, 11
prefix-free, 12
relativized, 14

randomness, 15
K∞-random, 91
Chaitin randomness, 15
Martin-Löf randomness, 15
Schnorr randomness, 44

Recursion Theorem, 9
recursively traceable, 97
reduction

1-reduction, 10
function, 10
truth-table, 11
Turing, 10
weak truth-table, 10

right-c.e., 11

space
Cantor, 7
mix, 74

strongly jump-traceable, 99
sub-additive, 83

trace, 97
U-traceable, 99

tree, 7
triviality

K∞-trivial, 87

129

130 Index

K-trivial, 16
weakly p-low, 112

Turing
degree, 10
machine, 8

binary, 108
monotone, 78
prefix-free, 11
universal, 12
universal by adjunction, 50

reduction, 10

use, 9

well-approximable, 105

	Resumen
	Summary
	Acknowledgements
	Introduction
	Algorithmic information theory
	Basic definitions
	Computability theory
	Program-size complexity
	Randomness
	K-triviality

	Absolutely normal numbers
	Introduction
	Definition of normality and absolute normality
	Sierpinski's result of 1916
	Computing an absolutely normal number
	About Sierpinski's and other examples
	Turing's unpublished manuscript
	Turing's first theorem
	Turing's second theorem
	Applications

	Randomness and halting probabilities
	Introduction
	Uniform probability on (2<,) and U[X]
	On the notion of universality
	Known positive instances of the Conjecture
	Negative results about the Conjecture
	Positive results about the Conjecture
	The set {U[X]2mu-:6muplus1muX2<}
	Conjecture for infinite computations

	Infinite Computations
	Introduction
	Infinite computations on monotone machines
	Program size complexities on monotone machines
	Properties of K
	K-triviality
	K-randomness
	Oscillations of C

	Lowness properties and approximations of the jump
	Introduction
	Strong jump-traceability
	Well-approximability of the jump
	Traceability and plain program-size complexity
	Variations on K-triviality

	Open questions and future research
	Bibliography
	Index of notation
	Index

