
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación
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UNA PERSPECTIVA TEÓRICO-COMPUTACIONAL SOBRE
FUNDAMENTOS DE LA INFORMACIÓN CUÁNTICA

La presente tesis contiene resultados sobre fundamentos de la teoŕıa cuántica de la infor-
mación obtenidos mediante conexiones novedosas con las teoŕıas de la computabilidad
y la complejidad comunicacional.

En la primera parte, presentamos consecuencias de, como es usual en los experimen-
tos, usar pseudoaleatoriedad en lugares donde la teoŕıa cuántica asume aleatoriedad.
Obtenemos tres resultados:

El primero consiste en un nuevo loophole para experimentos de Bell. Probamos,
usando herramientas de la teoŕıa de la inferencia inductiva, que elegir las entradas en
un experimento de Bell usando generadores de números pseudoaleatorios permite a un
adversario, bajo ciertas asunciones razonables, preparar de manera local cajas que dan
lugar a una estad́ıstica no-local.

En segundo lugar, damos un protocolo que permite, dadas cajas no-locales que gen-
eran sus salidas de manera computable y con ayuda de algún mecanismo posiblemente
escondido de señalización, extraer tal mecanismo para su uso como canal de comuni-
cación, con el sólo conocimiento de una cota a la complejidad computacional de las
cajas.

El tercer y último aporte de esta primera parte consiste en un protocolo que permite
distinguir, a través del uso de tests de Martin-Löf, cualquier mezcla pseudoaleatoria de
estados cuánticos del estado máximamente mixto. Se incluyen también los resultados
de una realización experimental de un caso especial del protocolo llevada a cabo por el
grupo del Dr. Miguel Larotonda.

En la segunda parte, retomamos el estudio de la no-localidad de Bell pero esta vez
desde una perspectiva informacional. Más precisamente, investigamos la relación en-
tre la ventaja que la cuántica ofrece en el modelo de complejidad comunicacional de
funciones, y su carácter no-local. Una de las técnicas más ajustadas para probar co-
tas inferiores a la complejidad comunicacional clásica se conoce como partition-bound.
El resultado principal de esta segunda parte consiste en dar un método para extraer
grandes violaciones de desigualdades de Bell de todo protocolo cuántico que compute
una dada función comunicando menos qbits que su valor de partition-bound asociado.
Ésto aplica a la mayoŕıa de las funciones usualmente estudiadas en complejidad comu-
nicacional. Las violaciones que obtenemos son resistentes al loophole de la detección y
mostramos como también pueden hacerse resistentes a ruido uniforme.

Palabras claves: fundamentos de la mecánica cuántica, no-localidad de Bell, pseu-
doaleatoriedad, aleatoriedad algoŕıtmica, preparación de estados mixtos, loophole de
Bell, complejidad comunicacional cuántica.
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A COMPUTER-THEORETICAL OUTLOOK ON FOUNDATIONS OF
QUANTUM INFORMATION

The present thesis contains results on foundations of quantum information theory ob-
tained through new connections with computability theory and communication com-
plexity.

In the first part, we give consequences of using, as is usual done in experiments,
pseudorandomness where quantum theory assumes randomness. We obtain three re-
sults:

First, we present a new loophole for Bell-like experiments. We prove, using tools
from the theory of inductive inference, that choosing the inputs for a Bell tests using
private pseudorandom number generators allows an adversary, under reasonable as-
sumptions, to predict forthcoming inputs and prepare local boxes that seem non-local.

Second, we give a protocol that, given non-local boxes generating their outputs
computably and with the aid of a (possibly hidden) signaling mechanism, extract such
mechanism and turn it into a communication channel, provided a bound on the compu-
tational complexity of the boxes is known. We arrive to this result by proving a novel
connection between the theories of inductive inference and algorithmic randomness.

Third, through the use of Martin-Löf tests, we give a protocol to distinguish any
pseudorandom mixture of quantum states from the maximally mixed state. Further-
more, a proof-of-concept experiment for an special case of this protocol done by the
group of Dr. Miguel Larotonda is presented.

In the second part, we come back to Bell non-locality, but with an informational
perspective. We concentrate on the relationship between the advantage that quantum
mechanics offers in communication complexity and its non-local nature. One of the
strongest techniques known to prove lower bounds on classical communication complex-
ity is the so-called partition bound. We show how to derive large Bell violations from
any problem whose quantum communication complexity is smaller than its partition
bound value. This applies to most of the functions usually studied in communication
complexity theory. The violations we get are resistant to the detection loophole, can be
exponential in the size of the inputs and we show that they can also be made resistant
to uniform noise.

Keywords: quantum foundations, Bell non-locality, pseudorandomness, algorithmic
randomness, mixed states preparation, Bell loophole, quantum communication com-
plexity.
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We, the authors. The present thesis is written in first-person plural. Since
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1. INTRODUCTION AND PRELIMINARES

1.1 Background and motivation

Quantum computation and quantum information theory [NC11] are about using the
framework of quantum mechanics to design protocols and/or build systems that per-
form information-processing tasks which are classically difficult or even impossible to
achieve. This application of quantum mechanical principles to the study of information-
processing task has provided remarkable advances such as: Shor’s quantum algorithm
to efficiently factor integers [Sho97], key distribution protocols which base their security
on the laws of physics instead of the hardness of some mathematical task [BB84, Eke91]
and full randomness amplification and expansion protocols [CK11, CR12, GMDLT+13],
to name a few.

The aim of this thesis is to analyze some of the fundamental quantum mechanical
concepts, key to the aforementioned results, from a computer-theoretical perspective.
The approach will be two-fold: on the one hand, we will analyse assumptions behind
the results; on the other, we will trust the assumptions and then quantify the com-
putational gain of applying those quantum mechanical features. Specifically, on the
assumptions side, we will restort to the theories of algorithmic randomness and induc-
tive inference to study the impact of replacing the assumption of randomness by the use
of pseudorandomness in some areas of the theory. Then, on the applications side, we
will look at the advantage that quantum mechanics offers in the area of communication
complexity. In the next paragraphs we outline the main questions we will be dealing
with.

1.1.1 Randomness vs pseudorandomness in non-locality experiments

The fact that measuring a property of a quantum system can instantaneously determine
the results of another property measured on a distant system is on of the features of
quantum mechanics that has puzzled scientists the most since its origin. Indeed, such
kind of non-local influence was part of an important debate inside the scientific commu-
nity. In their article of 1935 entitled “Can quantum-mechanical description of physical
reality be considered complete?”, Einstein, Podolsky and Rosen [EPR35] argue that any
theory making the same predictions as quantum theory and, at the same time, avoid-
ing such spooky action at a distance, as they called these non-local influences, has to
postulate the existence of “real properties” (now referred to as hidden-variables) which,
when taken into account, allow for the complete local determination of the observations’
outcomes. Since orthodox quantum theory does not include these, from the assump-
tion of the impossibility of non-local causation one has to conclude its incompleteness.
That same year, in an article with the same title, Niels Bohr argued otherwise. It took
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4 1. Introduction and Preliminares

almost 30 years for that discussion to substantially advance with Bell’s 1964 celebrated
result [Bel64], which states that the predictions of quantum mechanics for certain local
measurements over spatially separated entangled systems cannot be accounted for by
any local hidden-variable theory. Furthermore, Bell provided an experimental method
to test whether Nature is, indeed, non-local or not [HBD+15, GVW+15, SMSC+15]:
the violation of, what is now known as, a Bell inequality.

One of the assumptions in Bell’s theorem is that the measurements in a Bell exper-
iment are chosen independently of any state of affairs that may have any influence on
the outcomes. This measurement independence assumption is easily satisfied by having
the inputs be given by some random process. However, one may wonder:

Is pseudorandomness in the choice of inputs to a Bell experiment enough to
conclude the non-locality of the observed distribution of outcomes from a
Bell inequality violation?

The motivation behind studying this question is, as usual, practical, since pseudoran-
domness is a cheap and readily available resource [MN98, Nie09], but also theoretical,
since the only (theoretically) random processes we know are quantum measurements
and one may not want to assume the validity of quantum mechanics in experiments
designed to test the prediction of quantum mechanics.

1.1.2 Randomness vs pseudorandomness in the preparation of mixed states

Quantum mechanical systems can be in one of two types of states: pure or mixed.
In the former, we have certainty about the state of the system and, therefore, the
uncertainty about the measurement results is solely due to the indeterminism of the
quantum measurement process. In the latter, which are probabilistic mixtures of pure
states, an additional level of uncertainty is hence added. Continuing with the study
of the implications of using pseudorandomness in quantum setups, we turn to the
preparation of mixed states. Theoretically, one way to prepare a maximally mixed
state of dimension n is by choosing uniformly at random states from a basis of Cn.
Hence, we ask ourselves:

Does replacing the randomness source by a pseudorandom number generator
(as done in e.g. the experiments of [AB09a, LKPR10]) in the preparation of
mixed states have any observational consequences?

1.1.3 Randomness vs pseudorandomness in non-local hidden-variable theories

It is a consequence of Bell’s theorem that any hidden-variable account of non-local cor-
relations between the outputs of deterministic systems have to allow for local measure-
ment outcomes to depend on distant measurement choices. That is, it has to violate
what is usually known as parameter independence [Shi86]. On top of this “hidden-
signaling mechanism”, every deterministic account of quantum predictions given so far
have also made use of some source of shared randomness [Boh52, TB03a]. In other
words, the output of the systems in the n-th round of a Bell experiment is modelled as
a function of the measurement choices (local and distant) plus some shared “hidden-
variable” λ sampled from some distribution p(λ). We consider the following question:
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Does having the choice of hidden-variable at round n of a Bell experiment
be, instead of random, a computable function of n have any physical conse-
quence?

1.1.4 Randomness vs non-locality in communication complexity

Communication complexity studies the communication requirements of distributed
computational tasks. Many tasks have been shown to be achievable through the com-
munication of a number of qubits much smaller than the required number of bits, even
when the distributed computing devices have access to some shared source of ran-
domness [CvDNT99, Raz99b, BYJK04]. The similarity to the non-locality scenario
naturally raises the following question:

Is non-locality the responsible when a function has quantum communication
complexity smaller than classical?

1.2 Outline and contributions

In this thesis we use several tools from the theories of inductive inference, algorithmic
randomness and communication complexity to address all the questions raised above,
with the hope that our answers contribute to the progress in the understanding of the
foundations of quantum mechanics.

In Chapter ?? we outline the basic concepts and definitions from theoretical com-
puter science and quantum mechanics which will be needed in the following chapters.

In Chapter 2 we show that using pseudorandom number generators (PRNGs) in
a Bell test opens up a loophole. In other words, we prove that if at least one of the
players in a Bell test is using a PRNG to choose his inputs, then, under reasonable
assumptions, local models for the observed correlations cannot be ruled out. The
results of this chapter were published in [BdlTS+16].

In Chapter 3 we give a protocol which, under reasonable assumptions, allows play-
ers Alice and Bob holding computable non-local boxes to signal faster than light. This
implies that, since quantum correlations are non-signaling, any deterministic non-local
hidden-variable account of quantum mechanics must have the assignment of hidden vari-
ables to rounds in a Bell test be uncomputable. This result will appear in [BdlTS+17].

In Chapter 4 we show that there is a measurement strategy allowing a player Bob to
distinguish any pseudorandom mixture of quantum states being prepared privately by
another player Alice from the maximally mixed state, in finite time and with arbitrarily
high success probability. Furthermore, we provide a proof-of-concept experiment of a
special case of this result done by the group of Dr. Larotonda. These results appear in
[BdlTS+16] and [LGSdlT+].

In Chapter 5 we show, for a large family of functions, how to construct Bell inequal-
ities and quantum correlations violating them in a magnitude which is exponential in
the difference between the quantum and classical communication complexities of the
functions. Furthermore, we prove that the violations are resistant to the detection
loophole and, with an increase in the number of outputs, can be also made resistant to
uniform noise. These results appear in [LLN+16]. We assume a basic knowledge of
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computability theory and quantum mechanics, but we will outline all the key notions
and concepts needed from these fields in this thesis.

1.3 Nomenclature and notation

We will denote by N the set of natural numbers. As usual we identify a set A ⊆ N with
its characteristic function χA : N → {0, 1} notated simply by A. That is, A(x) = 1
if x ∈ A and A(x) = 0 if x 6∈ A. R is the set of reals and C the set of complex
numbers. If z ∈ C, then |z| denotes its modulus. Q≥0

2 = {n/2m | n,m ∈ N} is the set
of non-negative dyadic rationals. We represent q ∈ Q≥0

2 by a pair 〈σ, τ〉 where σ and τ
are binary strings in representing the integer and fractional part of q, respectively. We
fix bijective functions taking a pair of natural numbers (a, b) to a natural number 〈a, b〉
and a sequence of natural numbers (n0, . . . , nk) to a natural number [n0, . . . , nk] (the
only thing that matters here is that we can recover (a, b) from 〈a, b〉 and (n0, . . . , nk)
from [n0, . . . , nk] in a computable way).

Let Σ be a finite set. Then, Σ∗ is the set of all finite strings of symbols from Σ.
ε denotes the empty string. If b ∈ {0, 1}, then b̄ := 1 − b. We will be working with
partial functions f : {0, 1}∗ → {0, 1}∗, that is, functions which can be undefined for
some set A ⊆ {0, 1}∗. We denote with dom f ⊆ {0, 1}∗ the set of inputs for which f
is defined. If a partial function f is such that dom f = {0, 1}∗, then we say that f is
total. For a string σ ∈ Σ∗, |σ| denotes its length. For i ∈ {0, ..., |σ| − 1}, σ(i) denotes
the i-th symbol of σ. Sometimes we will consider natural numbers as binary strings. In
this case, we use the string 0 to represent the natural number 0 and for any n > 0, we
use the string that represents n in binary notation, starting with 1. Observe that when
interpreting a number n > 0 as a string we have |n| = 1 + blog2 nc. Σω denotes the set
of all infinite sequences of symbols from Σ. For a set of strings V ⊆ Σ∗, [V ] denotes
the set V ⊆ Σω of infinite sequences having a string in V as a prefix. The infinite
sequence A ∈ {0, 1}ω can also be regarded as the enumeration A(0)A(1)A(2) . . . of the
characteristic function of a set A ⊆ N. Furthermore, A can also be seen as the real
number in [0, 1] defined by

∑
n≥1A(n) · 2−n. We denote by A � n the string of length

n which consists of the first n symbols of A, that is, A(0) . . . A(n− 1).

All vector spaces are assumed to be finite dimensional, unless otherwise noted. As
it is customary in quantum mechanics, we will use Dirac’s bra-ket notation. That is,
|·〉 will denote a column vector and 〈·| a row vector. If |ψ〉 and |φ〉 are two vectors in
Cn then 〈ψ|φ〉 denote the usual inner product and |ψ〉〈φ| the outer product, i.e. the
linear operator over Cn defined as (|ψ〉〈φ|) |χ〉 := 〈φ|χ〉|ψ〉 for all |χ〉 ∈ Cn. If A is
a matrix, then Aij denotes the element in row i and column j. We denote with tr(·)
the trace operation, i.e. given an operator A over Cn, tr(A) =

∑
iAii for some matrix

representation of A.
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1.4 Quantum mechanics

1.4.1 States

In quantum mechanics, the state space of any physical system is modelled by a complex
vector space with inner product (that is, a Hilbert space). The system is completely
described by its state vector, which is a unit vector in the system’s state space.

The simplest quantum mechanical system, and the system which we will be most
concerned with, is the qubit. A qubit has a two-dimensional state space. Suppose |0〉
and |1〉 form an orthonormal basis for that state space, for example

|0〉 =

(
0
1

)
and |1〉 =

(
1
0

)
.

Then, an arbitrary state vector in the state space can be written

|ψ〉 = α|0〉+ β|1〉 (1.1)

with α, β ∈ C and, by the unitary requirement, |α|2 + |β|2 = 1.

Definition 1.4.1 (Qubit). A qubit is a unit vector in C2.

Intuitively, the states |0〉 and |1〉 are analogous to the two values 0 and 1 which a
classical bit may take. The way a qubit differs from a bit is that superpositions of these
two states, i.e. linear combinations of |0〉, |1〉 with complex coefficients whose squared
of moduli sum to one, can also exist. In a superposition, it is not possible to say that
the qubit is definitely in the state |0〉, or definitely in the state |1〉.

Example 1. |+〉 = 1√
2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉) form another orthonormal basis

of C2.

Quantum mechanics also allows for the state of a system to be in a statistical mixture
of m quantum states |ψi〉, i = 1, . . . ,m, each with probability pi. We call {(pi, |ψi〉)} an
ensemble of states, and say that a system with such an ensemble associated to it, is in
a mixed state. In the formalism, these states are modelled through the use of a density
operator, defined as

ρ :=
m∑
i=1

pi|ψi〉〈ψi|. (1.2)

The density operator is often known as the density matrix ; we will use the two terms
interchangeably. It is easy to see that ρ satisfies the following properties:

1. tr(ρ) = 1

2. ρ is a positive operator.

Definition 1.4.2 (Mixed state). A mixed state is a positive operator on a Hilbert space
with unit trace.
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Definition 1.4.3 (Maximally mixed state). For every n, the maximally mixed state of
dimension n is ρn = 1

n
In, with In the n× n identity matrix.

For every basis {|ψi〉 | 1 ≤ i ≤ n} of Cn, a system with an associate ensemble
{(1/n, |ψi〉)} is in a maximally mixed state. When a system is in a maximally mixed
state, we have full uncertainty about its state. On the other hand, when we have
certainty about the quantum state of a system, i.e. when m = 1, we say that the
system is in a pure state. In other words, a pure state |ψ〉 can be seen as a special case
of a mixed state with density matrix |ψ〉〈ψ|.
Observation 1.4.4. Two different ensembles can give rise to the same density matrix.
For example, both the ensembles {(1/2, |0〉), (1/2, |1〉)} and {(1/2, |+〉), (1/2, |−〉)} give

rise to the maximally mixed state 1
2

(
1 0
0 1

)
.

1.4.2 Observables and measurement

Measuring a quantum state is the quantum analogue of observing a classical state, but
this measurement of a quantum state may modify it and this property is one of the
most important features of quantum mechanics. It is impossible to directly observe
the superposition of a quantum state; the only thing that we can do is to apply a
measurement on the state in order to observe one of the classical states which belong
to the superposition.

Measurable magnitudes in quantum mechanics are called observables and are mod-
elled with Hermitian operators.

Definition 1.4.5 (Observable). An observable is a Hermitian operator over a Hilbert
space.

The possible outcomes obtainable when measuring an observable A are its eigenval-
ues, which, because of being a Hermitian operator, are real-valued. More formally, if
A has spectral decomposition,

A =
∑
m

mΠm

with Πm the projector onto the eigenspace associated with eigenvalue m, then the
possible outcomes of measuring observable A correspond to the eigenvalues m. Upon
measuring observable A to a system in a state ρ, the probability of getting result m is
given by

p(m) = tr(Πmρ),

and, after the measurement, the state of the measured system becomes

ρ′ =
ΠmρΠ†m
tr(Πmρ)

.

It is easy to see that the projectors {Πm} above satisfy∑
m

Πm = In,

ΠiΠj = δi=jΠi
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where δ is the Kronecker delta function. A family of projectors {Πm} satisfying these
identities describes a projective measurement.

Definition 1.4.6 (Pauli observables). The Pauli observables, given here in their matrix
form together with their spectral decomposition are

σx :=

(
0 1
1 0

)
= |+〉〈+| − |−〉〈−|,

σy :=

(
0 −i
i 0

)
= (|0〉+ i|1〉)(〈0|+ i〈1|)− (|0〉 − i|1〉)(〈0| − i〈1|),

σz :=

(
1 0
0 −1

)
= |0〉〈0| − |1〉〈1|.

Any orthonormal basis B = {|1〉, . . . , |k〉} can be associated to an observable AB
such that B is its eigenbasis,

AB =
k∑
i=1

ai|i〉〈i|.

Therefore, when we say that we measure in the basis B we mean measure observable
AB.

Example 2. Measuring a system in state |0〉 in the eigenbasis of σx (i.e. {|+〉, |−〉})
leaves the system in state |+〉 or state |−〉 both with probability 1/2. The same happens
for every other combination of measuring on the eigenbasis of one Pauli operator a
system whose state is an eigenstate of any of the other Pauli operators. The eigenbasis
of σx, σy and σz are said to be mutually unbiased.

1.4.3 Multipartite systems and entanglement

When a physical system is made up of a number of smaller physical systems, we call it
a multipartite system. If the composite system is n-partite, its Hilbert space H is given
by the tensor product of the Hilbert spaces {Hi}1≤i≤n of the individual subsystems.

Definition 1.4.7 (Tensor product of vector spaces). If V and V ′ are two vector spaces
of dimension d and d′ with respective basis {|v1〉, . . . , |vd〉} and {|v′1〉, . . . , |v′d′〉} then
V ⊗ V ′ is the vector space of dimension d× d′ spanned by {|vi〉 ⊗ |v′j〉 | 1 ≤ i ≤ d, 1 ≤
j ≤ d′}.

We often use the abbreviated notations |v〉|w〉 or |vw〉 for the tensor product |v〉 ⊗
|w〉. Also, |ψ〉⊗n will denote |ψ〉 tensored with itself n times.

Definition 1.4.8 (n-qubits register). An n-qubits register is a unit vector in (C2)⊗n.

One can notice that if a vector in V ⊗ V ′ is a linear combination of vectors of the
form |vi〉 ⊗ |vj〉′, it may not be possible to express it as the tensor product of a vector

of V and a vector of V ′. For example,
√

1/2(|01〉 − |10〉) is in C2 ⊗ C2 and cannot be
expressed as the tensor product of two vectors of C2. When a quantum state is in a
vector space of the form V ⊗ V ′ and cannot be written as the tensor product of one
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state of V and one state of V ′ we say that the subsystems of the state associated with
V and V ′ are entangled.

When it comes to mixed states, the definition of entanglement changes a little
bit. In this case, the entangled states are those which cannot be written as a convex
combination of tensor products,

ρ =
∑
j

pj ⊗ni=1 ρ
(j)
i .

1.5 Bell non-locality

Consider a bipartite system made up of two qubits in a joint state

|ψ−〉 :=
1√
2

(|01〉 − |10〉)

and suppose that we give one qubit to Alice in lab A and another to Bob in lab B.
According to quantum theory, if Bob were to measure observable σz to his qubit, he
would obtain +1 or −1 with equal probability

p(+1) = Tr ((I ⊗ |0〉〈0|)|ψ〉〈ψ|) = 1/2,

p(−1) = Tr ((I ⊗ |1〉〈1|)|ψ〉〈ψ|) = 1/2.

However, suppose that, first, Alice measures σz to her qubit. Quantum theory tells
us that, if she obtains +1, the state of the composite system after the measurement is

ρ+1 =
((I ⊗ |0〉〈0|)|ψ〉〈ψ|(I ⊗ |0〉〈0|)

p(+1)
= |01〉〈01|

and, if she obtains −1, the state becomes,

ρ−1 =
((I ⊗ |1〉〈1|)|ψ〉〈ψ|(I ⊗ |1〉〈1|)

p(+1)
= |10〉〈10|.

Now, the result of measuring σz to Bob’s qubit, which was completely uncertain
in the first situation, becomes completely certain. That is, if Alice obtains +1, she
instantaneously knows that Bob will obtain −1, because

p(−1) = Tr ((I ⊗ |1〉〈1|)|01〉〈01|) = 1

and similarly if she obtains −1. Furthermore, this holds irrespectively of the distance
separating labs A and B.

Einstein, Podolsky and Rosen [EPR35] proposed a criterion of reality by which: if
a property of a physical system can be determined without disturbing it, then such a
property is an element of physical reality (EPR). Next, they claimed that for a physical
theory to be complete, it must assign values to all these EPRs. It follows that either,

• the act of measuring the qubit in lab A instantaneously disturb the state of affairs
in lab B or
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• it does not and so quantum theory is incomplete, because we can predict with
certainty the value of measuring σz to Bob’s qubit without disturbing it but for a
system in the state |ψ−〉 quantum theory does not assign a definite value to such
physical property.

Therefore, if one does not want to abandon a local view of the Universe, as was the case
of Einstein and co-authors, one must conclude that quantum theory was incomplete.

Almost 30 years later, Bell [Bel64] proved that quantum theory cannot be “com-
pleted” by a local theory. Furthermore, he provided an experimental method to test
whether Nature is, as quantum theory predicts, non-local. In this section we develop
the basics of the theory of Bell non-locality, necessary to understand the results that we
present in the following chapters. Before going into that, however, let us note first that,
although it serves to exemplify Einstein’s discomfort with these non-local influences pro-
vided by entanglement (or, as he deemed them, this spooky action at a distance), there
is nothing unclassical in the particular situation depicted above. Namely, if instead of
sharing a pair of qubits in the state |ψ−〉 and making the measurements just described,
Alice and Bob received a box containing the result of flipping a fair coin, the situation
would be identical: before Alice opens her box, there is uniform probability in the result
of opening Bob’s box; once Alice’s box is opened, the result of opening Bob’s box is
determined. This is why EPR full argument involves two (non-commuting) observables.
Next we will see an example of a truly quantum non-local situation.

1.5.1 Local, quantum and non-signaling distributions

The typical bipartite Bell scenario consists of two experimenters, Alice and Bob, each
receiving a box with finite sets of inputs (the measurement choices), denoted X for
Alice and Y for Bob, and finite sets of outputs (the measurement outcomes), A for
Alice and B for Bob. The object of interest is

p(a, b|x, y),

the joint conditional probability distribution of observing outcomes (a, b) ∈ A × B
when the inputs are (x, y) ∈ X × Y . More formally, we consider bipartite distribution
families of the form p = (p(·, ·|x, y))(x,y)∈X×Y with inputs (x, y) ∈ X × Y determining
a probability distribution p(·, ·|x, y) over the outcomes (a, b) ∈ A × B, with the usual
positivity and normalization constraints. For simplicity, we call simply “distributions”
such probability distribution families. We will use the expression “Alice’s marginal” to
refer to her marginal output distribution, that is

∑
b p(·, b|x, y) (and similarly for Bob).

The first kind of distributions we will consider are the local-deterministic ones.

Definition 1.5.1 (local-deterministic distributions). A distribution p is local-deterministic
iff

p(a, b|x, y) = δa=λA(x)δb=λB(y)

where λA (resp. λB) is a function from X to A (resp. from Y to B). We denote by
Ldet this set of distributions.

Next, by taking convex combinations we have a (geometrical) definition of the set
L of local distributions.
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Definition 1.5.2 (local distributions). L is the convex-hull of Ldet. That is, p ∈ L iff

p(a, b|x, y) =
∑
`∈Ldet

p(`)`(a, b|x, y).

Equivalently, the local distributions are those admitting a local λ-independent hidden-
variable model.

Definition 1.5.3 (hidden-variable model). A hidden-variable model for a distribution
p is a tuple 〈Λ, q,pλ〉 such that

1. Λ is a finite set (the hidden-variables),

2. q : Λ→ R is a probability distribution (the shared randomness).

3. pλ = (p(·, ·|x, y, λ))(x,y)∈X×Y×Λ is a family of probability distributions over A×B
(the boxes) of which we assume that all of their marginals are well defined.

4. p(a, b|x, y) =
∑

λ q(λ|x, y)p(a, b|x, y, λ)

Definition 1.5.4 (λ-independent). We say that a hidden-variable model 〈Λ, q,pλ〉 is
λ-independent iff q(λ|x, y) = q(λ) for all (x, y, λ) ∈ X × Y × Λ.

Definition 1.5.5 (local hidden-variable model). We say that a hidden-variable model
〈Λ, q,pλ〉 is local iff

p(a, b|x, y, λ) = p(a|x, λ)p(b|y, λ). (1.3)

Definition 1.5.6 (deterministic hidden-variable model). A deterministic hidden-variable
model 〈Λ, q, A,B〉 is a hidden-variable model 〈Λ, q,pλ〉 such that

p(a|x, y, λ) = δa=A(x,y,λ) and p(b|x, y, λ) = δb=B(x,y,λ)

where A : X × Y × Λ→ A and B : X × Y × Λ→ B.

Proposition 1.5.7. The local distributions L are those admitting a local deterministic
λ-independent hidden-variable model.

Fine [Fin82] showed that restricting to deterministic models is without loss of gen-
erality. Intuitevely, this is because if they were indeterministic we could “factor out”
that indeterminism into the shared randomness.

Theorem 1.5.8 ([Fin82]). A distribution p has a local hidden-variable model iff it has
a local deterministic hidden-variable model.

Operationally, local distributions are those that can arise from pairs of (non– com-
municating) deterministic boxes with access to some shared randomness. Equivalently,
this means that the state of the whole experiment at the moment of performing the
measurement is described by some past common cause (usually referred to as hidden-
variable) λ such that, to describe the statistics, one averages over all the possible states
of the experiment according to some distribution q. The boxes produce their outputs
solely according to the information locally available to them: the (local) input and the
hidden variable λ.

The quantum distributions are those that arise from Alice and Bob making local
measurements over a biparite quantum state.
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Definition 1.5.9 (quantum distributions). A distribution p is quantum if there ex-
ist a density operator ρ over a joint Hilbert space HA ⊗ HB of arbitrary dimension,

a family {A(x)}x∈X of |A|-outcomes observables A(x) =
∑

a∈A aΠ
(x)
a over HA and a

family {B(y)}y∈Y of |B|-outcomes observables B(y) =
∑

b∈B bΠ
(y)
b over HB such that

p(a, b|x, y) = tr((Π
(x)
a ⊗ Π

(y)
b )ρ). We denote by Q this set of distributions.

Finally, a distribution is non-signaling if for each player, its marginal output distri-
butions do not depend on the other player’s input.

Definition 1.5.10 (non-signaling distributions). A distribution p is non-signaling iff∑
b

p(a, b|x, y) =
∑
b

p(a, b|x, y′) and∑
a

p(a, b|x, y) =
∑
a

p(a, b|x′, y)

We denote by NS this set of distributions.

These constraints have a clear physical interpretation: they imply that the local
marginal probabilities of Alice p(a|x) :=

∑
b p(a, b|x, y) are independent of Bob’s mea-

surement setting y, and thus Bob cannot signal to Alice by his choice of input (and the
other way around).

Example 3 (PR-box). Popescu and Rohrlich [PR94] showed that the distribution

p(a, b|x, y) =

{
1/2 if a⊕ b = xy

0 otherwise

with inputs in X × Y = {0, 1}2 and outputs in A × B = {0, 1}2 and now known as a
PR-box, is non-signaling but also non-quantum.

1.5.2 Bell inequalities

Once we have a definition of what a local distribution is, it is not hard to see that some
probability distributions arising in quantum theory are not local. The way we do this
is by coming up with a Bell inequality, that is, a linear constraint

B =
∑
a,b,x,y

Ba,b,x,yp(a, b|x, y) ≤ BL

over distributions p which is satisfied by every local distribution, but which can be
violated by quantum distributions.

Example 4. For ease of presentation, let us consider the simplest scenario: two inputs
per party x, y ∈ {0, 1} with two possible outputs a, b ∈ {−1,+1} each. In this setting,
there is a unique (up to relabelling of the inputs and outputs) Bell inequality that



14 1. Introduction and Preliminares

is tight on the set of local probabilities: the Clauser-Horne-Shimony-Holt (CHSH)
inequality [CHSH69, Fin82]

B := 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2, (1.4)

where 〈AxBy〉 =
∑

a,b abp(a, b|x, y). It is easy to see that if Alice and Bob are given

pairs of qubits in the singlet state |Ψ−〉 = (1/
√

2)(|01〉 − |10〉) and we let x, y ∈ {0, 1}
label observables,

A(0) = σx B(0) =
−σz − σx√

2

A(1) = σz B(1) =
σz − σx√

2

the value of B for the resulting quantum distribution is

B = 2
√

2 > 2. (1.5)

which we know from is the maximum achievable by any quantum distribution.

Tsirelson [Cir80] showed that 2
√

2 is the maximum violation of the CHSH inequality
achievable by quantum distributions. This, together with the fact that the PR-box
achieves a value of 4 (which is, also, the algebraic maximum) gives us the well know
inclusion between the classes of distributions presented before:

L ( Q ( NS.

1.5.3 Loopholes

Violations of Bell inequalities have been observed experimentally in a variety of phys-
ical systems, giving strong evidence that nature is indeed, as predicted by quantum
theory, non-local [ADR82, TBZG98, WJS+98, RKM+01]. However, it was not un-
til 2015 that the first experiments considered loophole-free were performed [HBD+15,
GVW+15, SMSC+15].

Definition 1.5.11 (loophole). A loophole, in the context of Bell experiments, is an
experimental situation allowing classical devices to generate non-local correlations.

The experiments of [HBD+15, GVW+15, SMSC+15] were the first to simultaneously
close the famous locality and detection loopholes.

Locality loophole.

The definition of locality (Definition 1.5.2) is motivated by the absence of communi-
cation between the measurement sites of a Bell experiment. This seems well justified
if the sites are sufficiently separated so that the time elapsed between the decision
of which measurement to make is made and the measurement output is recorded is
shorter than the time taken by a signal travelling at the speed of light, to travel from
one site to another. If this condition is not satisfied, one could in principle conceive
a purely “local” mechanism (i.e., involving slower-than-light speed signals) underlying
the observed correlations.
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Detection loophole

In a large class of Bell experiments, in particular those carried out with photons, mea-
surements do not always yield conclusive outcomes. This is due either to losses between
the source of particles and the detectors or to the fact that the detectors themselves
have non-unit efficiency. In this scenario, in addition to the outcomes in A×B, we have
two additional “no-click” outcomes per side, denoted ⊥. If in a Bell experiment, we
discard the “no-click” rounds and the remaining rounds do not comprise a fair-sampling
of all rounds because the detectors were somehow coordinating their behaviour by de-
liberately choosing when not to click, it could happen that though the conditional
probability (conditioned on neither outcome being ⊥) may look quantum, the uncon-
ditional probability may very well be classical (local). This is called the detection
loophole.

Example 5 (Exploiting the detection loophole.). To illustrate the idea, let us see how
to locally violate the CHSH inequality by exploiting the detection loophole. The local
model is as follows. The hidden-variable λ corresponds to two uniform random bits
xguess and a. Given measurement setting y, Bob’s detector outputs b = a ⊕ xguessy.
Alice’s detectors output a whenever her measurement setting is x = xguess and output ⊥
when x 6= xguess. Focusing on the conclusive outcomes (i.e. ±1), the value of the CHSH
Bell functional B (1.4) for the conditional distribution is 4. The probability for Alice to
obtain a conclusive outcome is 1/2, which is the probability that x = xguess, while Bob
always obtains a conclusive outcome. With additional shared randomness, it is possible
to symmetrize the above model, such that Alice and Bob’s detection probability is 2/3
[MP03a]. Therefore, if the detection efficiency in a CHSH Bell experiment is below 2/3,
no genuine Bell inequality violation can be obtained, since the above local strategy could
have been used by the measurement apparatuses.

There are two ways to close the detection loophole: 1) work with detectors with high
enough efficiency (see e.g. [Ebe93, MP03b, VPB10] for the minimum efficiency required
in different scenarios) or 2) consider ⊥ as a valid outcome and study the violation of
inefficiency-resistant Bell inequalities [MP03b]. In Chapter 5 we will encounter these
inequalities which appear as solutions to lower bound techniques in communication
complexity [LLR12].

All these definitions and results about the theory of Bell non-locality, although
sufficient for the purposes of this thesis, are only a small part of a vast theory which,
for example, considers general multipartite scenarios with not necessarily symmetric
number of inputs and outputs per site, and other generalizations of the like. For a
thorough and complete reference, see [BCP+14].

1.6 Computability theory

Part of the philosophy underlying computability theory is the celebrated Church-Turing
thesis, which states that the algorithmic (i.e., intuitively computable) functions are
exactly those that can be computed by the formal model of Turing machines [Tur37].
Informally, a Turing machine (TM) M is just a computer program used to perform
a specific task: it takes a binary string s as input and either gets undefined (notated
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M(s) ↑) or it halts (notated M(s) ↓) and produces a certain binary string w as output.
In this last case we say that M(s) = w.

Definition 1.6.1. A partial function f : {0, 1}∗ → {0, 1}∗ is partially computable
iff there exists a Turing machine M such that, for every s ∈ dom f , M(s) ↓ and
M(s) = f(s), and, for every s 6∈ dom f , M(s) ↑. We say that M partially computes f .

Recall that if dom f = {0, 1}∗, we say that f is total. We will denote with P the
class of all partial computable functions and with R ⊆ P the class of total computable
functions.

Looking only at {0, 1}∗ may seem rather restrictive. For example, later we will be
concerned with functions that take natural numbers or subsets of the rationals as their
domains and/or ranges. However, from the point of view of computability theory (that
is, where resources such as time and memory do not matter), our definitions naturally
extend to such functions via coding; that is, the domains and ranges of such functions
can be coded as subsets of {0, 1}∗. Henceforth, unless otherwise indicated, when we
discuss computability issues relating to a class of objects, we will always regard these
objects as (implicitly) computably coded in some way.

Any Turing machine M can be approximated step by step. By Mt(s) ↓= w we
denote that the machine M on input s halts within t computational steps and outputs
w; by Mt(s) ↑ we denote that M has not reached a halting state by stage t. At each
stage t we can algorithmically determine if M has reached a halting state or not: if
Mt(s) ↓ then Mt′(s) ↓= M(s) for all t′ ≥ t.

Definition 1.6.2. Let f : {0, 1}∗ → {0, 1}∗ and T : N→ N be some total functions. We
say that f is computable in O(T (n))-time iff there exists a Turing machine M computing
f and a constant c such that for almost all s ∈ {0, 1}∗, mint[Mt(s) ↓] ≤ c · T (|s|).

Nowadays the fact that programs can be treated as strings and that all of them
can be listed is quite standard for a computer scientist. Moreover, there are special
programs that take strings representing programs as input, and simulate them. This
is a consequence of the Enumeration Theorem, which says that we can algorithmically
enumerate all the Turing machines

T0,T1,T2, . . . (1.6)

and that there is a universal machine V such that

V(0i1s) = Ti(s), (1.7)

so V can simulate every other machine. Each Turing machine M corresponds to a
number in the list (1.6) and that number is called the Gödel number of M. We will use
the same symbol Te for denoting the e-th Turing machine (regarded as a computing
agent) and the (mathematical) function it computes, interchangeably.

The Recursion Theorem due to Kleene [Kle38] says that for every computable func-
tion f we can compute an n such that Tn = Tf(n). This n is usually called the fixed
point of f . This result (together with the s-m-n Theorem, see [Soa99] for more details)
allows us to define computable functions which know in advance its own Gödel number.
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For example, when defining a machine M we may assume that we already know the
number e such that M = Te.

Computability theory is usually concerned with sets.

Definition 1.6.3. A set is B ⊆ {0, 1}∗ is computable iff its characteristic function χB
is a computable function.

Definition 1.6.4. A set B ⊆ {0, 1}∗ is called computably enumerable (c.e.) iff it is
either empty or the range of some computable function g : N→ {0, 1}∗.

The notion of computable enumeration gives us an equivalent characterization of
computable sets.

Proposition 1.6.5. A set B ⊆ {0, 1}∗ is computable iff both itself and its complement
are c.e.

The famous Undecidability of the Halting Problem, due to Turing [Tur37], says that

Theorem 1.6.6. The set {e ∈ N | Te(e) ↓} is c.e. but not computable.

The notion of a computable enumeration extends to classes of computable functions
as follows:

Definition 1.6.7. A class C of partially computable functions is computably enumerable
iff there exists a total computable function g : N→ N such that

1. for every n, Tg(n) ∈ C and

2. for every f ∈ C, there exists n ∈ N such that Tg(n) = f .

As a consequence of the Enumeration Theorem, we have the following result which
will be important for what comes next,

Theorem 1.6.8. For every computable T : N → N, the class of functions computable
in O(T (n))-time is computably enumerable.

1.7 Inductive inference

The process of inductive inference can be described as a particular step from chaos
(a sequence of accidents) to order (a pattern), or from effects (a sequence of events)
to causes (a possible explanation of what produces them). It consists of generating
hypotheses for describing an unknown object from finitely many data points about the
unknown object. For example, when exploring a physical phenomenon by performing
experiments, a physicist obtains a finite sequence of pairs

(x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)).

From these examples the physicist tries to infer the law f describing the connection
between x and f(x). Usually f is a mathematical expression, a formula, or, in a
very general scenario, an algorithm computing the function f . Using more and more



18 1. Introduction and Preliminares

examples, the hypothesis on hand may be confirmed or falsified. If it is falsified, usually
a new hypothesis is generated.

Gold[Gol67] considers inductive inference to be an infinite process. The objects to
be inferred are computable functions. In every step n = 0, 1, 2, . . . of the inference
process the inference algorithm has access to successively growing initial segments
(x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)) of the graph of the target function. Using these
initial segments, the inference algorithm computes hypotheses hn which are interpreted
as numbers of programs in a given computable numbering of (all) partial computable
functions (e.g. (1.6)).

Trivially, for every computable function there is an inference algorithm (namely,
the one that always outputs the index of a program computing the function) and so,
every computable function is individually inferable. We can thus turn our attention
to classes of computable functions. The problem here is that, for each class C of
computable functions, one could be able to infer members of C individually, without
having a master inference method that would work uniformly for all members of C.

Many possible formalizations of notions of inference for classes of total computable
functions have been considered in the literature. We confine ourselves here to a few of
them, those which we will be using in the next chapters, and refer to [ZZ08] for surveys
of many others, as well as for bibliographical references on them. We state the results
for functions N→ N but, as usual, they easily extend to functions over other countable
sets.

Before proceeding to the definitions, let us state some notation. The set of all
permutations of N is denoted by Perm(N). Any element X ∈ Perm(N) can be rep-
resented by a unique sequence (xn)n∈N that contains each natural number precisely
once. Let X ∈ Perm(N), f : N → N and n ∈ N. Then we write fX,n instead of
[〈x0, f(x0)〉, . . . , 〈xn, f(xn)〉]. If X = 0, 1, 2, . . . , fn := fX,n.

1.7.1 Learnability in the limit

First, let us state the formal definition of Gold’s original model of learnability in the
limit.

Definition 1.7.1 ([Gol67]). A class C of total computable functions is learnable in the
limit iff there exists a total computable function g : N → N (called a learner for C)
such that, for all X ∈ Perm(N) and every f ∈ C there exist nf ∈ N,

T
g(f

X,nf )
computes f and

g(fX,n) = g(fX,nf ) for all n ≥ nf .

We denote with LIM the set of all this classes.

Notice that a finite number of wrong hypothesis (indexes of TMs) for each element
of the class is allowed (i.e. g can take guesses and learn from its mistakes).

For our applications in Chapters 2 and 3 we will need that the TMs hypothesized
by the learner always halt. This is formalized as follows.
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Definition 1.7.2 ([Wie78]). A class C of total computable functions is R-totally-
learnable iff there exists a learner g : N → N for C such that Tg(n) is total for all
n. We denote with R-T OT AL the set of all this classes.

Observation 1.7.3. R-T OT AL ⊆ LIM.

It follows from a simple diagonalization argument that,

Theorem 1.7.4. The class of all total computable functions R is not in R-T OT AL.

Proof. By way of contradiction, suppose that R ⊆ R-T OT AL via the learner g : N→
N and let f : N→ N be defined as

f(0) := 0 and f(n+ 1) := Tg(fn)(n+ 1) + 1.

Then f is total computable function such that f(n + 1) 6= Tg(fn)(n + 1) for all n and
so not learnable by g, a contradiction.

On the other hand, large classes of total computable functions areR-totally-learnable.
In particular, we have the following characterization:

Theorem 1.7.5 ([AB91]). A class of total computable functions is in R-T OT AL
if and only if it is a subclass of a computably enumerable class of total computable
functions.

Proof. We prove the if direction because it is instructive for the results of the following
chapters. Let h : N→ N be a computable enumeration of C. Then g : N→ N, defined
as follows,

g([〈a0, b0〉, . . . , 〈an, bn〉]) := h(min
m≤n

[∀i ≤ n Th(m)(ai) = bi]) (1.8)

is a learner for C and, for every n, Tg(n) computes a total function. Hence, C ∈ R-
T OT AL. This is an example of a technique known as learning by enumeration. By
assumption, for every f ∈ C, there is (at least) one n ∈ N such that f = Th(n). The pre-
dictor’s guess on input fX,n = [〈x0, f(x0)〉, . . . , 〈xn, f(xn)〉] is the first program in the
enumeration whose outputs on inputs x0, . . . , xn coincide with f(x0), . . . , f(xn) respec-
tively. After finitely many mistakes, it will reach the first program in the enumeration
computing f and, hence, its guesses will start being correct from then onwards. See
Figure 1.1 for an schematic description.
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First
match

Guess for
the target
function

Seen bits:

f(0)= f(1)= f(2)=

s1 = 0 0 0 0 0 0 0 . . .
s2 = 0 0 1 1 0 1 1 . . .
s3 = 1 0 0 0 1 0 1 . . .
s4 = 1 1 1 1 0 0 0 . . .
s5 = 0 1 0 1 0 1 0 . . .
s6 = 1 0 1 0 1 1 1 . . .
s7 = 1 1 0 1 1 0 1 . . .
...

1 0 1

Fig. 1.1: Let {si}i∈N be a computable enumeration of a class of (in this case 0, 1-valued) total com-
putable functions. Learning by enumeration works as folllows: after seeing f(0) = 1, f(1) = 0
and f(2) = 1, the guess for (a program comoputing) f will be the first TM in the enumeration
whose outputs match those values (in the example, s6.)

Definition 1.7.6 (enumeration-learner). Let C be a computably enumerable class of
total computable functions. For every function h : N → N enumerating C we will call
a function g : N→ N defined as in equation (1.8) an enumeration-learner for C.

From Theorems 1.6.8 and 1.7.5 we have,

Corollary 1.7.7. For every computable T : N→ N, the class of functions computable
in O(T (n))-time is in R-T OT AL.

This implies that the well-known classes P, BQP, NP, PSPACE from complexity
theory, where the complexity time bound T is a simple exponential function and the
much broader class PR of the primitive recursive functions where the time bound is
Ackermannian [Odi92, §VIII.8] are all learnable.

For the application in Chapter 3 it will be sufficient for us that the learner outputs
TMs coinciding with the target function in all but finitely many inputs. This has been
formalized in the literature as follows:

Definition 1.7.8. A class C of total computable functions is learnable in the limit with
finite anomalies iff there exists a total computable function g : N → N such that, for
for all X ∈ Perm(N) and every f ∈ C there exist nf ∈ N,

g(fX,n) = g(fX,nf ) for all n ≥ nf and

∃m0∀m ≥ m0 T
g(f

X,nf )
(m) = f(m).

We denote with LIM∗ the set of all this classes.

1.7.2 Identification by next value

The other notion we consider formalizes the idea of a uniform method of prediction or
extrapolation.
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Definition 1.7.9. A class C of total computable functions is identifiable by next value
iff there exists a total computable function g : N → N (called a predictor for C) such
that, for every f ∈ C there exists nf ∈ N,

f(n+ 1) = g(fn) for all n ≥ nf .

We denote with NV the set of all this classes.

Again, notice that a finite number of wrong predictions for each element of the class
is allowed.

In Chapter 2 we will use this model because it simplifies the explanation but, it can
be shown that,

Theorem 1.7.10 (see e.g. Theorem 2 of [ZZ08]). NV = R-T OT AL
And, together with Corollary 1.7.7 it follows that

Corollary 1.7.11. For every computable T : N→ N, the class of functions computable
in O(T (n))-time is in NV.

Ideally, one would like to be able to effectively tell when the predictions begin to be
correct. One way to formalize this is as follows,

Definition 1.7.12. A class C of total computable functions is finitely identifiable by
next value iff there exists a computable function g : N → N (called a finite-predictor
for C) such that for all f ∈ C, there exists an n such that,

g(fm) = 〈·, 0〉 for all m < n and

g(fm) = 〈f(m+ 1), 1〉 for all m ≥ n.

We denote with NVfin the set of all this classes.

Of course, NVfin ⊆ NV . But, unfortunately, very simple classes are already outside
NVfin.

Example 6. Consider the class C = {fn ∈ R | fn(n) = n ∧ fn(x) = 0 if x 6= n}.
Straightforwardly, C ∈ NV via, e.g., the predictor constantly 0. Suppose C ∈ NVfin
and let g be a finite-predictor for C. Since the always 0 function is in C, there exists n0

such that g(0n) = 〈0, 1〉 for all n ≥ n0. But then g doesn’t predict fn0+1 ∈ C, because
g(fn0

n0+1) = g(fn0
0 ) = 〈0, 1〉 6= 〈fn0+1(n0 + 1), 1〉. A contradiction. Note that every f ∈ C

is computable in O(log n)-time; thus, it takes very little time complexity to go outside
of NVfin.

1.8 Computable randomness

In the preceding section, we said that we were going to consider the predictability of
classes of computable sequences, instead of individual computable sequences, because
the latter are trivially predictable. What about uncomputable sequences? Consider
the sequence (equivalently, the set),

K := {e : Te(e) ↓}.



22 1. Introduction and Preliminares

We saw in Theorem 1.6.6 that K is not computable and, so, of course, after seeing
K � n, for any n, we will not be able to predict the forthcoming bits (in the sense of
the preceding section). However, because it is c.e., we can certainly program a Turing
machine M to, given K � n, tell us a position m ≥ n where K(m) = 1, that is

if M(K � n) = m then m ≥ n and K(m) = 1. (1.9)

Therefore, in what can be seen as a weaker sense of predictability, K, although uncom-
putable, is predictable.

The notion of algorithmic unpredictability is formalized through the use of martin-
gales. Consider the following betting game. A gambler in a casino is presented with
larger and larger bits of a binary sequence

X = X(0)X(1)X(2) . . .

His initial capital is M(σ) ≥ 0. After seeing x = X(0) . . . X(k − 1), his capital is
M(x) ≥ 0. He places a bet for the value of the (k + 1)-th bit as follows: he bets
m(x0) ≥ 0 to X(k) being 0 and m(x1) ≥ 0 to it being one, with m(x0)+m(x1) ≤M(x).
Then, X(k) = b is revealed and he wins 2 · m(xb). His new capital thus becomes
M(X(0) . . . X(k)) = M(x) − (m(x0) + m(x1)) + 2m(xb). The rules of the game are
fair in the sense that the expected capital after each bit is equal to the current capital,
that is

M(x0) +M(x1)

2
= M(x). (1.10)

Formally, and for any finite set of symbols Σ,

Definition 1.8.1 (Martingale). A function M : Σ∗ → Q≥0
2 is called a martingale iff

1

|Σ|
∑
b∈Σ

M(σb) = M(σ). (1.11)

Recall that Q≥0
2 = {n/2m | n,m ∈ N} denotes the set of non-negative dyadic

rationals.
Martingales formalize the notion of betting strategy. At each step, the gambler

must bet M(σb)
|Σ|M(σ)

of his current capital to the next bit being b. The betting strategy is

successful when the gambler’s capital increases unboundedly when playing according
to the strategy on the successive symbols of X.

Definition 1.8.2 (Success of a martingale). We say that a martingale M succeeds on
a sequence X ∈ Σω iff lim supnM(X � n) =∞.

As the reader might be expecting, we will be considering betting strategies of an
effective kind.

Definition 1.8.3 (Computable randomness). A sequence X ∈ Σω is computably ran-
dom if no computable martingale succeeds on it. We denote with CR the set of com-
putably random sequences.
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Of course, no computable sequence is computably random. Furthermore, to succeed
on a sequence X it suffices being able to effectively pinpoint a non computably random
subsequence.

Proposition 1.8.4. Let Z ∈ Σω and h : N→ N be strictly increasing and computable.
If Z is computably random, then X = Z(h(0))Z(h(1))Z(h(2)) . . . is computably ran-
dom.

Proof. By contrapositive, let M be a computable martingale that succeeds on X. It is
easy to see that the martingale F : Σ∗ → Q≥0

2 defined as

F (ε) = M(ε)

F (σb) =

{
M(σ[h(0)] . . . σ[h(n− 1)]b) if h(n) = |σ|
F (σ) otherwise

is computable and succeeds on Z.

For the results of Chapter 3 we will need computable sets which are sufficiently
random. This is formalized with the notion of resource-bounded randomness in which
the computational power of the gambler is restricted.

Definition 1.8.5 (T (n)-randomness). Let T (n) : N→ N be some computable function.
A sequence X ∈ Σω is T (n)-random iff no martingale computable in O(T (n))-time
succeeds on it.

It does not take that much computational power to have good randomness proper-
ties. For instance,

Proposition 1.8.6 ([Sch71]). If X ∈ Σω is n2-random, then X satisfies the law of
large numbers,

lim
n

|{i < n | X(i) = b}|
n

=
1

|Σ| for all b ∈ Σ.

And we can compute them efficiently,

Theorem 1.8.7 (See e.g. [FN15]). Given a program for the time function T , one can
compute a T (n)-random sequence in time O(T (n) · log(T (n)) · n3)-time.

In Chapter 3 we will use the following property of T (n)-randomness.

Proposition 1.8.8. Let X ∈ Σω, Γ be a non-trivial subset of Σ, and g : N→ {0, 1} be
a computable function such that:

1. exists n0 such that for all n ≥ n0, if g(n) = 1 then X(n) ∈ Γ, and

2. for infinitely many n, g(n) = 1.

Then X is not computably random. Furthermore, if g is computable in O(T (n))-time
with T (n) = Ω(n2), then X is not T (n)-random.
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Proof. The betting strategy is quite simple: wait until n ≥ n0 to start betting; then
just bet $1 to the symbols in Γ every time g(n) = 1. More formally, let M : Σ→ Q≥0

2

be defined as

M(ε) = |Γ|

M(σb) =


M(σ)− |Γ|+ |Σ| if M(σ) ≥ |Γ|, |σ| ≥ n0, g(|σ|+ 1) = 1 and b ∈ Γ

M(σ)− |Γ| if M(σ) ≥ |Γ|, |σ| ≥ n0, g(|σ|+ 1) = 1 and b 6∈ Γ

M(σ) otherwise

Now we have to see that M is a martingale computable in O(T (n))-time that suc-
ceeds on X.

1. If M(σ) < |Γ| or |σ| ≤ n0 or g(|σ|) = 0, then
∑

bM(σb) = |Σ|M(σ). Else,∑
b

M(σb) =
∑
b∈Γ

M(σb) +
∑
b 6∈Γ

M(σb)

= |Γ|(M(σ)− |Γ|+ |Σ|) + (|Σ| − |Γ|)(M(σ)− |Γ|)
= |Σ|M(σ).

Therefore, M satisfies the fairness condition (1.11) and, hence, is a martingale.

2. Let us study the complexity of computing M with the straightforward algorithm.
If we denote with F (n) the number of operations (in the worst case) on inputs of
length n, then

F (n) =

{
O(1) n ≤ n0

F (n− 1) +O(T (log n)) +O(n) n > n0

where the second term in the summation is for the possible evaluation of g and
the third is for the possible additions. Then, solving the recurrence,

F (n) = O(1) +
n∑

i=n0

(c · T (log i) + d · i)

which is O(T (n)) if T (n) = Ω(n2).

3. Now, to see that M succeeds on X,

lim sup
n

M(X � n) = |Σ|+ (|Σ| − |Γ|) lim
n
|{n0 ≤ i ≤ n | g(i) = 1}| (1.12)

=∞ (1.13)

Where, (1.12) follows from the definition of M and from assumption 1, and (1.13)
follows from assumption 2.
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Example 7. K is not computably random. Let f : N → N be a computable func-
tion such that K = f(N) (K is c.e.) and let h : N → N be defined as h(n) =
f (mint[(∀i<nf(t) > h(i)) ∨ n = 0]). It is not hard to see that A = h(N) is a computable
subset of K. Then, it follows from Observation 1.8.8 with g := χA and Γ = {1} that
K is not computably random.

Although every computable sequence is not computably random, a simple diagonal
argument shows that we do not have a general computable betting strategy to succeed
on all of them, that is

Theorem 1.8.9. There is no computable martingale M that succeeds on every com-
putable sequence.

Proof. By way of contradiction, suppose that M is a computable martingale that suc-
ceeds on every computable sequence. Let Y ∈ {0, 1}ω be defined as: Y (0) = 0 and
Y (n + 1) = b iff M((Y � n)b) ≤ M((Y � n)b̄). Hence, given that M(Y � n) ≥ M(Y �
(n+ 1)) for all n, Y is a computable sequence such that lim supnM(Y � n) ≤M(ε). A
contradiction.

In Chapter 4 we will need a randomness notion for infinite sequences for which
a general (universal) procedure separating the random from the non-random (and,
amongst this, the uncomputable) exists. Martin-Löf randomness is one such notion.

1.9 Martin-Löf randomness

Let X ∈ Σω be the output of repeated throwing of a fair |Σ|-faced dice (equivalently,
let X be sampled uniformly at random from Σω). We expect X to have infinitely many
occurrences of every symbol in Σ. Furthermore, we expect it to satisfy the law of large
numbers, that is

lim
n

(|{i < n | X(i) = b}|/n) = 1/|Σ| for all b ∈ Σ. (1.14)

Such kind of properties of infinite sequences, which hold with probability 1, are called
laws of randomness. We expect X to satisfy every such law. In measure-theoretic
terms, X should belong to every set of (Lebesgue) measure 1. In other words, it will
be atypical for X to fail to satisfy some of this laws. In measure-theoretic terms,
belonging to the complement of some measure 1 class. Therefore, one would like to
define a sequence as random if it doesn’t belong to any null measure set. However, {X}
has measure 0, and so this is a vacuous definition. Not every null measure set should
define a test for non-randomness.

A Martin-Löf test [ML66] is the formalization of a statistical test, intended to cap-
ture infinite sequences with certain patterns or special features. This ‘detection’ of
non-random sequences must be computably approximable, with incrementing levels of
accuracy or significance. A test is a collection of sets Vm of possible prefixes of sequences
that do not look random. As we increase m, the identification of non-randomness gets
more and more fine-grained, leaving in the limit a null measure set of non-random se-
quences. More formally, recalling that for a set V ⊆ Σ∗, [V ] denotes the set of infinite
sequences having a string in V as a prefix, we have that
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Definition 1.9.1 (Martin-Löf test). Let g : N2 → Σ∗ be a total computable function.
A Martin-Löf test (ML-test) is a sequence (Vm)m∈N of c.e. sets Vm ⊆ Σ∗ such that
Vm = {g(m,n) | n ∈ N} and λ([Vm]) ≤ |Σ|−m for all m, with λ(·) the uniform measure
over Σω.

The Martin-Löf random (ML-random) sequences will be those not detectable by
any possible ML-test.

Definition 1.9.2 (failing a test). A sequence Y is said to fail a ML-test (Vm)m∈N iff
Y ∈ ⋂m[Vm]. We also say that (Vm)m∈N captures Y . If Y doesn’t fail (Vm)m∈N, we say
it passes it.

Informally, if Y ∈ [Vm] for some m then we reject the hypothesis that Y is random
with significance level |Σ|−m. Observe that if Y ∈ [{σ1, σ2, . . . }] then, for large enough
n, we have that all the infinite sequences extending Y � n belong to [{σ1, . . . , σn}].
This last expresion can be seen as the n-th approximation of [{σ1, σ2, . . . }]. Hence if
Y ∈ ⋂m[Vm], then for every m there is n such that any extension of Y � n is included
in the n-th approximation of [Vm]. Finally,

Definition 1.9.3 (Martin-Löf random). A sequence X is Martin-Löf random (ML-
random) if it passes every ML-test. We denote with MLR the set of all ML-random
sequences.

Example 8 (Chaitin’s omega). Let M be a Turing machine such that, for all s ∈
{0, 1}∗, if s ∈ dom M, then s[0] . . . s[i] 6∈ dom M for all i < |s| − 1 (i.e. the domain of
M is prefix-free). Then, if M is universal, the real number ΩM ∈ [0, 1] (equivalently,
the sequence) defined as

ΩM :=
∑

p∈dom M

2−|p|

is ML-random [Cha75]. Chaitin call these numbers halting probabilities (recall that
s ∈ dom M iff M halts on input s).

As we hinted at the end of the preceding section,

Proposition 1.9.4 (Universal ML-test). There is a ML-test (Um)m∈N such that for all
X ∈ Σω, X ∈ MLR iff X passes (Um)m∈N.

This implies that in the complement of the null measure set
⋂
m[Um] we have all the

ML-random sequences and so

Corollary 1.9.5. A sequence X sampled uniformly at random from Σω is ML-random
with proability 1.

The well known inclusion relationships between the notions of randomness for se-
quences just defined are

MLR ( CR ( T (n)-randomness
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1.9.1 Relativized ML-randomness

In computability theory, we say that an algorithmic notion relativizes when it can
be extended to the model of oracle Turing machines (see e.g. [Soa99, Section III.1]).
Informally, these are Turing machines which, during the computation, can make finitely
many queries to some (in general, non-computable) infinite sequence (the oracle).

Example 9 (K is computable relative to ΩV). Let us see how to compute K when
given ΩV as an oracle. Let i ∈ N and p = 0i1i. One can determine whether V(p)

halts (i.e. whether i ∈ K) from only the first |p| bits of ΩV. Let n = |p| and Ω
(n)
V

be ΩV truncated to the first n bits. We have Ω
(n)
V < ΩV < Ω

(n)
V + 2−n. Define

ΩV[t] :=
∑

Vt(s)↓,|s|≤t 2−|s| and note that limt ΩV[t] = ΩV and ΩV[t] is computable from

t. Finally, let t = mint′≤n[ΩV[t′] > Ω
(n)
V ] and note that V(p) halts if and only if it halts

in t steps, otherwise ΩV ≥ ΩV[t] + 2−n > Ω
(n)
V + 2−n a contradiction.

The notion of ML-randomness relativizes by simply letting the Turing machines
enumerating the sets Vm in the above Definition 1.9.1 have access to some oracle X
(this will be indicated with a superscript in the notation). Given two infinite sequences
X and Y , we say that Y is ML-random relative to X if there is no ML-test (V X

m )m∈N
such that Y ∈ ⋂m[V X

m ]. It is easy to see that when X is a computable sequence, being
ML-random relative to X is equivalent to being ML-random, and that no sequence is
ML-random relative to itself.

An important result, useful for our applications in Chapter 4, is that there exists a
universal oracle ML-test (UX

m )m∈N such that, for all X and Y , Y is ML-random relative
to X iff Y /∈ ⋂m[UX

m ]. Since λ
⋂
m[UX

m ] = 0, this implies that the set of ML-random
sequences relative to X has measure 1 for all X. In other words, for any X, the
sequence of independent throws of a |Σ|-faced dice is ML-random relative to X with
probability 1.

1.10 Communication complexity

Classical communication complexity theory, introduced by Andrew Yao in 1979 [Yao79],
studies the communication requirements in the distributed computation of functions.
More formally, given a function f : X × Y → Z, it asks how many bits, in the worst
case, have to be exchanged between Alice holding input x ∈ X and Bob holding input
y ∈ Y in order for him to output f(x, y) ∈ Z (see Fig. 1.2 for a schematic description).

Alice Bob
Input : x ∈ {0, 1}n Input : y ∈ {0, 1}n

...

Output : f(x, y)

M1

M2

Mr

Transcript : Π(x, y) = (M1, . . . ,Mr, output)Fig. 1.2: Illustration of Communication Complexity’s model
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1.10.1 Communication complexity measures for computing functions

There are many variants of communication complexity. Here are some of the most well-
known ones. We will first consider the standard deterministic model before extending
it to the randomized model where the players can use randomness to be more efficient,
and finally we will discuss how using quantum communication instead of classical can
be even more effective.

Deterministic communication complexity

Let us first define what is called deterministic communication complexity, the most
standard model which formalizes the definition given above. A deterministic commu-
nication protocol is an interactive protocol where at each step the player who speaks
sends a bit to the other player, as a function of his input and the previous messages.
We can formalize it using a walk on a tree where each node encodes the transcript of
all the previous messages of the protocol, and depending on the current message, the
players decide to move to one or the other of its children.

Definition 1.10.1 (deterministic communication protocol). Let f : I ⊆ X × Y → Z.
A deterministic communication protocol Π which computes f is a binary tree where
each internal node v is labelled either by a function av : X → {0, 1} or by a function
bv : Y → {0, 1} and each leaf is labeled by an output value (an element of Z). On input
(x, y), the execution of the protocol consist of traversing the tree as follows: when the
node v belongs to Alice, she computes the value av(x) and she sends it to Bob; when
the node v belongs to Bob, he computes the value bv(y) and sends it to Alice. If the
value is zero then they both move to the right child of v and to the left one otherwise.
When they reach a leaf they output its value. We say that the protocol computes f if
for each (x, y) ∈ I the execution of the protocol on (x, y) outputs f(x, y). We consider
that the last bit of the protocol is the output. The communication cost of a protocol
Π is the height of the tree, we denote it by CC(Π).

The deterministic communication complexity of a function f is the cost of the best
deterministic protocol which computes f .

Definition 1.10.2 (deterministic communication complexity). The deterministic com-
munication complexity of f , denoted by D(f) is defined by

D(f) = min{CC(Π) | Π computes f}.

To relax this problem, one can also define a notion of deterministic protocol for f
which admits small error. Intuitively this can significantly decrease the complexity as
a function can have a large complexity because few inputs are very difficult to handle,
whereas on most of them it is easy to compute the value of the function.

Definition 1.10.3 (distributional communication complexity). Let µ be a distribution
on the input space X ×Y . We say that Π computes f with error ε according to µ if the
probability over (x, y) ∼ µ that the protocol outputs f(x, y) on (x, y) is at least 1− ε .
The distributional communication complexity of f according to µ (denoted by Dµ(f))
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is the cost of the best deterministic protocol that computes f with error ε according to
µ.

Dε
µ(f) = min{CC(Π) | Π computes f with error ε according to µ}.

Randomized communication complexity

Another way of considering communication complexity with error is to allow the players
to act in a randomized fashion.

Definition 1.10.4 (public-coin communication protocol). A public-coin communica-
tion protocol Πpub is a distribution over deterministic protocols, run by first using shared
randomness to sample an index r and then running the deterministic protocol Πr. We
say that Πpub computes f : I ⊆ X × Y → Z with error ε if for each input (x, y) ∈ I,
the probability of choosing a protocol Πr which outputs f(x, y) is at least 1 − ε. The
communication cost R(Πpub) of such a protocol is the maximum number of bits that
can be transmitted in any run of the protocol.

We can now define the notion of randomized communication complexity (Rε(f)) as
the cost of the best public-coin communication protocol computing f with error ε .

Definition 1.10.5 (randomized communication complexity).

Rε(f) = min{R(Πpub | Πpub computes f with error ε}.

The two notions of communication complexity with error (distributional and ran-
domized) are closely related by Yao’s famous Min-Max theorem [Yao83].

Theorem 1.10.6 ([Yao83]). Rε(f) = maxµD
ε
µ(f).

Quantum communication complexity

Fifteen years after he defined the classical model for communication complexity, An-
drew Yao [Yao93] proposed to study the model where, instead of sending bits, the
players can also exchange qubits. The main question was to understand whether this
quantum model could be stronger than the classical one, i.e., if there is some function for
which we save a lot of communication using quantum communication. Despite Holevo’s
theorem [Hol73] which states than no more than n bits of classical information can be
communicated with n qubits (if the players are not allowed to use entanglement), some
separations have been proven between the classical and the quantum models. The first
significant separation is due to Buhrman et al. [BCW98]. They proved, defining some
variant of the equality function, that quantum communication can be exponentially
better than classical communication in the zero-error case. Then Ran Raz [Raz99a]
proved an exponential separation for the bounded-error case. Formally, in a quantum
communication protocol, each player has a working space on which, at each step, he ap-
plies some unitaries depending on his input and then sends some part of his space (the
message) to the other player. At the end of the protocol, one player does a measurement
to determine the output of the protocol.
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Definition 1.10.7 (quantum communication protocol). A quantum communication
protocol Πqubit is defined as the follows: Alice has an input x and Bob y. Their working
space is a quantum state separated into three work spaces (three registers): one private
register for Alice, one private register for Bob and one register for the communication.
At the beginning of the protocol, the state is |0〉A|0〉M |0〉B . At each step of the protocol,

if it is Alice’s turn to talk (let say on the k-th round), she applies some unitary Uk,x
A

which is a function of her input x on her register and the communication register.
This operation corresponds both to her local computation and to putting a message
in the communication channel. Here the size of her quantum message corresponds to
the number of qubits of the communication register which has been changed by her
operation. Since in this round nothing happens to Bob’s register, the operation on the
overall quantum state is Uk,x

A ⊗ 1B where 1B is the identity on Bob’s register. When
we are in round k where it is Bob’s turn to talk, he applies one unitary operation
Uk,y
B on his register and the communication register, so he applies 1A ⊗ Uk,y

B to the
current quantum state. After t steps of this protocol the quantum state is (U t,x

A ⊗
1B)(1A ⊗ U t−1,y

B ) . . . (1A ⊗ U2,y
B )(U1,x

A ⊗ 1B)|0〉A|0〉M |0〉B . At the end of the protocol
Bob applies some measurement on his register and the output of the protocol is the
value he observes. We say that such a protocol computes f with error at most ε
if for each (x, y) ∈ I the probability that it outputs f(x, y) is at least 1 − ε. The
cost QC(Πqubit) of such a protocol is the maximum number of qubits sent over all the
possible inputs where at each step the number of qubits sent corresponds to the number
of qubits which have changed in the communication register.

We can now define the quantum communication complexity of f (denoted by Qε(f))
as the cost of the best quantum protocol which computes f with error ε.

Definition 1.10.8 (quantum communication complexity).

Qε(f) = min{QC(Πqubit) | Πqubit computes f with error ε}.

1.10.2 Communication complexity measures for distributions

We will study here the communication complexity of simulating distributions. In this
model Alice has x, Bob has y and this input defines a distribution on some output
space A × B denoted by p(..|x, y). Using communication and randomness, their goal
is to respectively output a and b such that the probability of outputting (a, b) on
(x, y) is p(a, b|x, y). We use the following notation for communication complexity of
distributions. Rε(p) (resp. Qε(p)) is the minimum amount of classical communication
(resp. quantum) necessary to reproduce the distribution p in the worst case, up to ε
in total variation distance for all x, y. We write |p− p′| ≤ ε to mean that for any x, y,∑

a,b |p(a, b|x, y)− p′(a, b|x, y)| ≤ ε.

Boolean function as a special case of distribution

Boolean (and other) functions can be cast as a sampling problem as follows. Consider
a Boolean function f : I ⊆ X × Y → {0, 1} whose communication complexity we
wish to study (non-Boolean functions and relations can be handled similarly). First,



we split the output so that if f(x, y) = 0, Alice and Bob are required to output the
same bit, and if f(x, y) = 1, they output different bits. Let us further require Alice’s
marginal distribution to be uniform, likewise for Bob, so that this sampling problem
defines a distribution. Call the resulting distribution pf . If pf were local (Definition
1.5.2), f could be computed with one bit of communication using shared randomness:
Alice sends her output to Bob, and Bob XORs it with his output. More precisely, from
a boolean function we can construct the following distribution:

Definition 1.10.9. Let f : I ⊆ X×Y → {0, 1}, define pf (a, b|x, y) = 1
2

if f(x, y) = a⊕b
and 0 otherwise, where a and b are booleans.

Theorem 1.10.10. Rε(pf ) ≤ Rε(f) ≤ R(pf ) + 1.

Proof. To compute f(x, y) from a protocol for pf , Alice sends a to Bob who can
evaluate a⊕ b which is the value of f(x, y). To simulate pf from a protocol computing
f Alice and Bob use public randomness to pick a random bit a. When the protocol for
f outputs z, Alice outputs a and Bob outputs z⊕ a. The relation still holds with error
ε.

We can notice that for any Boolean function f , the distribution pf described is
non-signaling (Definition 1.5.10) since the marginals are uniform.





RESUMEN DEL CAPÍTULO

En este capitulo se presentan los objetivos de la tesis, se resumen los principales re-
sultados obtenidos y se introducen los conceptos y antecedentes necesarios para su
entendimiento.

La computación cuántica y la información cuántica [NC11] tratan acerca de utilizar
el andamiaje teórico de la mecánica cuántica para diseñar protocolos y/o construir
sistemas que realicen tareas de procesamiento de la información que son clásicamente
dif́ıciles o aun imposibles de realizar. La aplicación de los principios mecánico-cuánticos
al estudio de tareas de procesamiento de información ha producido significativos avances
tales como: el algoritmo de Shor para factorizar enteros de manera eficiente [Sho97],
protocolos de distribución de claves que basan su seguridad en las leyes de la f́ısica en
lugar de en la conjeturada intractabilidad de un problema matemático [BB84, Eke91] y
protocolos de amplificación de aleatoriedad [CK11, CR12, GMDLT+13], por nombrar
sólo algunos.

El objetivo de esta tesis es analizar algunos de los conceptos fundamentales de
la mecánica cuántica, fundamentales para los avances antes mencionados, desde una
perspectiva teórico-computacional. El enfoque va a ser doble: por un lado, vamos a
analizar las hipótesis detrás de las resultados; por el otro, vamos a asumir la validez de
las hipótesis para luego cuantificar la ganancia computacional que resulta de aplicar-
los los consecuentes principios mecánico-cuánticos. Espećıficamente, en el lado de las
hipotesis, vamos a recurrir a las teoŕıas de la aleatoriedad algoŕıtmica y la inferencia
inductiva para estudiar el impacto de reemplazar la hipótesis de aleatoriedad por el uso
de pseudoaleatoriedad el algunas partes de la teoŕıa y la práctica. Luego, en el lado
de las aplicaciones, vamos a estudiar la ventaja que ofrece la cuántica en el área de
complejidad computacional.

A continuación se enumeran las preguntas principales junto con las respuestas
obtenidas:

• Pregunta: En un experimento de Bell, ¿alcanza con que la elección de las medi-
ciones sea pseudoaleatoria para poder concluir la no-localidad de las correlaciones
observadas a partir de la violación de una desigualdad de Bell?

• Respuesta: Si en un experimento de Bell bipartito las entradas de al menos una
de las partes son pseudoaleatoreas entonces, si se conoce una cota superior com-
putable a la complejidad temporal de la función usada, hay un modelo local para
explicar cualquier violación de Bell.

• Pregunta: ¿Tiene alguna consecuencia obeservacional usar pseudoaleatoriedad
en lugar de aleatoriedad la preparación de estados mixtos (como hacen en, por
ejemplo, [AB09a, LKPR10])?
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• Respuesta: Hay un protocolo para distinguir cualquier mezcla pseudoaleatoria de
estados cuánticos puros del estado máximamente mixto.

• Pregunta: ¿Es compatible con nuestras teoŕıas f́ısicas actuales una Naturaleza en
la cual la salida de experimentos de no-localidad es producida de manera com-
putable y suplementada con algún tipo de señalización escondida?

• Respuesta: Una teoŕıa de este tipo está en contradicción con la relatividad especial
pues damos un protocolo para usar cajas no-locales que se comporten de tal forma
para comunicar información entre puntos distantes de manera instantánea.

• Pregunta: ¿Es la no-localidad la responsable de la ventaja cuántica en comuni-
cación computacional?

• Respuesta: Para un gran familia de funciones, mostramos cómo construir de-
sigualdades de Bell y distribuciones cuánticas que las violan en una magnitud que
es exponencial en la diferencia entre sus complejidades comunicacionales clásicas
y cuánticas.



2. THE COMPUTABILITY LOOPHOLE

Bell proved that the correlations predicted by quantum mechanics between the out-
puts of suitably chosen local measurements over parts of an entangled quantum sys-
tem cannot be accounted for by any local hidden-variable model in which the hidden-
variables are independent of the local measurement choices. Recent theoretical work
has demonstrated that models that relax this measurement independence assumption,
allowing for a modest correlation between the joint measurement settings and any
causal influence on the measurement outcomes, can reproduce the quantum correla-
tions [BSHC85, Hal10, BG11, TSS13, PRB+14]. The approach to the question of
measurement independence has so far been of a statistical nature. That is, people have
studied different measures of correlation or dependence between the hidden-variables
and the inputs random variables and provided quantitative lower bounds necessary for
the observation of non-locality on different Bell scenarios. In this chapter we switch
from a process approach to a product approach and study the problem from an algo-
rithmic information perspective. Specifically, we study what happens with the validity
of concluding the non-locality of the observed correlations in a Bell experiment from
the violation of a Bell inequality when the sequences of inputs are computable (e.g.
the output of private pseudorandom number generators (PRNGs)). We show that in
such a setting an eavesdropper without access to the PRNGs can prepare local boxes
that seem non-local provided she knows an upper bound on the time computational
complexity of the pseudorandom functions and has access to the inputs and outputs
of previous rounds (Theorem 2.2.1). In other words, we show that the sequences
of inputs to a Bell test being computable opens up a loophole, which we call: the
computability loophole [BdlTS+16].

2.1 Measurement independence

We have characterized the local distributions L as those admitting a local determin-
istic λ-independent hidden-variable model (Proposition 1.5.7). The property of λ-
independence [BY08], stating the independence between the measurement choices and
the hidden variables, has received various other names in the literature: measurement
independence [Hal10], free will [CR12] and no-conspiracy [Nor11]. Trivially, any dis-
tribution p can be reproduced by a local model in which the hidden-variables are fully
dependent on the inputs. Furthermore, this still holds (for non-signaling distributions)
if the dependence is with only one of the parties’ inputs.

Proposition 2.1.1. For every non-signaling distribution p there is a local model with
q(λ|y) = q(λ).
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Proof. First, notice that for any non-signaling distribution p ∈ C we have

p(a, b|x, y) = p(a|x, y)p(b|a, x, y)

= p(a|x)p(b|a, x, y) (p ∈ C)

Let X ∈ X ω be the sequence of Alice’s inputs. The local model is as follows. At
round n, the hidden variable λ is a vector [an, X(n)], with an sampled from p(a|X(n));
Alice’s box outputs an and Bob’s box, on input y, (locally) outputs a sample from
p(b|an, X(n), y).

Now,

p(a, b|x, y) = p(λ = [a, x]|x)p(b|λ = [a, x], y)

= p(λ[0] = a|x)p(λ[1] = x|x)p(b|a, x, y)

= p(a|x)p(b|a, x, y)

with the last equality following from p(λ[1] = x|x) = 1.

However, complete independence of the measurement choices from any physical pa-
rameter influencing the measurement outputs, which is typically justified by an appeal
to the experimentalist’s free will [BSHC85], may seem too strong of an assumption and
one may wonder if we can still observe genuine non-locality when this requirement is,
somehow, relaxed. This is of special importance in cryptographical uses of Bell’s theo-
rem, where the choice of measurement is delegated to physical systems whose random
behaviour cannot be guaranteed [GMDLT+13, MPA11].

In order to study the possibility of relaxing the λ-independence assumption while
still being able to separate local from non-local models, we need a way of quantifying
the dependence between the measurement choices and the hidden variables. In the
following, we review the measures proposed in the literature and the quantitative results
they allow to draw from Bell violations.

In [Hal10], it is considered

M := sup
x,x′,y,y′

∫
dλ|p(λ|x, y)− p(λ|x′, y′)|, (2.1)

the ‘maximum distance’ between the distributions of the underlying variable for any
two pairs of measurement settings. Clearly, with M = 0 we have full measurement
independence and with M = 2 we have that there are at least two particular pairs of
inputs (x, y) and (x′, y′) such that for any λ at most one of these settings is possible
and hence there is no free will in deciding between them. With this, the fraction of
measurement independence can be quantified via

F := 1−M/2. (2.2)

It is then shown in [Hal10] that only by giving up 14% of measurement independence
(i.e. with F ≤ 86%), there is a local deterministic model of the singlet correlations.
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Another natural way of quantifying the dependence between the hidden variables
and the measurement choices is through their mutual information [BG11]

I(x, y : λ) = H(x, y) +H(λ)−H(x, y, λ), (2.3)

where H is the Shannon entropy. When x and y are independent of λ, I(x, y : λ) = 0.
On the other hand, if x and y are functions of λ, then I(x, y : λ) = H(x, y). In
[BG11] it is shown that for any Bell experiment with two inputs per party, as in the
CHSH scenario, there is a local model accounting for the observed correlations with an
amount of mutual information not bigger than one. For example, in the ideal case of
H(x, y) = 2, the model has I(x, y : λ) ≈ 0.85.

In the next section we take a more operational approach to the question of mea-
surement independence. We consider the case in which the parties in a Bell test use
pseudorandom numbers generators (PRNGs) to choose the inputs. We show that, in
such scenario, there is a local model in which the hidden variables, after finitely many
rounds and without access to the PRNGs used by the parties, start to perfectly pre-
dict the future measurement choices, allowing them to fake any non-local behaviour.
Granted, the possibility that physical hidden variables behave in this way is quite
implausible and conspiratorial (a feature, albeit, shared with most of the other local
models which exploit experimental loopholes [Hal10, CH74, LG04]). However, the sce-
nario becomes significantly plausible when we consider a cryptographical context in
which we are not testing quantum mechanics but rather using devices as black boxes
received from some untrusted provider and basing the security of our protocols on the
observed non-local behaviour.

2.2 The loophole

It is convenient for what follows to rephrase the standard Bell scenario in cryptographic
terms, as in [BCH+02, PAM+10, PM13]. In this approach, Alice and Bob get their
boxes from a non-trusted provider Eve. This cryptographic approach to Bell tests,
we believe, makes it easier to understand the implications of our results for device-
independent protocols based on non-locality. Nevertheless, our results also apply to
the standard context in which Bell inequalities are used, namely, to test the possible
existence of a local model explaining quantum correlations [EPR35, Bel64]. There,
the local model can be seen as the eavesdropper that tries to reproduce the observed
correlations, possibly by exploiting loopholes in the implementation.

We will consider an scenario in which Eve, in preparing the boxes for round n + 1
of the experiment, have access to all inputs and outputs of the previous n rounds;
or, equivalently, that the boxes she prepares can communicate the inputs used in the
previous rounds as shown in Figure 2.1 [BCH+02, PAM+10, PM13]. In this two-sided
memory scenario [BCH+02], the local distributions are those which can be written as

P (a(n), b(n)|x(n), y(n)) =
∑
λ

p(λ)p(a(n)|x(n),M, λ)p(b(n)|y(n),M, λ)

where M = [x0, . . . , xn−1, y0, . . . , yn−1, a0, . . . , an−1, b0, . . . , bn−1]. That is, the local dis-
tributions as those for which the outputs at round n + 1 are generated from the local
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inputs plus the information of the previous rounds M and some shared randomness λ.
It is shown in [BCH+02] that letting the eavesdropper (equivalently, the boxes she gen-
erates) have memory of the previous inputs and outputs still allows one to see genuine
non-locality. In this chapter we show that this is no longer the case if, in addition to
the devices having memory, we let Alice or Bob choose their inputs pseudorandomly.
The main intuition is that if Eve, or more precisely the devices she prepares, are able at
some point to learn the algorithm generating the inputs, she could use this information
to produce a fake Bell violation.

Fig. 2.1: Scheme for the Bell inequality computability loophole. After each round i, Alice’s box
receives Bob’s last choice of measurement yi. Using all previous choices of inputs for both
parties, Alice’s box makes a prediction for what the inputs of the next round will be.

Let us assume that one party, say Alice without loss of generality, uses an algorithm
to choose her inputs. In formal terms, this means that there is a computable function
fA : N → {0, 1} such that fA(i) tells Alice to press the left (0) or the right (1) button
at the i-th round. As we saw in Proposition 2.1.1, for every target non-signaling
distribution p and any function fA giving the inputs of one of the parties, there is a
local model. In other words, for every non-signaling p, if Eve knows fA, there is a
strategy for her (dependent on fA) to prepare local boxes generating p.

We would like to have a strategy for Eve that works independently of fA. We
will, however, assume the following further hypothesis: Eve knows some computable
function T : N → N which upper bounds the running time needed to compute fA.
For instance, Eve knows that fA is computable in O(T (n))-time for, say, T (n) = 22n

—though the algorithm that Alice is actually running may take, say, O(n2).
Now, our main result, the existence of a loophole (i.e. a strategy for Eve to fake any

target non-signaling distribution p), follows from the fact that the class of functions
computable in O(T (n))-time is identifiable by next value (Corollary 1.7.11). Formally,
our result states that,

Theorem 2.2.1. For every computable function T : N → N and every non-signaling
distribution p, there is a strategy for an eavesdropper Eve to prepare local boxes for every
round of a Bell experiment by having memory of the inputs and outputs in previous
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rounds, reproducing p whenever Alice’s inputs are given by a function fA : N → N
computable in O(T (n))-time.

Proof. The strategy for Eve is an adaptation of the proof of Proposition 2.1.1 to our
scenario with memory. Let

M = [x0, . . . , xn−1, y0, . . . , yn−1, a0, . . . , an−1, b0, . . . , bn−1]

be the inputs and outputs of the first n rounds of the Bell test and, by Corollary 1.7.11,
let gT : N → N be a predictor for the class of functions computable in O(T (n))-time.
Note that [〈0, x0〉, . . . , 〈n− 1, xn−1〉] = fn−1

A . On the n-th round, Eve will, first, sample
a string λ ∈ A|X | from the product distribution

∏
x∈X p(·|x). Then, she will prepare

and distribute boxes An to Alice and Bn to Bob such that

• An, on inputs xn and M , outputs λ[gT (fn−1
A )] (disregarding xn) and

• Bn, on inputs yn andM , outputs bn locally sampled from p(b|λ[gT (fn−1
A )], gT (fn−1

A ), yn).

The fact that the strategy reproduces p now follows from the analysis in the proof
of Proposition 2.1.1 and from the fact that, by assumption, there exists a (number
of round) nf such that for all n ≥ nf , gT (fn−1

A ) = fA(n) = xn (note that the finite
contribution to the statistics of the rounds before the nf -th is negligible).

At this point, we can further clarify the need to assume a bound on the complexity
of fA. As we saw, the loophole is based on the ability to program a predictor (in the
sense described above) for functions belonging to a given class. However, the class of
all total computable functions is not predictable (c.f. Theorem 1.7.4). We could have
chosen other ways to restrict the class of functions, but computational resources seemed
the more natural.

Despite being necessary for the protocol, one can justify the time complexity as-
sumption on the following grounds:

1. it is natural to require that the time Alice and Bob take to choose their measure-
ments on each round is bounded, and

2. the number of computational steps per second that a physical system of mass m
can perform is upper bounded by 2(mc2)/π~ [Llo00].

These two facts imply that the number of computational steps that Alice’s and
Bob’s algorithms can take on each round n is bounded by a constant and hence, their
computational complexity is, at most, linear in n (and, so, exponential in |n|, the size
of n).

Regarding the complexity of Eve’s protocol, there are two measures that one can
study. First, there is time complexity of the predictor gT : if T (n) is the upper bound
assumed by Eve for the running time of Alice’s algorithm, then gT ∈ O(T (n) · log(T (n))
(for T (n) time constructible, see [AB09b, §1.3]). Second, there is the number M of mis-
takes that gT will make before starting to guess correctly. Using the halving algorithm
of Barzdin and Freivalds (see [ZZ08, Thm. 6]), the learning process can be carried out



in such a way that M ≤ O(max(l, log(c))), where l is the length of Alice’s algorithm
and c is such that it runs in time c · t(n).

This means that Eve will not require too many rounds, in terms of l and c, to fake
non-locality. That is, if we look at the distribution generated in the first n rounds,
the fraction of inputs-outputs that will not serve Eve’s purpose of faking a non-local
distribution is upper bounded by M/n, which vanishes with increasing n. Therefore,
if Alice wants to make this number of rounds large, then she either has to use a very
long program or an enormous time constant.

2.3 Discussion

In this chapter we showed that if either Alice or Bob choose the inputs for a Bell
experiment in a computable way, an eavesdropper able to bound their time computa-
tional complexity can prepare deterministic devices and make them believe they have
non-local boxes, thus creating a loophole. For the loophole to apply, the boxes should
communicate between rounds and adapt accordingly, as for instance studied in the
context of the memory loophole [PM13, PAM+10]. There is no way of preventing this
form of communication, unless some assumptions regarding the shielding of the devices
are enforced, or by imposing that all the measurements in the Bell test by one of the
parties are space-like separated from those by the other party.

It is relevant to place these considerations in the context of recent “loophole-free”
Bell experiments [HBD+15, GVW+15, SMSC+15]. In all these experiments the choice
of measurements was performed using the fast quantum random number generator
(QRNG) of [AAM+15]. Thus, assuming the validity of quantum physics, these exper-
iments are free from the computability loophole introduced here. However, one may
argue that it is rather undesirable, and even circular, to depend on the validity of a
non-local theory, such as quantum physics, to test non-locality. The use of random
numbers of quantum origin is better justified in device-independent protocols based on
non-locality, as the validity of quantum physics is assumed for many of them.



RESUMEN DEL CAPÍTULO

Bell demostró que las correlaciones predecidas por la mecánica cuántica entre las sali-
das de mediciones locales apropiadamente elegidas sobre partes de un sistema cuántico
entrelazado no pueden ser explicadas por un modelo local de variables escondidas en el
cual las variables escondidas son independientes de la las elecciones locales de medición.
Trabajo teórico reciente ha demostrado que modelos que relajan esta suposición de
independencia de mediciones, permitiendo por una correlación modesta entre las con-
figuraciones de mediciones conjuntas y cualquier influencia causal sobre los resultados
de la medición, pueden reproducir las correlaciones cuánticas[BSHC85, Hal10, BG11,
TSS13, PRB+14]. Por ahora, el enfoque a la cuestión de independencia de mediciones
ha sido de una naturaleza estad́ıstica. Esto es, se han estudiado diferentes medidas de
correlación o dependencia entre las variables escondidas y las variables aleatorias de
entrada y se han provéıdo cotas inferiores cuantitativas necesarias para la observación
de no-localidad en diferentes escenarios de Bell.

En este caṕıtulo cambiamos de un enfoque de proceso a un enfoque de producto
y estudiamos el problema desde una perspectiva de información algoŕıtmica. Es-
pećıficamente, estudiamos qué pasa con la validez de concluir la no-localidad de las
correlaciones observadas en un experimento de Bell a partir de la violación de una
desigualdad de Bell cuando las secuencias de las entradas son computables (e.g. la
salida de generadores privados de números pseudoaleatorios (PRNGs, por sus siglas en
ingles)). Mostramos que en tal contexto, un esṕıa sin acceso al PRNGs puede preparar
cajas locales que parecen no-locales asumiendo que conoce una cota superior en la
complejidad computacional de tiempo de las funciones pseudoaleatorias y tiene acceso
a las entradas y salidas de las rondas anteriores (Theorem 2.2.1). En otras palabras,
mostramos que las secuencias de entradas para un test de Bell siendo computable abre
un loophole, el cual llamamos: el loophole de computabilidad [BdlTS+16].

Es relevante ubicar este resultado en el contexto de los recientes experimentos de
Bell ”loophole-free” [HBD+15, GVW+15, SMSC+15]. En todos estos experimentos, la
elección de qué medición realizar se hizo utilizando el generador cuántico de números
aleatorios de [AAM+15]. Por lo tanto, asumiendo la validez de la f́ısica cuántica, estos
experimentos están libres del loophole de computabilidad. Sin embargo, uno podŕıa
argumentar que es un tanto indeseable, y quizás aún circular, depender de la validez the
una teoŕıa no-local, como es la mecánica cuántica, para testear no-localidad. El uso de
números aleatorios de origen cuántico está mejor justificado en los llamados ”protocolos
independientes-del-dispositivo” basados en no-localidad, dado que en mucho de ellos se
asume la validez de la teoŕıa cuántica.
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3. COMPUTABLE NON-LOCALITY ALLOWS FOR FASTER THAN
LIGHT SIGNALING

It is a consequence of Bell’s theorem [Bel64] that any deterministic hidden-variable
account of the non-local correlations that quantum mechanics predicts and which we
are now almost certain [HBD+15, GVW+15, SMSC+15] that Nature exhibits, must
allow for the existence of some kind of signaling mechanism that links distant mea-
surement choices and outcomes. But, since quantum correlations are non-signaling,
such signaling mechanism must be restricted to the hidden-variables and not reach the
phenomenological level.

Some examples of deterministic accounts of non-local correlations are: the hidden
variable model with communication of Toner and Bacon [TB03b] and, more promi-
nently, Bohmian mechanics [Boh52]. For those models that use classical communica-
tion to mimic non-locality, one can in fact study the amount of communication needed
(see, for example, [RT09, SZ08, DKLR11]). In all these theories, although the outputs
at each round of a Bell test are determined given the inputs and the hidden-variable,
the particular hidden-variable is sampled from some (non-deterministic) distribution.
In this chapter we study the class of deterministic models for non-local correlations
in which the hidden variables are not chosen “randomly” but pseudorandomly. In
principle, the sequence of hidden variables for a given experiment is experimentally in-
accessible; we wonder whether these sequences being computable has any observational
consequences.

Our main result is to show that deterministic hidden-variable models of non-local
correlations need to be uncomputable if we want to prevent those correlations from
being signaling. In other words, we show that if the deterministic model is computable,
the hidden-signaling mechanism used to exhibit non-locality can be extracted at the
observational level and used for the communication of information between the parties
provided a computable upper bound is known for the time computational complexity
of the computable signaling (Theorem 3.2.7). More specifically, we give a protocol to
perform one-way communication between two observers holding computable non-local
boxes in some known time computational complexity class [BdlTS+17].

There are a few previous results in this direction. First, our result has a flavour
similar to [Yur00], where it is argued that the possibility to algorithmically compress
the outputs of measurements over certain bipartite quantum states would allow for sig-
naling. However, we obtain our result in a device-independent scenario, that is, without
assuming quantum mechanics. Second, in [Wol15], computability of the outputs im-
plying signaling is proven for the PR-box and for any non-local boxes violating the
chained Bell inequality or winning any pseudotelepathy game (nonlocal games having
a quantum strategy which wins with probability one). Our result is that this is true for

43
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any non-local correlations. We provide an explicit communication protocol. Finally,
the question of the computability of the sequences of outputs, but without relating it to
the possibility of signaling, has also been studied for contextuality scenarios [ACCS12],
through the localization of value indefinite observables [ACS15].

3.1 The scenario

We consider a standard bipartite Bell scenario, where we have players Alice and Bob
with Alice holding a box having inputs in X and outputs in A and Bob holding a box
having inputs in Y and outputs in B. Our goal is to study deterministic and computable
models that reproduce non-local correlations. This means that:

1. Determinism. The output of Alice’s and Bob’s boxes at each round n are functions
An : X × Y → A, Bn : X × Y → B of the inputs.

2. Computability. The mappings n 7→ An and n 7→ Bn are computable.

3. Non-locality. There exists a Bell functional B such that, when Alice and Bob
choose their inputs uniformly at random, the expected value for B over the statis-
tics collected up to round N violates the local bound as N goes to infinity.

Items 1 and 2 are formalized as follows: there are computable functions A : X ×
Y × N → A, B : X × Y × N → B, representing Alice’s and Bob’s boxes respectively,
such that A(x, y, n) [resp. B(x, y, n)] represents the output of the n-th round of Alice’s
[resp. Bob’s] box when Alice’s input is x ∈ X and Bob’s input is y ∈ Y . See Figure 3.1
for a schematic representation. On the other hand, item 3 is formalized through the
following definition:

Definition 3.1.1 (non-local boxes). A pair of boxes A,B is non-local if there exist a
Bell inequality ∑

a,b,x,y

Ba,b,x,yp(a, b|x, y) ≤ BL

such that, if the inputs in a Bell experiment are chosen uniformly at random, then the
sequences Z ∈ Aω and W ∈ Bω of outputs from A and B respectively are such that

lim
N
E(BN) > BL,

where E(BN) is the expected value of the random variable

BN :=
|X × Y|
N

∑
a,b,x,y

Ba,b,x,y|{i ≤ N | X(i) = x, Y (i) = y, Z(i) = a,W (i) = b}|.

Note that Definition 3.1.1 is general enough to cover the usual non-deterministic
scenario as well.

As we said in the introduction, because we are looking at deterministic boxes gener-
ating non-local correlations, their outputs have to depend on each other’s input. Since
the boxes are computable, this is the only information they need to share, as any other
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A
hidden

signaling B

xn yn

A(xn, yn, n) B(xn, yn, n)

Round n

Fig. 3.1: Schematic representation of the scenario considered. Two distant observers, Alice and Bob,
run a Bell test by implementing measurements on two systems. The observed correlations
are described by a hidden-signaling mechanism plus computable functions determining the
outputs given the inputs at each round n.

necessary data can be computed from the inputs. It is important to note that, although
it seems that our toy model is signaling, and therefore it would not come as a surprise
that Alice can signal to Bob, this is not the case. The model uses signaling for its
internal workings but does not necessarily allow Alice and Bob to send information to
each other. For instance, if one does not impose the computable condition to func-
tions A and B, one can easily simulate quantum mechanics in a way that is completely
equivalent and indistinguishable from standard quantum theory.

It is easy to see that, if the dependence between distant inputs and outputs happens
in only finitely many rounds, the boxes are essentially local. Therefore, we have that:

Lemma 3.1.2. If A and B are a pair of deterministic non-local boxes, then for infinitely
many values of n, there exists x ∈ X and y, y′ ∈ Y such that A(x, y, n) 6= A(x, y′, n) or
there is y ∈ Y and x, x′ ∈ X such that B(x, y, n) 6= B(x′, y, n).

Proof. By way of contradiction, suppose that there exists n0 such that for all n ≥ n0,

∀x ∀y, y′ A(x, y, n) = A(x, y′, n) and

∀x, x′ ∀y B(x, y, n) = B(x′, y, n)

and consider the Bell inequality,

B =
∑
a,b,x,y

Ba,b,x,yp(a, b|x, y) ≤ BL. (3.1)

We will show that when the sequences of inputs X and Y are sampled uniformly
and independently from X ω and Yω respectively and the sequences of outputs are
Z(n) = A(X(n), Y (n), n) and W (n) = A(X(n), Y (n), n), then limN E(BN) ≤ BL, thus
contradicting the assumption that A and B are non-local boxes.

Define A′(x, n) := A(x, x0, n) and B′(y, n) = B(0, y0, n) for some fixed (x0, y0) ∈
X × Y . Then, for all n ≥ n0 and for all x and y, A′(x, n) = A(x, y, n) and B′(y, n) =
B(x, y, n).

Let

Bn
N =

∑
a,b,x,y

δX(n)=xδY (n)=yδZ(n)=aδW (n)=b.
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We have that,

E(Bn
N) = E

(∑
a,b,x,y

δX(n)=xδY (n)=yδZ(n)=aδW (n)=b

)
=
∑
a,b,x,y

E
(
δX(n)=xδY (n)=yδZ(n)=aδW (n)=b

)
=
∑
a,b,x,y

pn(x, y)pn(a, b|x, y)

where pn(x, y) is the probability that the inputs in the n-th round are (x, y) and
pn(a, b|x, y) is the probability that in the n-th round the outputs of the boxes are
(a, b) ∈ A × B when the inputs are (x, y) ∈ X × Y . Since, by assumption, the inputs
are uniformly distributed, pn(x, y) = 1/|X × Y| for all (x, y) ∈ X × Y .

Now, for all n ≥ n0, the fact that A and B are deterministic boxes gives us,

pn(a, b|x, y) = δA′(x,n)=aδB′(y,n)=b,

a local deterministic distribution. Hence, for all n ≥ n0, by equation (3.1) we have that

E(Bn
N) =

1

|X × Y|
∑
a,b,x,y

Ba,b,x,yδA′(x,n)=aδB′(y,n)=b ≤
BL

|X × Y| .

Finally,

lim
N
E(BN) = lim

N

|X × Y|
N

N∑
n=1

Bn
N

= lim
N

|X × Y|
N

(
n0∑
n=1

Bn
N

)
+
|X × Y|
N

(
N∑

n=n0

Bn
N

)
≤ BL

This concludes the proof.

3.1.1 Relationship to standard hidden-variable models

Jarret [Jar84] showed that the factorizability condition (1.3) for local hidden-variable
models (Definition 1.5.6) can be seen as the conjunction of two conditions: a condition
called “Locality” by Jarrett and “Parameter Independence” (PI) by Shimony [Shi86], on
the one hand, and a condition of “Completeness” (Jarrett) or “Outcome Independence”
(OI) (Shimony), on the other.

Theorem 3.1.3 ([Jar84]). A hidden-variable model 〈Λ, pλ, p〉 is local iff

pλ(a|x, y) = pλ(a|x) and pλ(b|x, y) = pλ(b|y, ) (PI)

pλ(a|b, x, y) = pλ(a|x, y) and pλ(b|a, x, y) = pλ(b|x, y) (OI)



3.1. The scenario 47

Corollary 3.1.4. Every deterministic hidden-variable model for a non-local distribu-
tion p violates (PI).

Proof. Every deterministic hidden-variable model 〈Λ, q, A,B〉 satisfies (OI). Indeed,

p(a|x, y, λ) = δa=A(x,y,λ) =⇒ p(a|b, x, y, λ) = p(a|x, y, λ) and (3.2)

p(b|x, y, λ) = δb=B(x,y,λ) =⇒ p(b|a, x, y, λ) = p(b|x, y, λ) (3.3)

Hence, if
∑

λ p(λ)pλ(a, b|x, y) is non-local, it follows from Theorem 3.1.3 that it violates
(PI).

Corollary 3.1.4 can be interpreted as the distribution pλ not satisfying the non-
signaling constraints (Definition 1.5.10). Thus, we say that the model is signaling. As
we stated before in the introduction, this does not imply the possibility of effectively
signaling, as there are deterministic hidden-variable theories reproducing the quantum
mechanical correlations [Boh52, TB03b]. In other words, the existence of signaling at
the hidden-variable level does not imply the possibility of signaling at the observational
level. The impossibility of effectively signal in this theories is a consequence of the model
predictions being obtained from averaging over the hidden-variables. Furthermore, it
was shown in [Val02] that every deterministic hidden-variable theory reproducing the
quantum mechanical predictions for some distribution of the hidden-variables (labelled
the “quantum equilibrium” distribution) predicts signaling correlations for other dis-
tributions (the “non-equilibrium” distributions).

Of course, the violation of (PI) in a non-local deterministic hidden-variable model
should involve (at least) one hidden-variable occurring with non-vanishing probability.

Observation 3.1.5. If M = 〈Λ, q, A,B〉 is a deterministic hidden-variable model for
a non-local distribution p, then there exists λ ∈ Λ with q(λ) > 0 such that

∃x ∃y, y′ A(x, y, λ) 6= A(x, y′, λ) or

∃x, x′ ∃y B(x, y, λ) 6= B(x′, y, λ).

Proof. By way of contradiction, suppose that for all λ ∈ Λ such that q(λ) > 0 we have
that

∀x ∀y, y′ A(x, y, λ) = A(x, y′, λ) and

∀x, x′ ∀y B(x, y, λ) = B(x′, y, λ).

Then, the restriction ofM to Λ \ {λ ∈ Λ | q(λ) = 0} is a deterministic hidden-variable
model for the non-local p satisfying (PI). A contradiction.

Now, let us consider deterministic hidden-variable models in which the hidden-
variable determining the outcomes at the n-th round of Bell experiment is, instead of
sampled from some distribution q, a computable function of n.

Definition 3.1.6 (computable hidden-variable model). A computable hidden-variable
model 〈Λ, Ã, B̃, f〉 is a deterministic hidden-variable model 〈Λ, q, A,B〉 such that

q(λ) = lim
n

|{i ≤ n | f(i) = λ}|
n

(3.4)

and f : N→ Λ (the pseudorandomness) is a computable function.
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Proposition 3.1.7 below shows the relationship between this notion of computable
hidden-variable models and the scenario we consider in this chapter.

Proposition 3.1.7. If a non-local distribution p has a computable hidden-variable
model, then there exists computable non-local boxes A : X × Y × N → A and B :
X × Y × N→ B such that

p(a, b|x, y) = lim
n

|{i ≤ n | A(x, y, i) = a ∧B(x, y, i) = b}|
n

and

∃∞n ∃ x ∃ y, y′ A(x, y, n) 6= A(x, y′, n) or (3.5)

∃∞n ∃ x, x′ ∃ y B(x, y, n) 6= B(x′, y, n) (3.6)

Proof. Let 〈Λ, Ã, B̃, f〉 be a computable hidden-variable model for a distribution p. De-
fineA : X×Y×N→ A andB : X×Y×N→ B asA(x, y, n) ≡ Ã(x, y, f(n)) and B(x, y, n) ≡
B̃(x, y, f(n)). Then,

p(a, b|x, y) =
∑
λ

(
lim
n

|{i ≤ n | f(i) = λ}|
n

)
δA(x,y,λ)=aδB(x,y,λ)=b

= lim
n

∑
λ

∑
i:f(i)=λ,i≤n δÃ(x,y,λ)=aδB̃(x,y,λ)=b

n

= lim
n

∑
i≤n δÃ(x,y,f(i))=aδB̃(x,y,f(i))=b

n

= lim
n

|{i ≤ n | Ã(x, y, f(i)) = a ∧ B̃(x, y, f(i)) = b}|
n

= lim
n

|{i ≤ n | A(x, y, i) = a ∧B(x, y, i) = b}|
n

Now, for all λ ∈ Λ we have

p(λ) > 0 iff lim
n

|{i ≤ n | f(i) = λ}|
n

> 0

and this implies

∃∞n f(n) = λ.

Finally, combining this with by Observation 3.1.5 we have

∃∞n ∃ x ∃ y, y′ Ã(x, y, f(n)) 6= Ã(x, y′, f(n)) or

∃∞n ∃ x, x′ ∃ y B̃(x, y, f(n)) 6= B̃(x′, y, f(n))

and this concludes the proof.
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3.2 Using computable non-local boxes to signal

In the following, and for the sake of simplicity, we restrict to a 2-inputs-2-outputs Bell
scenario, where A = B = X = Y = {0, 1} (see Example 4). The extension to other
scenarios is straightforward.

Let A and B be a pair of computable deterministic non-local boxes and, by Lemma
3.1.2, suppose, without loss of generality, that

∃∞n ∃y ∈ {0, 1} B(0, y, n) 6= B(1, y, n), (3.7)

This implies that, for infinitely many values of n, the value of x can be determined
from the output of B with the suitable choice of y. Straightforwardly, if Alice knew
how to compute B, they could trivially signal from Alice to Bob.

Proposition 3.2.1. For every pair of computable non-local boxes A and B with B
satisfying equation (3.7), there is a protocol for Alice holding box A to send a message
to Bob holding box B.

Proof. Let s ∈ {0, 1}∗ be Alice’s message, eom ∈ {0, 1}∗ an special end-of-message
string and u = saeom. Let [n1, . . . , n|u|] be the first |u| values of n such thatB(0, yn, n) 6=
B(1, yn, n) for some yn. Then, on round ni, Alice inputs u[ni]. Bob, on every round n
such that B(0, n, yn) 6= B(1, n, yn) for some yn, will input such yn and record v[n] = 0
if the output of his box was B(0, n, yn) and v[n] = 1 otherwise. When the last |eom|
bits of v equal eom, he stops. Alice’s message will be in the first s bits of v.

In the spirit of the device-independent formalism for Bell non-locality, the situation
we want to study is when the players do not know the inner-workings of the boxes, i.e.
they do not know how to compute A and B. In the following sections, using the tools
of the theories of learnability of computable functions and computable randomness
(Sections 1.7.1 and 1.8), we will show that:

Theorem (informal version). There exists a protocol such that, if Alice and Bob are
holding computable non-local boxes,then they can perform one-way communication of
any fixed size message provided they know a computable bound on the time computa-
tional complexity of the boxes.

The key idea of the protocol will be for Bob to perform a learnability in the limit
scheme on the outputs of his box. Once function B is learnt, he could use the rounds n
such that equation (3.7) holds to reconstruct Alice’s input. There are three issues that
we will need to deal with in this approach:

1. Learning from incomplete samples. In the traditional learning scenario, the learner,
although only requiring a finite number of points (x, f(x)) to learn a target func-
tion f , he can, potentially, access the whole graph of f . In our non-locality
scenario, however, the values B(xn, yn, n) (i.e. the outputs of Bob’s box) will, for
every n, be known for just one pair (xn, yn) ∈ {0, 1}2.

2. Learning from distributed inputs. Furthermore, Bob will not know the correspond-
ing xn (they are Alice’s inputs).
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3. Signaling in the limit. Assuming we solve the preceding issues and we device
a learning in the limit strategy, since Bob will, in general, will not be able to
effectively tell when he has learnt, we will need to modify the strategy used in
the proof of Proposition 3.2.1 to reconstruct Alice’s message from the output of
Bob’s box.

To cope with issues 1 and 3, Alice and Bob will alternate between learning rounds
and signaling rounds. The former are rounds in which they know both parties inputs
(they are pre-established) and are used by Bob to learn function B. The later are
rounds that are used to send a message from Alice to Bob assuming B is already
known. Choosing the pre-established inputs in a sufficiently random manner will allow
them to cope with the third issue.

3.2.1 The signaling protocol

As a first step of the protocol, Alice and Bob fix a computable function T : N → N
and assume B is computable in O(T (n))-time; the protocol will fail if this assumption
is false. To perform the aforementioned alternation between learning and signaling
rounds, they will share a sequence S whose symbols are either a pair of bits, or an
integer between 1 and m, where m is the length of the message that Alice wants to
communicate. As anticipated before, Bob will be using a enumeration-learner LT :
N → N for the class of functions computable in O(T (n))-time (see Definition 1.7.6).
On the learning rounds, Alice and Bob will input their boxes with a prearranged input
pair and Bob will use the output of his box to, through LT , update his guess for a
program that computes B. On the signaling rounds, Alice will input her message and
Bob, acting according to his current guess for a program for B, will choose, whenever
possible, the input y that allows him to tell Alice’s input x.

The protocol has thus four parameters: a computable time function T , a sequence

S ∈ {(0, 0), (0, 1), (1, 0), (1, 1), 1, . . . ,m}ω

(which is the one shared by Alice and Bob to perform the switching between the two
kinds of rounds), a number m which represents the size of the message that Alice wants
to send to Bob and the number N of iterations of the protocol which will be fixed in
advance.

All in all, here is the signaling protocol P(T, S,m,N):

1. Bob initializes v[1 . . .m] to 0m and B̃ to a TM that computes f(x, y, n) := 0.

2. For each round n ≤ N :

(a) Learning round: if S(n) = (x, y), Alice inputs x and Bob inputs y. Fur-

thermore, Bob sets his current guess B̃ of a Turing machine that computes B
to LT ([〈xi1 , yi1 , i1, B(xi1 , yi1 , i1)〉, . . . , 〈x, y, n,B(x, y, n)〉]), with ik being the
past learning rounds.
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(b) Signaling round: if S(n) = i ∈ {1, . . . ,m}, Alice inputs the ith bit of her

message and Bob uses his current guess B̃ of a program that computes B

to see if there is a y such that B̃(0, y, n) 6= B̃(1, y, n). If there is such y, he
inputs it and records the output of his box in v[i]. If not, he inputs 0 and
disregard his box’s output.

3. The output of the protocol is the string v held by Bob.

In the next section we prove that, for a suitable choice of S and for sufficiently
large N , performing this protocol with non-local boxes satisfying equation (3.7), allows
Alice’s message to be communicated to Bob.

3.2.2 Soundness

In the following, we let T : N → N be some computable function and A,B : {0, 1} ×
{0, 1} × N be computable boxes, with B computable in O(T (n))-time and satisfying
equation (3.7).

Let us start with a simple observation which, informally, states that the learning
process always converges.

Observation 3.2.2. There exists an N0 such that for all n,m ≥ N0, if B̃n and B̃m are

the learner’s hypothesis at rounds n and m respectively, then B̃n = B̃m. That is, the
learning converges.

Proof. This follows from the fact that LT is an enumeration-learner for the class of
function computable in O(T (n))-time. Let T be the first Turing Machine computing
B in the enumeration used by LT . If LT reaches T in some learning round n, then it
will output T on every learning round m ≥ n. If it doesn’t reach T, it is only because
it has stabilized in another T′ appearing before T in the enumeration. Either way, it
converges.

The following lemma establishes sufficient conditions for the signaling protocol to
be successful.

Lemma 3.2.3. For every message u by Alice, if S is such that properties (P1) and
(P2) below hold, then u = P(T, S, |u|, N) for sufficiently large N .

(P1) There exists N0 such that for all n ≥ N0, Bob’s candidate program B̃ at stage n

is correct, that is B̃(x, y, n) = B(x, y, n) for all x, y ∈ {0, 1}. In other words, B
is learnt in the limit with finite anomalies (Definition 1.7.8).

(P2) For the k-th bit of Alice’s message and for infinitely many n, S(n) = k ∈ N and
B(0, y, n) 6= B(1, y, n) for some y ∈ {0, 1}, i.e. the signaling mechanism happens
for infinitely many rounds.

Proof. When (P1) holds, there exists N0 such that choosing Bob’s input according to

B̃ in the signaling rounds is reliable. If (P2) also holds, then this reliable use of B̃ will
let Bob reconstruct every bit of Alice’s message infinitely often.
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Now, whether (P1) and (P2) hold or not will depend on the choice of shared switching
sequence S. In the next section we consider the case of S being sampled uniformly at
random and in the section following we prove our main result with S being a computable
computably random sequence.

Soundness when alternating randomly

First, let us see that the protocol works when the switching between learning and
signaling rounds is done randomly.

Proposition 3.2.4. If S(i) ∈ {0, 1}2 ∪ {1, . . . ,m} are independent and uniformly dis-
tributed random variables, then properties (P1) and (P2) hold.

Proof. To see that (P1) holds we proceed by contraposition. Suppose that the learning
procedure stabilizes in one of the finitely many TMs M appearing before one computing
B in the enumeration, and whose outputs differ from those of B in infinitely many
inputs (x, y,m). This would imply that for almost all rounds n in which S dictates
learning, that n is not one of the infinitely many m for which M(x, y,m) 6= B(x, y,m)
for some (x, y). It is easy to see that the probability of this happening when choosing
the learning rounds n at random is 0.

To see that (P2) holds it suffices to observe that amongst the infinitely many n
where (3.7) is true, the probability that S picks finitely many of them to signal the
k-th bit of the message is zero.

However, letting the S(i) be independent and uniformly distributed random vari-
ables would make our argument too weak, as it would mean that Alice and Bob have
access to randomness, a non-computable resource, to test models of nature that are
assumed to use only computable functions. So, the question is:

(Q1) Can we find a computable S such that (P1) and (P2) hold?

Soundness when alternating pseudorandomly

It is easy to see that choosing a too simple sequence for S will not work. For example,
if S is chosen such that, it indicates learning in the odd rounds and signaling in the
even, the learning could converge to a program that coincides with B in almost all odd
positions but, for the even positions, it outputs, say, the negation of B (this program,
of course, also runs in O(T (n))-time). The following Lemmas 3.2.5 and 3.2.6 show that
letting S be a T (n)-random (Definition 1.8.5) sequence does the trick.

Lemma 3.2.5. If S is T (n)-random with T = Ω(n2), then P(T, S,m,N) verifies (P1)
for sufficiently large N .

Proof. By Observation 3.2.2, let N0 be such that for all n ≥ N0, let learner hypothesis

for the target function B is some program B̃. This means that for all n ≥ N0 and all

x, y ∈ {0, 1}, if S(n) = (x, y) then B̃(x, y, n) = B(x, y, n), i.e. at least in the learning
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rounds, B̃ coincides with B (making the learner not change its hypothesis). Assume
by contradiction that for infinitely many n

∃x, y ∈ {0, 1}.B̃(x, y, n) 6= B(x, y, n). (3.8)

Now, letting g : N → {0, 1} be defined as g(n) = 1 iff equation (3.8) is true, Γ as
{1, . . . ,m}2 and noting that from the assumption of B computable in O(T (n))-time it
follows that g is computable in O(T (n))-time, we have by Proposition 1.8.8 that S is
not T (n)-random. A contradiction.

Lemma 3.2.6. If S is T (n)-random with T = Ω(n2), then P(T, S,m,N) verifies (P1)
for sufficiently large N .

Proof. By equation (3.7) we have that for infinitely many n

∃y ∈ {0, 1}.B(0, y, n) 6= B(1, y, n).

Let g : N → {0, 1} be defined as g(n) = 1 iff equation (3.7) is true, and assume by
way of contradiction that there exists k ∈ {1, . . . ,m} such that for almost all n we
have that if S(n) = k then g(n) = 0. Then, letting Γ = {0, 1}2 ∪ {1, . . . ,m} \ {k} and
noting that from the assumption of B computable in O(T (n))-time it follows that g is
computable in O(T (n))-time, we have by Proposition 1.8.8 that S is not T (n)-random.
A contradiction.

Finally, combining Lemmas 3.2.5, 3.2.6 and 3.2.3 together with the fact that from
a program for a computable T : N → N one can compute a T (n)-random sequence
(Theorem 1.8.7), we can formalize the main result of this chapter with a positive answer
to question (Q1) above.

Theorem 3.2.7. Let T : N → N be such that T = Ω(n2). Then, Alice and Bob
can individually compute a T (n)-random sequence S such that for every message u ∈
{0, 1}∗ by Alice, if they perform protocol P(T, S, |u|, N) using computable non-local
boxes A,B : {0, 1}× {0, 1}×N with B computable in O(T (n))-time and satisfying 3.7,
then u = P(T, S, |u|, N) for sufficiently large N .

It is important to note that, without any knowledge of B, there is no a priori bound
on the number of iterations N Alice and Bob will have to perform in order for her
message to be communicated. Nonetheless, since this number is finite, there exists
some finite distance for which the signaling allowed by our protocol is superluminal.
For instance, if it takes M rounds for Bob to find out Alice’s message and each round
takes a time T , then if they are at a distance cTM , the message is obtained before a
light signal from Alice could reach Bob. It could be argued that imposing a bound on
the time complexity of Alice and Bob’s boxes (which are nothing but an abstraction of
what Nature is doing to choose the outputs) is a strong requirement. However, as we
already mentioned in Chapter 2, since the number of computational steps per second
that can be performed by a system of mass m is upper bounded by 2mc2/π~ [Llo00],
this is not only a requirement of our protocol but a reasonable physical assumption.



3.3 Discussion

Our protocol shows that correlated systems that would have violated a Bell inequality
if were used for a standard Bell test (i.e., with random inputs), can be used to signal
if assumed to be computable and a computable time bound for their computational
complexity is known in advance. The main consequence of this is that we are left
with the following consequences: either Bell-violating systems cannot be computable,
or if Alice and Bob guess properly a complexity class larger than the one used by the
computable systems, they can signal in either way using the previous protocol.

The only assumptions to arrive at this result were the computable nature of the
boxes and the requirement of violating a Bell inequality if used for such matter.

It is worth mentioning that our model, in order to produce Bell inequality violating
boxes, needs to use an internal signaling as a resource (Alice’s box needs to know about
Bob’s input and viceversa). As we mentioned, this does not imply that Alice and Bob
can send information to each other since this signaling doesn’t necessarily reach the
observational level. Also, if we are to analyse the computable nature of the outputs
from simple quantum experiments (e.g. measuring some observable to a single qubit),
and we are to extend such analysis to non-local boxes, there is no way out of this
assumption.

This work shows that in device independent scenarios, computability of outputs im-
poses a strong limitation on how nature can behave if it only had computable resources
to generate outputs for the experiments. Our result imply that, under the well estab-
lished assumption that no observable signaling exists, we need to accept the existence
of physical processes with uncomputable outputs.

It is worth mentioning that our result doesn’t go into conflict with the different
interpretations of quantum mechanics. All of them predict random outputs, which
are not allowed by our model. In the Copenhagen interpretation, the measurement
process is postulated as random, whereas, for example, in Bohmian mechanics, it is
deterministic but the initial conditions are randomly distributed and fundamentally
unknowable.



RESUMEN DEL CAPÍTULO

Es una consecuencia del teorema de Bell [Bel64] que cualquier explicación mediante una
teoŕıa de variables ocultas determińıstica de las correlaciones no-locales que la teoŕıa
cuántica predice y que hoy estamos prácticamente seguros que la Naturaleza exhibe
[HBD+15, GVW+15, SMSC+15], tiene que permitir la existencia the algún tipo de
mecanismo de señalización que vincule elecciones y resultados de mediciones distantes.
Pero, como las correlaciones cuánticas son no-señalizantes, tal mecanismo debe estar
restringido al nivel de variables ocultas y no llegar al nivel fenomenológico.

Algunos ejemplos de explicaciones determińısticas de las correlaciones no-locales
son: el modelo de variables ocultas con comunicación de Toner y Bacon [TB03b], y,
de una manera más prominente, la mecánica de Bohm [Boh52]. Para aquellos modelos
que usan comunicación clásica para simular no-localidad, uno de hecho puede estudiar
la cantidad de comunicación necesaria (ver, por ejemplo, [RT09, SZ08, DKLR11]). En
todas estas teoŕıas, a pesar de que las salidas en cada ronda de un experimento de Bell
están determinadas dadas las entradas y las variables ocultas, la variable oculta se elige
al azar siguiendo alguna distribución de probablidad no deterministica.

En este caṕıtulo estudiamos la clase de modelos determińısticos de las correlaciones
no-locales en los cuales la elección de variable oculta es, en lugar de aleatoria, pseu-
doaleatoria. En principio, la secuencia de variables ocultas para un dado experimento
es experimentalmente inaccesible; nos preguntamos si el hecho de ser computable tiene
alguna consecuencia observacional.

Nuestro resultado principal es mostrar que todo modelo de variables ocultas de-
termińıstico de las correlaciones no-locales tiene que ser no-computable si queremos
prevenir que tales correlaciones pueden ser usadas para señalizar. En otras palabras,
mostramos que si el modelo determińıstico es computable, el mecanismo de señalización
escondido usado para exhibir no-localidad se puede extraer al nivel observacional y us-
ado para comunicar información entre partes distantes siempre y cuando se conozca
una cota superior a su complejidad temporal (Theorem 3.2.7). Más espećıficamente,
damos un protocolo para realizar comunicación unidireccional entre dos observadores
portando cajas no-locales en una clase de complejidad computacional conocida [BdlTS+17].

Nuestro resultado implica que, en escenarios independientes-del-dispositivo, la com-
putabilidad de las salidas impone una fuerte limitación a cómo puede comportarse
la Naturaleza si sólo tiene recursos computables para generar la salida de los ex-
perimentos. Más precisamente, bajo la bien establecida hipótesis de que no existe
señalización observable, uno tiene que aceptar la existencia de procesos f́ısicos con sal-
idas no-computables.

Es importante mencionar que nuestro resultado no entra en conflicto con las difer-
entes interpretaciones de la mecánica cuántica; todas ellas predicen salidas aleatorias,

55



algo no permitido por nuestro modelo. En la interpretación de Copenhague, el pro-
ceso de medición se postula aleatorio; mientras que, por ejemplo, en la mecánica de
Bohm, es determińıstico, pero las condiciones iniciales están distribuidas al azar y son
fundamentalmente inconocibles.



4. PSEUDORANDOM MIXTURES OF QUANTUM STATES

With the advance of the experimental realization of quantum protocols, the most widely
used kind of setups consist of classical systems controlling quantum ones [PWT+07,
TMF+13, BCS+04, TDH+05]. Being classical, the control systems are limited in what
they can achieve and this reflects on what can be achieved by the setups they control.
In this chapter we consider this problem in the context of mixed state preparations.
We will study different scenarios in which if pseudorandomness is used instead of ran-
domness (as done in e.g. [AB09a, LKPR10]), situations which were initially indistin-
guishable become so. First, we show that a player (Bob) can distinguish, in finite time
and with arbitrarily high probability, whether the qubits that another player (Alice) is
preparing for him have been pseudorandomly chosen from the σz basis or from the σx
basis; something impossible if she were picking them at random (Theorem 4.1.7). No-
tice that this, hence, implies that it is incorrect to characterize Bob’s lack of knowledge
about the preparation basis with the maximally mixed state [BdlTS+16]. We provide
the results of an experimental proof-of-concept of a special case of this result done by
the group of Dr. Miguel Larotonda [LGSdlT+]. Next, we generalize this result to any
fixed initial preparation basis. Finally, we further extend the result to the situation
in which, instead of having a fixed preparation basis, Alice is allowed to prepare any
qubit state (with rational coefficients) (Theorem 4.2.4) [LGSdlT+].

4.1 The basic scenario

The first scenario we will consider is described by the following game.

Definition 4.1.1 (basis-distinguishing game). Let 1/2 > δ > 0 and C ⊆ {0, 1}ω a
class of computable sequences. The basis-distinguishing game is as follows. At the
beginning, Alice picks a sequence Y ∈ C and then flips a fair coin to choose between
σz and σx. Then, she uses the sequence Y to, upon Bob’s n-th request, prepare to him
the qubit state |0〉 (resp. |+〉) if Y (n) = 0 or the state |1〉 (resp. |−〉) if Y (n) = 1,
when the initially chosen operator was σz (resp. σx). Bob’s task is, by making quantum
measurements on (finitely many of) Alice’s qubits, to guess the preparation basis (i.e.
either the eigenbasis of σx or the eigenbasis of σz) with a probability of error Perr ≤ δ.

In this chapter we will identify the values 1 and −1, obtainable when measuring the
Pauli observables (Definition 1.4.6), to 0 and 1 respectively.

We will also consider a more experimentally inclined variation of this game in which
the measurements made by Bob are noisy.

Definition 4.1.2 (noisy basis-distinguishing game). Let r ∈ [0, 1]. The r-noisy basis-
distinguishing game is a basis-distinguishing game in which there is a probability r that
when Bob measures in the preparation basis, the results are flipped.
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We will study next how the game’s difficulty depends on different choices of C. But,
before going into that, recall Observation 1.4.4 made in the Preliminaries:

Observation 1.4.4. Two different ensembles can give rise to the same density matrix.
For example, both the ensembles {(1/2, |0〉), (1/2, |1〉)} and {(1/2, |+〉), (1/2, |−〉)} give

rise to the maximally mixed state 1
2

(
1 0
0 1

)
.

That is, if instead of using a computable sequence, Alice chooses the eigenstates by
flipping a fair coin, no strategy allows Bob to distinguish the preparation basis.

Let us now consider the case in which C is a singleton, that is C = {Y } for some com-
putable sequence Y . Of course, if Bob has access to (some) Turing machine computing
Y , the game is trivial.

Proposition 4.1.3. For every δ and every computable Y ∈ {0, 1}ω, there is a strategy
for Bob to win the finite basis-distinguishing game with probability of error Perr ≤ δ
when C = {Y }.

Proof. Given an error δ, Bob requests from Alice k qubits, with k = minn[2−n ≤ δ],
which he then measure in the σz basis, generating a string z of length k with the
measurement results. If the preparation basis is σz, then z = Y � n, and if the
preparation basis is σx, then z is a k-bits string sampled uniformly at random. Then,
if z and Y � k coincide, he claims that the preparation basis is σz, otherwise he claims
that it is σx. He makes an error when the preparation basis is σx and the string of
measurement results coincide with Y � k. Therefore, perr = 2−k ≤ δ.

Notice that the same kind of strategy applies if C is any finite class of computable
sequences.

Corollary 4.1.4. For every δ and every finite C, there is a strategy for Bob to win the
finite basis-distinguishing game with Perr ≤ δ.

Proof. The strategy is essentially the same as the one given in the proof of Proposition
4.1.3, letting k = minn[|C|2−n ≤ δ] and having Bob claim that the basis is σz if z matches
the first k bits of any of the sequences in C and claim that it is σx otherwise.

Next, let us consider the more interesting problem of trying to come up with a
strategy that works when C is the class of all computable sequences. The above strategy
will, of course, not work because Bob would have to compare prefix z with the first k bits
of the infinitely many computable sequences (let alone that the class of all computable
sequences is not computably enumerable). The first result of this section is:

Theorem 4.1.5. For every δ, there is a strategy for Bob to win the finite basis-
distinguishing game with probability of error Perr ≤ δ when C is the class of all com-
putable sequences.

As the strategies outlined above, the one we will describe next to prove Theorem
4.1.7 can be divided in two parts: a (quantum) measurement part and a (classical)
processing-of-the-measurement-outcomes part. The measurement part is as follows.
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Measurement part

Bob measures σz to every qubit that Alice prepares on an even request number and σx
to every qubit she preapares on an odd request number, yielding two binary sequences
of measurement results Z and X respectively, as can be seen in Figure 4.1.

Fig. 4.1: Alice uses a computer to choose between |0〉 and |1〉 (or |+〉 and |−〉), keeping the basis
fixed all through the experiment. To distinguish both possible preparations, Bob measures
alternatively σx and σz and feeds the resulting sequences to a computer executing Algorithm
1.

The sequence corresponding to the choice of measurement that matches the prepa-
ration basis is computable (because it is either the odd or the even positions of the
computable sequence Y Alice is using), and the other one, according to quantum me-
chanics, corresponds to a fair coin tossing, and so it is ML-random with probability 1.
Therefore, we need an algorithm that given two sequences, one being computable and
one arising from a fair coin tossing, is able to tell us which is which in finite time and
with an arbitrarily high probability of success. For this, we will retort to the power
of a universal ML-test (see Proposition 1.9.4). Before that, however, for ease of pre-
sentation, we will provide an explicit algorithm which, although not as general as the
strategy using a universal ML-test, will be sufficient to win the game with arbitrarily
high success probability while, at the same time, simplifying the explanation of the ex-
periment in the next section. In the effective procedures we describe next the sequences
X and Z must be understood as oracles [Soa99, §III].

Classical processing of the measurement outcomes: an explicit algorithm

To distinguish which of the two sequences X and Z is computable we dovetail between
program number and maximum time steps that we simulate that program on the uni-
versal Turing machine V (that is, we simulate program 1 for 1 timestep, then programs
1 and 2 for 2 timesteps and so on), as is a common technique in computability theory.
For each program p of length |p| we will compare the first k|p| output bits with the
corresponding prefixes of both sequences, where k ∈ N will depend, as before, on the
probability of success we are looking for. Whenever we find a match for the first k|p|
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bits, we halt. The pseudocode for this effective procedure is in Algorithm 1.

Algorithm 1 The distinguishing protocol

Input: k ∈ N and X,Z ∈ {0, 1}ω, one of them being computable
Output: ‘X’ or ‘Z’ as the candidate for being computable; wrong answer with probability

bounded by O(2−k)
for t = 0, 1, 2 . . . do

for p = 0, . . . , t do
if Vt(p) = X � k|p| then

output ‘X’ and halt

if Vt(p) = Z � k|p| then
output ‘Z’ and halt

Provided that at least one of X or Z is computable, the above procedure always halt
—and so it only queries finitely many bits of both X and Z. Indeed, recalling that by
Kleene’s recursion theorem [Kle38] one can assume that TMs “know” their own index,
we have that

Fact 4.1.6. For every k ∈ N and every computable sequence S there is a Turing
machine Te such that Te(ε) = S � k(e+ 1).

and therefore, in case S ∈ {X,Z} is computable, for all k ∈ N there exists p such
that Vt(p) = S � k · |p| for some t ∈ N.

Now, we bound the probability of having a miss-recognition, that is, the probability
Perr that the above procedure outputs ‘Z’ when X was computable, or viceversa. To
do so, we bound the probability that S ∈ {0, 1}ω has the property that for the given
value of k there is p such that

(∃t) Vt(p) = S � k|p|. (4.1)

Since there are 2` programs of length `, the probability that there is a program p of
length ` such that (4.1) holds is at most 2`/2k`. Adding up over all possible lengths `
we obtain

Perr ≤
∑
`>0

2`

2k`
=

2−(k−1)

1− 2−(k−1)
= O

(
2−k
)
, (4.2)

which goes to zero with k going to infinity. Hence, by setting k = minn[ 2−(n−1)

1−2−(n−1) ≤ ε],
we have the desired bound on the probability of error Perr.

Noise robustness. Regarding the noisy version of the game (Definition 4.1.2), we will
modify the algorithm so that it tolerates a fraction q ∈ Q of bit flips in the prefixes.
The modified pseudocode is Algorithm 2, where dH is the Hamming distance between
two strings, which counts the number of different bits in both strings. The first thing
to notice is that when q = 0 Algorithms 1 and 2 coincide.

We need to show now that, again, the success probability can be made as close to one
as desired by choosing the parameter k. Instead of bounding the number of sequences
that can be generated with a program of length `, we need to bound the number of
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Algorithm 2 The noise tolerant distinguishing protocol

Input: q ∈ Q, k ∈ N and X,Z ∈ {0, 1}ω, one of them being computable
Output: ‘X’ or ‘Z’ as the candidate for being computable; wrong answer with probability

bounded by O(2−k)
for t = 0, 1, 2 . . . do

for p = 0, . . . , t do
if dH(Vt(p), X � k|p|) < qk|p| then

output ‘X’ and halt

if dH(Vt(p), Z � k|p|) < qk|p| then
output ‘Z’ and halt

sequences that have a Hamming distance smaller than qk` from a computable one. One
possible bound is 2`

(
`k
bq`kc

)
2bq`kc, where the first exponential term counts the number of

different programs of length `, the combinatorial number corresponds to the number
of bits that can be flipped due to errors, and the last exponential term gives which of
these bits are actually being flipped. This estimation may not be tight, as we may be
counting the same sequence several times. However, using this estimation we derive a
good enough upper bound of the final error probability, as we get

Perr <
∑
`>0

2`2bq`kc
(

`k
bq`kc

)
2`k

. (4.3)

If we consider that q < 1/2, we can remove the integer part function and use the
generalization of combinatorial numbers for real values. Then, by using that

(
a
b

)
≤(

ea
b

)b
, we obtain

Perr <
∑
`>0

[
2(1+qk−k)

(
e

q

)qk]`
. (4.4)

This geometric sum can be easily computed yielding

Perr <
21+qk−k

(
e
q

)qk
1− 21+qk−k

(
e
q

)qk . (4.5)

Now, it can be shown numerically that for q . 0.21 the probability of mis-recognition
tends to zero exponentially with k.

Finally, we show that (with probability 1) Algorithm 2 halts for all inputs satisfying
the assumptions. Let r < q be the probability of a bit flip. With probability 1, we have
that for every δ there exist an m0 such that for every m > m0 the portion of bit flips
in both X � m and Z � m are less than (r + δ)m. This means that if we go to long
enough prefixes (or programs), the portion of bit flips will be less than q. And since
any computable sequence is computable by arbitrarily large programs, this ensures that
our algorithm will, at some point, come to an end.
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In the next section we give an alternative effective procedure for the classical pro-
cessing stage of the distinguishing protocol using ML-tests which is shorter and more
general, albeit possibly more technically involved. In Section 4.3 we provide a proof-
of-concept implementation of a (simplified version) of Algorithm 2.

Classical processing of the measurement outcomes: using a universal ML-test

Let (Um)m∈N be a universal ML-test (Proposition 1.9.4) and let k = minm[2−m ≤ ε].
Bob starts enumerating all the strings in Uk = {σ1, σ2, . . . } until he finds some n such
that for Y = X or Y = Z we have

[Y � n] ⊆
⋃
i≤n

[σi].

Since either X or Z is computable, the last condition has to be satisfied for sufficiently
large n. If the above condition was first satisfied by Y = X, he claims that X is the
computable sequence and that Y is the random one; if the above condition was first
satisfied by Y = Z he claims he claims that Z is the computable sequence and that X
is the random one. This decision is wrong when the random sequence was captured by
[Uk] before the computable one was (of course, for some k′ > k the random sequence
would be out of [Uk′ ]). Hence, the probability of making this error is at most the
probability for the coin tossing sequence to be inside [Uk], and this is, by definition, at
most 2−k.

Observe that in the above protocol there is nothing special with one of the sequences
being computable. All that matters is that one of the sequences is not ML-random (of
which the computable sequences are, of course, a subset).

Noise robustness. As we did in the preceding section, let us consider the noisy version
of the distinguishing game. Having a flip probability of r means that the sequence of
measurement results when measuring in the preparation basis is Y xor N , where the
xor is taken bitwise and N , the noise sequence, is an infinite sequence such that , with
probability 1, the limit relative frequency of the symbol 0 is strictly greater than the
expected value, i.e.

lim sup
n

#{i ≤ n | N(i) = 1}
n

= r < 1/2.

Therefore, N is not ML-random since it does not satisfies the law of large numbers (see
Proposition 1.8.6), and if Y is computable then Y xor N is also not ML-random. Now,
Bob can apply the same protocol as above to distinguish Y xor N , which is not ML
random, from the one coming from the coin tossing. Thus, we have shown that:

Theorem 4.1.7. For every r and δ there is a strategy for Bob to win the r-noisy basis-
distinguishing game with probability of error Perr ≤ δ when C is the class of all total
computable functions.
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4.1.1 Distinguishing any (initially fixed) preparation basis

Now, consider the following slightly more general scenario. Player Bob is presented
with two boxes, B1 and B2, with the promise that one of them prepares qubits in the
maximally mixed state and the other prepares states pseudorandomly chosen from a
fixed basis B known to Bob. His task is to distinguish which box is which in finite time
and with arbitrarily low probability of error. It is easy to see that a slight modification
of the winning strategy for the finite basis-distinguishing game allows him to also win
in this scenario. Namely, if instead of alternating between measuring σx and measuring
σz as in Section 4.1, Bob measures the outputs of both boxes in the B basis, the binary
sequence sequence associated with the box which has the computer will be computable
and the other, according to quantum mechanics, independents tosses of a fair coin
and so Martin-Löf random. Hence, with any of the classical post-processing protocols
outlined above, he is able to distinguish both situations. In the next section we further
generalize the result to the scenario in which the box using pseudorandomness is not
restricted to choosing states from a fixed qubit basis.

4.2 Distinguishing any pseudorandom mixture of qubits

The fully general scnenario is described by the following game.

Definition 4.2.1 (find-the-identity game). Let 1/2 > δ > 0. The find-the-identity
game is as follows. Player Bob is presented with two boxes: B1 and B2. One of the
boxes prepares single qubit maximally mixed states (a.k.a. the identity); the other box
contains a computer producing, at each round n, rational numbers θn, φn ∈ [0, 2π] and
preparing a qubit in the state |ψn〉 = cos(θn/2)|0〉 + eiφn sin(θn/2)|1〉. Bob’s task is,
by making quantum measurements on (finitely many of) the qubits coming out of the
boxes, to distinguish which box is which with a probability of error Perr ≤ δ.

The main result of this section is a protocol for Bob to win this game with arbitrarily
high probability and independently of the program being run by the computer.

Bob’s protocol works as follows. In each round he will randomly pick between σx, σy
and σz, using for instance a QRNG, and measure such observable to the qubit coming
out from each box. This gives rise to three sequences:

1. A ternary sequence M formed by the measurement choices performed in each
round. Formally, M(i) = 1 if Bob measures σx at the i-th round (resp. 2 for σy
and 3 for σz).

2. A binary sequence B1 formed by the results of the measurements over the qubits
coming from box number 1. Formally, B1(i) = 0 (resp. B1(i) = 1) if the result of
measuring the observable represented by M(i) to the qubit coming out of box 1
at round i was 0 (resp. 1).

3. Analogously, a binary sequence B2 formed by the results of the measurements
over the qubits coming from box number 2.
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Note that, as in the basis-distinguishing game, although Bob measures finitely many
times, the sequences are potentially infinite in the sense that he can keep requesting
qubits from both boxes and making as many measurements as he needs.

As we will see now, sequences B1 and B2 have a distinctive feature that will allow
Bob to distinguish which is the maximally mixed state and which is the one being
produced by a computer.

Let r ∈ {1, 2} be the box preparing the maximally mixed state and c = 3 − r be
the box with the computer inside. With probability 1, the sequence Br will be Martin-
Löf random with respect to sequence M . This follows from the fact that, irrespective
of the measurement basis M(i), Br(i) is a fair coin tossing for all i. On the other
hand, sequence Bc will not be Martin-Löf random with respect to M . This is not
straightforward, and we prove it next. First we need the following Lemma:

Lemma 4.2.2. Let |ψj〉 and σj be, respectively, the pure state produced by box c and the
observable corresponding to Bob’s choice of measurement, for round j. With probability
at least 1/3 we have |〈ψj|σj|ψj〉| > 0.1.

Proof. This follows from the fact that Bob chooses from {σx, σy, σz} uniformly at ran-
dom and that every pure state gives a biased result in either of the three measure-
ment choices (that is, for all |ψ〉 at least one of |〈ψ|σx|ψ〉| > 0.1, |〈ψ|σy|ψ〉| > 0.1 or
|〈ψ|σz|ψ〉| > 0.1 holds).

This will allow us to prove a second Lemma which will let us conclude that any
computably preparation made by Alice is distinguishable from the correctly prepared
maximally mixed state.

Lemma 4.2.3. With probability 1, sequence Bc is not ML-random relative to M .

Proof. Following Lemma 4.2.2, let us assume, without loss of generality, that for in-
finitely many rounds n, the probability of obtaining 1 when measuring the state pre-
pared by Alice in the direction M(n) is greater than 0.55. This means that there is an
effective way, using M as an oracle, to identify a subsequence Y of Bc not satisfying
the law of large numbers (with probability 1). Namely, let h : N→ N be defined as

h(n) := min
m

[
[tr(Π

(m)
1 |ψm〉〈ψm|) > 0.55] ∧ [∀i < n m > h(i)]

]
with Π

(n)
1 the projector to the eigenspace of eigenvalue 1 of observable M(n). We have,

with probability 1, that

Y = Bc(h(0))Bc(h(1))Bc(h(2)) . . .

does not satisfy the law of large numbers and therefore, by Proposition 1.8.6, is not ML-
random. Hence, noting that |ψm〉 is computable from m (e.g. with Alice’s program)
and so h is computable relative to M , we have that, by relativizing Proposition 1.8.4,
Bc is not ML-random relative to M with probability 1.

We have proven so far that, with probability 1, Bc is not ML-random relative to
M but Br is. This fact, together with the existence of an universal oracle Martin-
Löf test (UM

m )m∈N, implies that Bob has an effective procedure using his sequence of



4.3. Proof-of-concept experiment for the basis-distinguishing game 65

measurement choices M as an oracle to distinguish, with arbitrarily small probability
of error, which of the boxes is using a computer to prepare its states. Namely, given a
significance level 2−m, he starts enumerating all the strings in UM

m = {σ1, σ2, . . . } until
he finds some n such that

[Bi � n] ⊆
⋃
i≤n

[σi].

for some i ∈ {1, 2} and claims that box i is the one with the computer. Since, with
probability 1, either B1 or B2 is not ML-random relative to M , the last condition has
to be satisfied for sufficiently large n with probability 1. This decision is wrong when
the sequence ML-random relative to M was captured by [UM

m ] before the non-ML-
random one was (of course, for some m′ > m the random sequence would be out of
[UM

m′ ]). Hence, the probability of making this error is at most the probability for the
coin flipping sequence to be inside [UM

m ], and this is at most 2−m. Therefore, we have
shown that:

Theorem 4.2.4. For every δ > 0 there is a randomized strategy for Bob to win the
find-the-identity game with probability of error Perr ≤ δ.

4.3 Proof-of-concept experiment for the basis-distinguishing game

In this section we reproduce the results of a proof-of-concept experiment done by
Miguel Larotonda and Ignacio López Grande of the winning strategy for the noisy
basis-distinguishing game which uses Algorithm 2.

Algorithm 2 searches the whole space of all Turing machines and thus it is, of
course, impossible in practical terms. Therefore, for this experiment, we have restricted
the set of computable sequences used by Alice to those which are the output of the
rand function from Matlab, using the Mersenne twister default generator algorithm
[MN98] and with a initial seed of fixed maximum length. Of course, this means that
we are back in the situation of Corollary 4.1.4-finite-set-of-sequences and therefore, no
alternation between measurement basis is required. However, to have the proof-of-concept be
as faithful as possible, we will nevertheless perform the alternation as outlined above. Finally,
some minor changes to Algorithm 2 were required due to the non-deterministic nature of the
emission and detection of Poissonian single photon states used as physical implementation
for qubits. The adapted protocol can be specifically stated as follows:

• Alice and Bob set the value of two parameters from the protocol: `max which determines
the maximum length of the rand function seed to be used and k which bounds to N =
k × `max, the number of qubits to be transmitted on any run of the experiment.

• Alice pseudorandomly chooses one integer between 0 and 2`max-1 which is used as the
initial value, or seed for the rand function. The output of rand is binarized using the
round() function resulting on a string of N pseudorandom bits.

• Alice chooses randomly (with fair coin randomness as explained below) the basis in
which she will encode and send the string.

• Alice sends the N qubits to Bob. She encodes the binary string information in the
photon polarization degree of freedom of a faint pulsed light beam.
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• Bob measures the N
2 even and N

2 odd elements, each in one of the mutual unbiased
bases of σx or σz.

• Bob, after measurement, computes the Hamming distance (for even and odd bits) be-
tween experimental data and the output of rand() function with the different seeds.
When the minimum Hamming distance condition is fulfilled Bob ends the search.

• Finally Bob compares the state preparation (σx or σz mixtures) predicted by him with
the mixture that was actually prepared by Alice to estimate the error probability (Perr)
of the prediction.

A complete experiment consists in several repetitions of the protocol sketched above.
Every execution is divided in two parts; the transmission of qubits from Alice to Bob, followed
by a search routine, where Bob compares both bit strings with the strings generated by the
rand function over all the possible seeds of length bounded by `max as it is stated in the
theoretical protocol. When Bob finds a string that resembles the experimental series up to
a certain Hamming distance value, the search ends. The result is compared with the actual
basis used by Alice and the wrong guesses are registered as errors. After this they repeat the
procedure with a new seed pseudorandomly picked, and a new random emission basis choice.
The bound for the Hamming distance allows us to control the tolerance of the experiment
against the Quantum Bit Error Rate (QBER).

One thing to be noticed is that Bob may not find a series that fulfills the desired Hamming
distance condition. This is a situation that is not present in the theoretical protocol. In this
way every time that Bob doesn’t find a match we compute the experiment as inconclusive
and it is discarded. To overcome this issue, the parameters of the protocol (such as maximum
Hamming distance allowed) were set to guarantee that the probability of error occurrence
was always greater than the probability of not finding any bit string fulfilling the condition.
Under such assumptions, and using reasonable tolerances, we find that the ratio of inconclusive
experiments to total number of errors was negligible.

The experiment involved 3100 repetitions of the transmission and search protocols. The
total number of qubits transmitted on each repetition was fixed, and set by kmax×`max (in this
implementation `max = 10). The parameter k determines the theoretical error probability for
a given tolerance (q) and was set to take values between 1 and 16. This bounds the maximum
number of compared bits on each Hamming distance calculation to N = 320 (`max × kmax
bits for even and odd bits); that is the number of qubits that Alice sends to Bob on each run.

After the qubit transmission is finished, Bob begins the search procedure building a list of∑`max
i=1 2i = 2`max+1 − 2 “programs” (i.e. binary seeds to the rand function). Of course, since

the seed to the rand function is ultimately an integer, different “seed strings” in the list (e.g.
0 and 00) will produce the same output of a run of the function; what will be different is the
length of subsequence of the binarized output we will use to compare with the measurement
data (in the e.g. before, k and 2k). When either the even or odd bits of the compared strings
fulfil the Hamming Distance criterion. Finally he compares the basis for the mixed state
preparation predicted by this protocol with the one that Alice actually used, for the error
probability estimation.

4.3.1 Experimental setup

The above protocol was put to the test on a photonic setup, based on a modified BB84
Quantum Key Distribution (QKD) implementation [LGSL16] which consists of an emission
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stage that is able to send binary states coded in two different unbiased bases of the photon
polarization, which are called computational basis and diagonal basis, and a reception stage
for the quantum channel. Additionally, a classical communication channel is added for syn-
chronization, transmission and data validation. See Figure 4.2 for an schematic description
of the setup.
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Fig. 4.2: Complete setup for implementing the transmission and search protocol: Qubits encoded in polarized
faint pulses are produced by infrared LEDs. Light is coupled into and de-coupled from multimode
fibers to obtain uniform beams for the four sources. The polarization state preparation is achieved by
passing through a PBS (for H and V states) and an extra halfwave-plate for the D and A paths. A
non-polarizing Beam Splitter cube couple the optical paths into an only exit light path. At the receiver’s
side a BS passively and randomly selects the detection basis for each incoming pulse. The outputs
are coupled into multimode optical fibers, where different delays are imposed to make a polarization
to time-bin transformation into a common output fiber. Finally a photon counter module and a
temporal mask demultiplexer are used for detection.

4.3.2 Complete Results and Simulations

Herein we analyze the experimental results. We compare the performance of Bob at guess-
ing the emission basis, with the theoretical error probability Perr (Equation (4.5)), and we
also present additional data analysis aiming to explain the behavior of the error rate obtained.

As a result of each run, Bob gets two 160-bit length strings. Me are the outcomes of
even qubits, measured in the computational basis and Mo are the outcomes of odd qubits,
measured in the diagonal basis. Bob compares these strings with the pair of strings from the
program list Sje and Sjo , where j stands for the number of program evaluated.

Note that when evaluating a program of length ` just the first k×` bits of the transmitted
string are taken into account to compute the Hamming distance. The whole 160 bit string is
only used in the Hamming distance measure of programs with `max = 10.

The Hamming distance between the strings is calculated H(Sje ,Me) and H(Sjo ,Mo), and



the search finishes when one of them fulfills the tolerance criteria: H(Sni ,Mi) ≤ bq×k×`(n)c
from the noise tolerant protocol. In this experiment the tolerance parameter is set to q = 0.15.
The result of the search for each run is registered for a further estimation of the error rate
Perr.

The probability of error in Bob’s guess of the emission basis can be estimated for different
values of the parameter k. Figure 4.3 shows the error rate obtained from the experimental
data and from a computational simulation of the experiment, together with the theoretical
bounds for the distinguishing – noiseless and noise tolerant – protocols.
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Fig. 4.3: The plot shows the experimental error rate obtained with the noise tolerant protocol (red lines),
compared with the theoretical bounds for: the noiseless (blue line) and noise tolerant (green line)
algorithms. The cyan line is the computational simulation of the experimental data taking into
account the average QBER.

4.4 Discussion

We have shown that if Alice uses a computer to prepare a seemingly proper mixture of qubit
states, Bob can distinguish it from the maximally mixed state in finite time, with arbitrarily
high probability and without any access to Alice’s algorithm. Additionaly, we have presented
a proof-of-concept experiment showing that mixing two different sets of pure states that are
supposed to yield the same mixed state, can be distinguished when mixed using the default
pseudorandom number generator from Matlab.

Our distinguishing protocols, although impractical, fulfil their purpose of showing the
distinguishability of situations which wouldn’t be so if randomness were used instead of pseu-
dorandomness. Our results imply that it is incorrect to model Bob’s lack of knowledge in
this scenario with independent copies of the maximally mixed state and they apply to, for
instance, the mixed states experimentally produced using a classical random number genera-
tor [AB09a, LKPR10].



RESUMEN DEL CAPÍTULO

Con el avance de la realización experimental de protocolos cuánticos, las configuraciones más
ampliamente utilizadas consisten de sistemas clásicos controlando sistemas cuánticos[PWT+07,
TMF+13, BCS+04, TDH+05]. Siendo clásicos, los sistemas de control están limitados en lo
que pueden conseguir, y esto se refleja en lo que puede ser logrado por las configuraciones
que controlan. En este caṕıtulo consideramos este problema en el contexto de preparación de
estados mixtos.

En este capitulo estudiamos diferentes escenarios en los cuales, si se usa pseudoaleatoriedad
en vez de aleatoriedad (como fue hecho, por ejemplo, en [AB09a, LKPR10]), situaciones
que inicialmente eran indistinguibles se vuelven distinguibles. Primero, mostramos que un
jugador (Bob) puede distinguir, en tiempo finito y con una probabilidad arbitrariamente alta,
si los qubits que otro jugador (Alice) está preparando para él han sido pseudoaleatoriamente
elegidos a patir de la base σz o la σx; algo que seŕıa imposible si ella estuviera eligiéndolos al
azar (Theorem 4.1.7). Observar que esto, por lo tanto, implica que es incorrecto caracterizar
la falta de conocimiento de Bob sobre la base de preparación con el estado máximamente
mixto [BdlTS+16]. Proveemos los resultados de una prueba-de-concepto experimental de un
caso especial de este resultado hecho por el grupo del Dr. Miguel Larotonda [LGSdlT+].
A continuación, generalizamos este resultado a cualquier base de preparación inicial fija.
Finalmente, extendemos adicionalmente el resultado a la situación en la cual, en vez de tener
una base de preparación fija, Alice tiene permitido preparar cualquier estado de qubit (con
coeficientes racionales) (Theorem 4.2.4) [LGSdlT+].
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5. ROBUST BELL VIOLATIONS FROM COMMUNICATION
COMPLEXITY LOWER BOUNDS

The question of achieving large Bell violations has been studied since Bell’s seminal paper
in 1964 [Bel64]. In one line of investigation, proposals have been made to exhibit families of
distributions which admit unbounded violations [Mer90, LPŻB04, NLP06, PGWP+08]. In
another, various measures of nonlocality have been studied, such as the amount of communi-
cation necessary and sufficient to simulate quantum distributions classically [Mau92, BCT99,
Ste00, TB03a, Pir03, DKLR11], or the resistance to detection inefficiencies and noise. More
recently, focus has turned to giving upper and lower bounds on violations achievable, in terms
of various parameters: number of players, number of inputs, number of outputs, dimension
of the quantum state, and amount of entanglement [DKLR11, JPPG+10b, JP11].

Up until quite recently, violations were studied in the case of specific distributions (measur-
ing Bell states), or families of distributions. Buhrman et al. [BRSdW12] gave a construction
that could be applied to several problems which had efficient quantum communication proto-
cols (Definition 1.10.7) and for which one could show a trade-off between communication and
error in the classical setting. This still required an ad hoc analysis of communication prob-
lems. Recently Buhrman et al. [BCG+16] proposed the first general construction of quantum
states along with Bell inequalities from any communication problem. The quantum states vi-
olate the Bell inequalities when there is a sufficiently large gap between quantum and classical
communication complexity (a super-quadratic gap is necessary, unless a quantum protocol
without local memory exists).

We revisit the question of achieving large Bell violations by exploiting known connec-
tions with communication complexity. Strong lower bounds in communication complexity,
equivalent to the partition bound [JK10], amount to finding inefficiency-resistant Bell in-
equalities [LLR12]. These are Bell functionals that are bounded above by 1 on all local
distributions that can abort.

First, we study the resistance of normalized Bell inequalities to inefficiency. We show
that, up to a constant factor in the value of the violation, any normalized Bell inequality
can be made resistant to inefficiency while maintaining the normalization property (Theo-
rem 5.2.1).

Second, we show how to derive large Bell violations from any communication problem for
which the partition bound is bounded below and the quantum communication complexity
is bounded above. The problems studied in communication complexity are far beyond the
quantum set, but we show how to easily derive a quantum distribution from a quantum
protocol. The Bell value we obtain is 2c−2q, where c is the partition lower bound on the
classical communication complexity of the problem considered, and q is an upper bound
on its quantum communication complexity (Theorem 5.3.2 and Corollary 5.3.3). The
quantum distribution has one extra output per player compared to the original distribution
and uses the same amount of entanglement as the quantum protocol plus as many EPR pairs
as needed to teleport the quantum communication in the protocol. We show that these Bell
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violations can be made noise-resistant, at the cost of a 22q factor in the number of outcomes
per player (Theorem 5.4.1).

Finally, we provide tools to build Bell inequalities from communication lower bounds in the
literature. Lower bounds used in practice to separate classical from quantum communication
complexity are usually achieved using corruption bounds and its variants. In Theorem 5.5.3,
we give an explicit construction which translates these bounds into a suitable Bell functional.
Table 5.3 summarizes the new results or the improvements that we obtain in this work.

Problem Normalized Bell violations
[BCG+16]

Inefficiency-resistant Bell
violations (this work)

VSP [Raz99a, KR11]
Ω
(

6
√
n/
√

log n
)

d = 2Θ(n logn),K = 2Θ(n)
2Ω( 3√n)−O(logn)

d = 2O(logn),K = 3

DISJ [Raz92, Raz03, AA05] N/A 2Ω(n)−O(
√
n)

d = 2O(
√
n),K = 3

TRIBES [JKS03, BCW98] N/A 2Ω(n)−O(
√
n log2 n)

d = 2O(
√
n log2 n),K = 3

ORT [She12, BCW98] N/A 2Ω(n)−O(
√
n logn)

d = 2O(
√
n logn),K = 3

Tab. 5.1: Comparison of the Bell violations obtained by the general construction of Buhrman et
al. [BCG+16] for normalized Bell violations (second column) and this work, for inefficiency-
resistant Bell violations (see Propositions 5.5.4, 5.5.8, 5.5.11, and 5.5.14), in terms of the
dimension d of the local Hilbert space, the size n of the of measurement settings (or inputs)
sets (typically X = Y = {0, 1}n) and the number of outcomes K (or outputs) per party
of the quantum distributions. Explicit Bell inequalities are given in Section 5.5.2. The
construction of Buhrman et al. only yields a violation when the gap between classical and
quantum complexities is more than quadratic. In the case where the gap is too small to
prove a violation, we indicate this with “N/A”.

5.1 Background

5.1.1 Distributions that can abort

In this chapter, we will augment the output sets A and B with a special symbol ⊥ 6∈ A ∪ B
which we call: the abort outcome. We will denote this with a superscript in the notation;
namely L⊥, Q⊥ and NS⊥ will denote, respectively, the local, quantum and non-signaling
distributions over outcomes in A ∪ {⊥} × B ∪ {⊥}. The motivation for introducing outcome
⊥ comes from the scenario considered in the detection loophole (see Definition 1.5.11) where
we may have rounds in a Bell experiment where no measurement result is recorded. In
a communication protocol, if the players output ⊥ we say that they (or, equivalently, the
protocol) aborts.
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5.1.2 Measures of nonlocality

We have described nonlocality as a yes/no property, but some distributions are somehow
more nonlocal than others. To have a robust measure of nonlocality, it should verify some
common sense properties: for a fixed distribution, the measure should be bounded; it should
also be convex, since sampling from the convex combination of two distributions can be
done by first picking randomly one of the two distributions using shared randomness, and
then sampling from that distribution. We also expect such a measure of nonlocality to
have various equivalent formulations. Several measures have been proposed and studied:
resistance to noise [KGZ+00, ADGL02, PGWP+08, JPPG+10a], resistance to inefficiency
[Mas02, MPRG02, LLR12], amount of communication necessary to reproduce them [Mau92,
BCT99, Ste00, TB03a, Pir03, DKLR11], information-theoretic measures [BCSS11, GWAN12,
FWW09], etc.

In the form studied in this chapter, normalized Bell inequalities were first studied in
[DKLR11], where they appeared as the dual of the linear program for a well-studied lower
bound on communication complexity, known as the nuclear norm ν [LS09] (the definition is
given in Section 5.1.3). There are many equivalent formulations of this bound. For distri-
butions arising from boolean functions, it has the mathematical properties of a norm, and
it is related to winning probabilities of XOR games. It can also be viewed as a gauge, that
is, a quantity measuring by how much the local set must be expanded in order to contain
the distribution considered. For more general non-signaling distributions, besides having a
geometrical interpretation in terms of affine combinations of local distributions, it has also
been shown to be equivalent to the amount of local noise that can be tolerated before the
distribution becomes local [JPPG+10b].

A subsequent paper [LLR12] studied equivalent formulations of the partition bound, one of
the strongest lower bounds in communication complexity [JK10]. This bound also has several
formulations: the primal formulation can be viewed as resistance to detector inefficiency, and
the dual formulation is given in terms of inefficiency-resistant Bell inequality violations.

In this chapter, we show how to deduce large violations on quantum distributions from
large violations on non-signaling distributions, provided there are efficient quantum commu-
nication protocols for the latter.

5.1.3 Communication complexity lower bounds

To give upper bounds on communication complexity it suffices to give a protocol and analyze
its complexity. Proving lower bounds is often a more difficult task, and many techniques have
been developed to achieve this. The methods we describe here are complexity measures which
can be applied to any function. To prove a lower bound on communication, it suffices to give a
lower bound on one of these complexity measures, which are bounded above by communication
complexity for any function. We describe here most of the complexity measures relevant to
this work.

The nuclear norm ν, given here in its dual formulation and extended to non-signaling
distributions, is expressed by the following linear program [LS09, DKLR11]. (There is a
quantum analogue, γ2, which is not needed in this work. We refer the interested reader to
the definition for distributions in [DKLR11]).

Definition 5.1.1 ([LS09, DKLR11]). The nuclear norm ν of a non-signaling distribution
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p ∈ C is given by

ν(p) := max
B

B(p)

subject to |B(`) |≤ 1 ∀` ∈ Ldet.

With error ε, νε(p) := minp′∈NS:|p′−p|1≤ε ν(p′). We call any Bell functional that satisfies the
constraint in the above linear program normalized Bell functional.

In this definition and in the rest of the chapter, unless otherwise specified (in particular in
Lemma 5.2.5), B(p) denotes

∑
a,b,x,y Ba,b,x,yp(a, b|x, y), where a, b ranges over the non-abort

outputs and x, y ranges over the inputs. So even when B and p have coefficients on the abort
events, we do not count them. Table 5.2 summarizes the known upper and lower bounds on
ν for various parameters.

Parameter Upper bound Ad hoc lower bounds

Best possible
lower bound

from [BCG+16]

Number of inputs N 2c ≤ N
[LS09] [DKLR11,

JPPG+10b]

√
N

log(N) [JP11]
√
c
q ≤ log(N)

Number of outputs K O(K) [JP11] Ω
(

K
(log(K))2

)
[BRSdW12] ≤ log(K)

Dimension d O(d) [JPPG+10b] Ω
(

d
(log(d))2

)
[BRSdW12] ≤ log log(d)

Tab. 5.2: Bounds on quantum violations of bipartite normalized Bell inequalities, in terms of the
dimension d of the local Hilbert space, the number of settings (or inputs) N and the number
of outcomes K (or outputs) per party. In the last column, we compare ad hoc results to the

recent constructions of [BCG+16] (Theorem 5.3.1) which gives a lower bound of
√
c
q , where c

(resp. q) stands for the classical (resp. quantum) communication complexity of simulating a
distribution. We give upper bounds on their construction in terms of the parameters d,N,K.

The (log of the) nuclear norm is a lower bound on classical communication complexity.

Proposition 5.1.2 ([LS09, DKLR11]). For any non-signaling distribution p ∈ C, Rε(p)+1 ≥
log(νε(p)), and for any boolean function f , Rε(f) ≥ log(νε(pf )).

As lower bounds on communication complexity of Boolean functions go, ν is one of the
weaker bounds, equivalent to the smooth discrepancy [JK10], and no larger than the approx-
imate nonnegative rank and the smooth rectangle bounds [KMSY14]. More significantly for
this work, up to small multiplicative constants, for boolean functions, (the log of) ν is a
lower bound on quantum communication, so it is useless to establish gaps between classical
and quantum communication complexity. (This limitation, with the upper bound in terms
of the number of outputs on normalized Bell violations, is a consequence of Grothendieck’s
theorem [Gro53].)

The classical and quantum efficiency measures, given here in their dual formulations,
are expressed by the following two convex optimization programs. The classical bound is a
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generalization to distributions of the partition bound of communication complexity [JK10,
LLR12]. This bound is one of the strongest lower bounds known, and can be exponentially
larger than ν (an example is the Vector in Subspace problem). It is always as least as large as
the relaxed partition bound which is in turn always at least as large as the smooth rectangle
bound [JK10, KLL+15]. Its weaker variants have been used to show exponential gaps between
classical and quantum communication complexity.

Definition 5.1.3. The ε-error efficiency bound of a distribution p is given by

eff ε(p) := max
B,β

β

subject to B(p′) ≥ β ∀p′ s.t. |p′ − p|1 ≤ ε,
B(`) ≤ 1 ∀` ∈ L⊥det.

We call any Bell functional that satisfies the second constraint in the above linear program
inefficiency-resistant Bell functional.

In [LLR12], the zero-error efficiency bound was defined in its primal and dual forms as
follows

Definition 5.1.4 ([LLR12]). The efficiency bound of a distribution p is given by

eff(p) := min
ζ,µ`≥0

1

ζ

subject to
∑
`∈L⊥det

µ``(a, b|x, y) = ζp(a, b|x, y) ∀(a, b, x, y) ∈ A×B×X×Y

∑
`∈L⊥det

µ` = 1

= max
B

B(p)

subject to B(`) ≤ 1 ∀` ∈ L⊥det

The ε-error efficiency bound was in turn defined as minp′|p′−p|1≤ε eff(p′). In the following,
we show that this is equivalent to (Definition 5.1.3). In the original definition, the Bell
functional could depend on the particular p′. We show that it is always possible to satisfy
the constraint with the same Bell functional for all p′ close to p.

In order to prove this, we will need the following notions.

Definition 5.1.5. A distribution error ∆ is a family of additive error terms ∆(a, b|x, y) ∈
[−1, 1] for all (a, b, x, y) ∈ A×B×X×Y such that∑

a,b

∆(a, b|x, y) = 0 ∀(x, y) ∈ X × Y.

For any 0 ≤ ε ≤ 1, the set ∆ε is the set of distribution errors ∆ such that∑
a,b

|∆(a, b|x, y)| ≤ ε ∀(x, y) ∈ X × Y.

This set is a polytope, so it admits a finite set of extremal points. We denote this set by ∆ext
ε .
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We will use the following properties of ∆ε.

Fact 5.1.6. For any distribution p, we have

{p′| |p′ − p|1 ≤ ε} ⊆ {p + ∆| ∆ ∈ ∆ε}.

The reason why the set on the right hand side might be larger is that p + ∆ might not
be a valid distribution. In order to ensure that this is the case, it is sufficient to impose that
all obtained purposed probabilities are nonnegative, leading to the following property.

Fact 5.1.7. For any distribution p, we have

{p′| |p′ − p|1 ≤ ε} = {p + ∆| ∆ ∈ ∆ε & p(a, b|x, y) + ∆(a, b|x, y) ≥ 0 ∀a, b, x, y}.

We are now ready to prove the following theorem.

Theorem 5.1.8. Let p be a distribution, eff ε(p) be defined as in Definition 5.1.3 and eff(p)
be defined as in Definition 5.1.4. Then, we have

eff ε(p) = min
p′:|p′−p|1≤ε

eff(p′).

Proof. Let eff ε(p) = minp′:|p′−p|1≤ε eff(p′). We first show that eff ε(p) ≤ eff ε(p). Let (B, β)
be an optimal feasible point for eff ε(p), so that

eff ε(p) = β,

B(p′) ≥ β ∀p′ s.t. |p′ − p|1 ≤ ε,
B(`) ≤ 1 ∀` ∈ L⊥det.

Therefore (B, β) is also a feasible point for eff(p′) for all p′ such that |p′ − p|1 ≤ ε, so that
eff(p′) ≥ β for all such p′, and eff ε(p) ≥ β = eff ε(p).

It remains to show that eff ε(p) ≥ eff ε(p). In order to do so, we first use the primal form
of eff(p′) in Definition 5.1.4 to express eff ε(p) as follows:

eff ε(p) = min
p′:|p′−p|1≤ε

eff(p′)

= min
ζ,µ`≥0,p′

1

ζ

subject to
∑
`∈L⊥det

µ``(a, b|x, y) = ζp′(a, b|x, y) ∀(a, b, x, y) ∈ A×B×X×Y

∑
`∈L⊥det

µ` = 1, |p′ − p|1 ≤ ε

= min
ζ,µ`≥0,∆∈∆ε

1

ζ

subject to
∑
`∈L⊥det

µ``(a, b|x, y) =

ζ[p(a, b|x, y) + ∆(a, b|x, y)] ∀(a, b, x, y) ∈ A×B×X×Y∑
`∈L⊥det

µ` = 1,
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where the last equality follows from Fact 5.1.7 and the fact that the first condition of the
program imposes that p(a, b|x, y) + ∆(a, b|x, y) is nonnegative (since

∑
` µ``(a, b|x, y) is non-

negative). Since ∆ε is a polytope, eff ε(p) can be expressed as the following linear program:

eff ε(p) = min
ζ,µ`≥0,ν∆≥0

1

ζ

subject to
∑
`∈L⊥det

µ``(a, b|x, y) = ζ[p(a, b|x, y)+

∑
∆∈∆ext

ε

ν∆∆(a, b|x, y)] ∀(a, b, x, y) ∈ A×B×X×Y

∑
`∈L⊥det

µ` = 1,
∑

∆∈∆ext
ε

ν∆ = 1.

Note that this can be written in standard LP form via the change of variables µ` = ζw`. By
LP duality, we then obtain:

eff ε(p) = max
B,β

β

subject to B(p + ∆) ≥ β ∀∆ ∈ ∆ε,

B(`) ≤ 1 ∀` ∈ L⊥det.

Comparing this to the definition of eff ε(p) (Definition 5.1.3) and together with Fact 5.1.6,
we therefore have eff ε(p) ≤ eff ε(p).

The ε-error quantum efficiency bound of a p is

eff∗ε (p) = max
B,β

β

subject to B(p′) ≥ β ∀p′ s.t. |p′ − p|1 ≤ ε,
B(q) ≤ 1 ∀q ∈ Q⊥.

We denote eff = eff0 and eff∗ = eff∗0 the 0-error bounds.

For any given distribution p, its classical communication complexity is bounded below by
the (log of the) efficiency. For randomized communication complexity with error ε, the bound
is log(eff ε) and for quantum communication complexity, the bound is log(eff∗ε ). Note that
for any p ∈ Q, the quantum communication complexity is 0 and the eff∗ bound is 1. For any
function f , the efficiency bound eff ε(pf ) is equivalent to the partition bound [JK10, LLR12].

Proposition 5.1.9 ([LLR12]). For any p ∈ P and any 0 ≤ ε < 1/2, Rε(p) ≥ log(eff ε(p))
and Qε(p) ≥ 1

2 log(eff∗ε (p)). For any p ∈ C and any 0 ≤ ε ≤ 1, νε(p) ≤ 2eff ε(p).

Theorem 5.3.2 below involves upper bounds on the quantum efficiency bound. To give
an upper bound on the quantum efficiency of a distribution p, it is more convenient to use
the primal formulation, and upper bounds can be given by exhibiting a local (or quantum)
distribution with abort which satisfies the following two properties: the probability of aborting
should be the same on all inputs x, y, and conditioned on not aborting, the outputs of the
protocol should reproduce the distribution p. The efficiency is inversely proportional to the
probability of not aborting, so the goal is to abort as little as possible.
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Proposition 5.1.10 ([LLR12]). For any distribution p, eff∗(p) = 1/η∗, with η∗ the optimal
value of the following optimization problem (non-linear, because Q⊥ is not a polytope).

max
ζ,q∈Q⊥

ζ

subject to q(a, b|x, y) = ζp(a, b|x, y) ∀x, y, a, b ∈ X×Y×A×B

Moreover, for any 0 ≤ ε ≤ 1, eff∗ε (p) = minp′:|p′−p|1≤ε eff∗(p′).

5.2 Properties of Bell inequalities

Syntactically, there are two differences between the normalized Bell functionals (Defini-
tion 5.1.1) and the inefficiency-resistant ones (Definition 5.1.3). The first difference is that
the normalization constraint is relaxed: for inefficiency-resistant functionals, the lower bound
on the Bell value for local distributions is removed. Since this is a maximization problem,
this relaxation allows for larger violations.

This difference alone would not lead to a satisfactory measure of nonlocality, since one
could obtain unbounded violations by shifting and dilating the Bell functional. The second
difference prevents this. The upper bound is required to hold not only for local distributions,
but also those that can abort. This is a much stronger condition. Notice that a local dis-
tribution can selectively abort on configurations that would otherwise tend to keep the Bell
value small, making it harder to satisfy the constraint.

In this section, we show that normalized Bell violations can be modified to be resistant to
local distributions that abort, while preserving the violation on any non-signaling distribution,
up to a factor of 3. This means that we can add the stronger constraint of resistance to local
distributions that abort to Definition 5.1.1, incurring a loss of just a factor of 3, and the
only remaining difference between the resulting linear programs is the relaxation of the lower
bound (dropping the absolute value) for local distributions that abort.

Theorem 5.2.1. Let B be a normalized Bell functional on A × B × X × Y and p ∈ C a
non-signaling distribution such that B(p) ≥ 1. Then there exists a normalized Bell functional
B∗ on (A ∪ {⊥})× (B ∪ {⊥})×X × Y with 0 coefficients on the ⊥ outputs such that :

B∗(p) ≥ 1

3
B(p)− 2

3
, ∀p ∈ NS

|B∗(`)| ≤ 1, ∀` ∈ L⊥det

The rest of this section is devoted to the proof of Theorem 5.2.1. First, we show (see
Observation 5.2.2) how to rescale a normalized Bell functional so that it saturates its nor-
malization constraint. Then, Definition 5.2.3 adds weights to abort events to make the Bell
functional resistant to inefficiency. Finally, Lemma 5.2.5 removes the weights on the abort
events of a Bell functional while keeping it bounded on the local set with abort, without
dramatically changing the values it takes on the non-signaling set. Our techniques are similar
to the ones used in [MPRG02].

Observation 5.2.2. Let B be a non-constant normalized Bell functional and p ∈ C such that
B(p) ≥ 1. Consider `− ∈ L⊥det such that B(`−) = m = min{B(`)|` ∈ L⊥det} and `+ ∈ L⊥det such
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that B(`+) = M = max{B(`)|` ∈ L⊥det}. We have m < M because B is non-constant. The
Bell functional B̃ defined by B̃ := 1

M−m(2B −M −m), is such that B̃(`+) = 1, B̃(`−) = −1,

|B̃(`)| ≤ 1 for all ` ∈ L⊥det, and B̃(p) ≥ B(p) since B is normalized.

Definition 5.2.3 below is the first step of the construction. It takes two marginal distri-
butions mA and mB, and a normalized Bell functional B, and constructs a Bell functional
B⊥mA,mB

whose value over every distribution p ∈ NS⊥ coincides with the value of B over the
distribution p′ ∈ NS obtained from p by replacing the abort events with samples from mA

and mB.

Definition 5.2.3. For all two families of distributions, mA = (mA(·|x))x∈X over outcomes
in A for Alice and mB = (mB(·|y))y∈Y over outcomes in B for Bob, and any normalized Bell
functional B with coefficients only on non-abort events, we define the Bell functional B⊥mA,mB

on (A ∪ {⊥})× (B ∪ {⊥})×X × Y by

(B⊥mA,mB
)a,b,x,y := Ba,b,x,y + δa=⊥

∑
a′ 6=⊥

mA(a′|x)Ba′,b,x,y + δb=⊥
∑
b′ 6=⊥

mB(b′|y)Ba,b′,x,y

+ δa=⊥δb=⊥
∑

a′,b′ 6=⊥
mA(a′|x)mB(b′|y)Ba′,b′,x,y

Observation 5.2.4. Let fmA,mB : NS⊥ → NS be the function that replaces abort events
on Alice’s (resp. Bob’s) side by a sample from mA (resp. mB) (note that fmA,mB preserves
locality). Then, for every mA, mB and B as in Definition 5.2.3, the Bell functional B⊥mA,mB

satisfies that B⊥mA,mB
(p) = B(fmA,mB (p)), ∀p ∈ NS⊥, so B⊥mA,mB

(p) = B(p), for all

p ∈ NS, and |B⊥mA,mB
(`)| ≤ 1, for all ` ∈ L⊥.

Next, in Lemma 5.2.5 below, we do without the abort coefficients in the Bell functionals
B⊥mA,mB

.

Lemma 5.2.5. Let B′ be a normalized Bell functional on A⊥ × B⊥ × X × Y (possibly with
non-zero weights on ⊥). Then the Bell functional B′′ on the same set defined by

B′′a,b,x,y = B′a,b,x,y −B′a,⊥,x,y −B′⊥,b,x,y +B′⊥,⊥,x,y, (5.1)

for all (a, b, x, y) ∈ (A ∪ {⊥})× (B ∪ {⊥})×X × Y satisfies :

1. If a = ⊥ or b = ⊥ then B′′a,b,x,y = 0

2. for all p ∈ NS⊥,

B′′(p) = B′(p)−B′(pA,⊥)−B′(p⊥,B) +B′(p⊥,⊥), (5.2)

where pA,⊥ ∈ L⊥ (resp. p⊥,B ∈ L⊥) is the local distribution obtained from p if Bob (resp.
Alice) replaces all of his (resp. her) outputs by ⊥, and p⊥,⊥ ∈ L⊥ is the local distribution
where both Alice and Bob always output ⊥. In Item 2 above, for all p′,

B′(p′) =
∑

(a,b)∈A⊥×B⊥

∑
(x,y)∈X×Y

B′a,b,x,yp
′(a, b|x, y)

where the first sum is also over the abort events.
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Proof. Item 1 follows from (5.1). We prove Item 2. For p ∈ NS⊥ with marginals pA and
pB, we have: for all y ∈ Y , pA(a|x) =

∑
b∈B⊥ p(a, b|x, y), and for all x ∈ X, pB(b|y) =∑

a∈A⊥ p(a, b|x, y). For the remainder of this proof, summations involving a (resp. b) are over
a ∈ A⊥ (resp. b ∈ B⊥).

By definition, pA,⊥(a, b|x, y) = pA(a|x)δb=⊥, p⊥,B(a, b|x, y) = δa=⊥pB(b|y), and p⊥,⊥(a, b|x, y) =
δa=⊥δb=⊥. We have:

B′′(p) =
∑
a,b,x,y

[
B′a,b,x,y −B′a,⊥,x,y −B′⊥,b,x,y +B′⊥,⊥,x,y

]
p(a, b|x, y)

=
∑
a,b,x,y

B′a,b,x,yp(a, b|x, y)−
∑
a,x,y

B′a,⊥,x,y
∑
b

p(a, b|x, y)

−
∑
b,x,y

B′⊥,b,x,y
∑
a

p(a, b|x, y) +
∑
x,y

B′⊥,⊥,x,y
∑
a,b

p(a, b|x, y)

= B′(p)−
∑
a,x,y

B′a,⊥,x,ypA(a|x)−
∑
b,x,y

B′⊥,b,x,ypB(b|y) +
∑
x,y

B′⊥,⊥,x,y

= B′(p)−B′(pA,⊥)−B′(p⊥,B) +B′(p⊥,⊥).

We are now ready to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. If B is constant, since it is normalized by assumption, we have B ≡
1. Thus, we can simply take B∗ defined by: for all (x, y) ∈ X × Y, B∗a,b,x,y = Ba,b,x,y if
(a, b) ∈ A× B, and B∗a,b,x,y = 0 otherwise.

Now, let us assume that B is not constant. From Observation 5.2.2, we can assume that
there exists `−, `+ ∈ Ldet such that B(`−) = −1 and B(`+) = 1 (otherwise, we replace B by its
saturated version B̃). Since `− and `+ are deterministic distributions, we have: `− = `−A⊗ `−B
and `+ = `+A ⊗ `+B, for some marginals `−A, `

−
B, `

+
A, and `+B. We consider the replacing Bell

functional B⊥
`−A ,`

−
B

(resp. B⊥
`+A,`

+
B

) from Definition 5.2.3 constructed from (B, `−A, `
−
B) (resp.

from (B, `+A, `
+
B)). Taking B′ = 1

2(B⊥
`−A ,`

−
B

+ B⊥
`+A,`

+
B

), we have |B′(`)| ≤ 1, for all ` ∈ L⊥, and

therefore we can apply Lemma 5.2.5 to get B′′ from B′. Since B′(p⊥,⊥) = 1
2(B⊥

`−A ,`
−
B

(p⊥,⊥) +

B⊥
`+A,`

+
B

(p⊥,⊥)) = 1
2(B(`−) +B(`+)) = 0, by (5.2) we have for all p ∈ NS⊥, B′′(p) = B′(p)−

B′(pA,⊥) − B′(p⊥,B). Hence, denoting B∗ = 1
3B
′′, B∗ satisfies all the required properties

since |B′(`)| ≤ 1 for all ` ∈ L⊥ and therefore we have for all p ∈ NS, B∗(p) ≥ 1
3B
′(p) −

1
3 |B′(pA,⊥)|− 1

3 |B′(p⊥,B)| ≥ 1
3B
′(p)− 2

3 , and for all ` ∈ L⊥, |B∗(`)| ≤ 1
3 |B′(`)|+ 1

3 |B′(`A,⊥)|+
1
3 |B′(`⊥,B)| ≤ 1.

5.3 Exponential violations from communication bounds

In a recent paper, Buhrman et al. gave a general construction to derive normalized Bell
inequalities from any sufficiently large gap between classical and quantum communication
complexity.

Theorem 5.3.1 ([BCG+16]). For any function f for which there is a quantum protocol
using q qubits of communication but no prior shared entanglement, there exists a quantum
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distribution q ∈ Q and a normalized Bell functional B such that

B(q) ≥

√
R1/3(f)

6
√

3q
(1− 2−q)2q.

Their construction is quite involved, requiring protocols to be memoryless, which they
show how to achieve in general, and uses port-based teleportation [IH08, IH09] to construct a
quantum distribution. The Bell inequality they construct expresses a correctness constraint.

In this section, we show how to obtain large inefficiency-resistant Bell violations for
quantum distributions from gaps between quantum communication and classical commu-
nication lower bounds. We first prove the stronger of two statements, which gives violations
of eff ε(p)

eff?
ε′ (p) .For any problem for which a classical lower bound c is given using the efficiency or

partition bound or any weaker method (including the rectangle bound and its variants), and
any upper bound q on quantum communication complexity, it implies a violation of 2c−2q.

Theorem 5.3.2. For any distribution p and any 0 ≤ ε′ ≤ ε ≤ 1, if (B, β) is a feasible
solution to the dual of eff ε(p) and (ζ,q) is a feasible solution to the primal for eff?

ε′(p), then
there is a quantum distribution q ∈ Q such that

B(q) ≥ ζβ and B(`) ≤ 1, ∀` ∈ L⊥det ,

and in particular, if both are optimal solutions, then

B(q) ≥ eff ε(p)

eff?
ε′(p)

.

The distribution q has one additional output per player compared to the distribution p.

Proof. Let (B, β) be a feasible solution to the dual of eff ε(p), p′ be such that eff?
ε′(p) =

eff?(p′) with |p′ − p|1 ≤ ε′, and (ζ,q) be a feasible solution to the primal for eff?(p′). From
the constraints, we have

q ∈ Q⊥,
q(a, b|x, y) = ζp′(a, b|x, y) ∀(a, b, x, y) ∈ A× B × X × Y,
B(`) ≤ 1 ∀` ∈ L⊥det,
B(p′′) ≥ β ∀p′′ s.t. |p′′ − p|1 ≤ ε.

Then B(q) = ζB(p′) ≥ ζβ. However, q ∈ Q⊥ but technically we want a distribution in Q
(not one that aborts). So we add a new (valid) output ‘A’ to the set of outputs of each player,
and they should output ‘A’ instead of aborting whenever q aborts. The resulting distribution,
say q ∈ Q (with additional outcomes ‘A’ on both sides), is such that B(q) = B(q) (since the
Bell functional B does not have any weight on ⊥ or on ‘A’).

Theorem 5.3.1 [BCG+16] and Theorem 5.3.2 are both general constructions, but there
are a few significant differences worth pointing out. Firstly, our Theorem 5.3.2 requires a
lower bound on the partition bound in the numerator, whereas Theorem 5.3.1 only requires a
lower bound on communication complexity (which could be exponentially larger). Secondly,
Theorem 5.3.1 requires a quantum communication protocol in the denominator, whereas our
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theorem only requires an upper bound on the quantum efficiency (which could be exponen-
tially smaller). Thirdly, although our bound is exponentially larger than Buhrman et al.’s
for most problems considered here, and applies to subquadratic gaps, their bounds are of the
more restricted class of normalized Bell inequalities.

Theorem 5.3.2 gives an explicit Bell functional B provided an explicit solution to the
efficiency (partition) bound is given and the quantum distribution is obtained from a solution
to the primal of eff? (Proposition 5.1.10). Recall that giving a solution to the primal of
eff? consists in exhibiting a quantum zero-communication protocol that can abort, which
conditioned on not aborting, outputs following p.

We can also start from a quantum protocol, as we show below. From the quantum protocol,
we derive a quantum distribution using standard techniques.

Corollary 5.3.3. For any distribution p and any 0 ≤ ε′ ≤ ε ≤ 1 such that Rε(p) ≥
log(eff ε(p)) ≥ c and Qε′(p) ≤ q, there exists an explicit inefficiency-resistant B derived
from the efficiency lower bound, and an explicit quantum distribution q ∈ Q derived from the
quantum protocol such that B(q) ≥ 2c−2q.

Proof. Let (B, β) be an optimal solution to eff ε(p) and let c be such that eff ε(p) = β ≥ 2c.
By optimality of B, we have B(p′) ≥ 2c for any p′ such that |p′ − p|1 ≤ ε. Since Qε′(p) ≤ q,
there exists a q-qbit quantum protocol for some distribution p′ with |p′ − p|1 ≤ ε. Then, we
can use teleportation to obtain a 2q classical bit, entanglement-assisted protocol for p′. We
can simulate it without communication by picking a shared 2q-bit random string and running
the protocol but without sending any messages. If the measurements do not match the string,
output a new symbol ‘A’ (not in the output set of the quantum protocol and different from
⊥). We obtain a quantum distribution q such that B(q) = B(p′)/22q ≥ 2c−2q.

Most often, communication lower bounds are not given as efficiency or partition bounds,
but rather using variants of the corruption bound. We show in Section 5.5.1 how to map a
corruption bound to explicit Bell coefficients.

5.4 Noise-resistant violations from communication bounds

Normalized Bell inequalities are naturally resistant to any local noise: if the observed distri-
bution is p̃ = (1 − ε)p + ε` for some ` ∈ L, then B(p̃) ≥ (1 − ε)B(p) − ε since |B(`) |≤ 1.
In inefficiency-resistant Bell inequalities, relaxing the absolute value leads to the possibility
that B(`) has a large negative value for some local `. (Indeed, such large negative values are
inherent to large gaps between ν and eff .) If this distribution were to be used as adversarial
noise, then the observed distribution, (1 − ε)p + ε`, would have a Bell value that could be
much less than 1. This makes inefficiency-resistant Bell inequalities susceptible to adversarial
local noise.

Our construction from Theorem 5.3.2 is susceptible to uniform noise since most of the time,
the output is ‘A’. Uniform noise will disproportionately hit the non-‘A’ outputs, destroying
the structure of the distribution. In Theorem 5.4.1, we show that our construction can be
made resistant to uniform noise, by including a (possible) transcript from the protocol in the
outputs. (Notice that this leads to a much larger output set.) Since the transcripts in our
construction are teleportation measurements, they follow a uniform distribution, making the
modified distribution resistant to uniform noise. The tolerance to noise comes from the error
parameter in the classical communication lower bound.
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Let Nε(p) be the ε-noisy neighbourhood of p, defined as

Nε(p) = {(1− δ)p + δu | δ ∈ [0, ε]}
where u the uniform noise distribution, that is: u(a, b|x, y) = 1

|A|·|B| for all (a, b) ∈ A× B.

Theorem 5.4.1. For any distribution p and any 0 ≤ ε′ ≤ ε ≤ 1 such that Rε(p) ≥
log(eff ε(p)) ≥ c and Qε′(p) ≤ q, there exists an explicit inefficiency-resistant B̃ derived
from the efficiency lower bound, and an explicit quantum distribution q ∈ Q derived from the
quantum protocol such that B̃(q′) ≥ 2c−2q for any q′ ∈ Nε−ε′(q).

Proof. From a quantum communication protocol for p′ with |p′ − p|1 ≤ ε′ using q qubits of
communication, we construct an entanglement-assisted protocol using 2q bits of communica-
tion and teleportation. LetMA (resp. MB) be the set of possible transcripts for Alice (resp.
Bob), with |MA |= MA (resp. |MB |= MB), and note that logMA + logMB = 2q

We define the quantum distribution q where Alice’s possible outputs are A ×MA and
Bob’s possible outputs are B ×MB. Alice proceeds as follows (Bob proceeds similarly):

1. She runs the quantum protocol for p′ as if all bits received from Bob were 0.

2. She outputs (a, µA), where µA is the transcript of the messages she would have sent to
Bob and a is the output she would have produced in the original protocol.

By definition, this distribution is such that, for all a, b, x, y, q(a, 0, b, 0|x, y) = 1
22q p

′(a, b|x, y).
Let eff ε(p) ≥ 2c be achieved by the Bell functional B. By definition, we have

B(`) ≤ 1 ∀` ∈ L⊥det
B(p′′) ≥ 2c ∀p′′ such that |p′′ − p|1 ≤ ε,

In particular for any p′′ ∈ Nε−ε′(p), that is, p′′ = (1 − δ)p + δu for some δ ∈ [0, ε − ε′], we
have |p′′ − p|1 ≤ ε and therefore

B(p′′) = (1− δ)B(p′) + δB(u) ≥ 2c,

where B(u) = 1
|A×B|

∑
a,b,x,y Ba,b,x,y.

Let the Bell functional B̃ for distributions over (A ×MA) × (B × MB) be defined as
follows

B̃(a,µA),(b,µB),x,y =

{
Ba,b,x,y if µA = µB = 0
0 otherwise.

Let L̃⊥det be the local set for distributions over (A ×MA) × (B ×MB). The new Bell
functional satisfies B̃(`) ≤ 1 for all ` ∈ L̃⊥det (by assimilating any event with µA 6= 0 or µB 6= 0
to an abort event), as well as B̃(q) = 1

22qB(p′). Therefore, ∀δ ∈ [0, ε− ε′], we also have

(1− δ)B̃(q) + δB̃(u) = (1− δ) 1

22q
B(p′) + δ

1

|A × B|MAMB

∑
a,µA,b,µB ,x,y

B̃(a,µA),(b,µB),x,y

=
1

22q

(1− δ)B(p′) + δ
1

|A × B|
∑
a,b,x,y

Ba,b,x,y


=

1

22q

[
(1− δ)B(p′) + δB(u)

]
≥ 2c

22q
.

Therefore, ∀q′ ∈ Nε−ε′(q), B̃(q′) ≥ 2c−2q, as claimed.
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5.5 Explicit constructions

5.5.1 From corruption bound to Bell inequality violation

The corruption bound, introduced by Yao in [Yao83], is a very useful lower bound technique.
It has been used for instance in [Raz92] to get a tight Ω(n) lower bound on the randomized
communication complexity of Disjointness (whereas the approximate rank, for example, can
only show a lower bound of Θ(

√
n)). We now explain how to construct an explicit Bell

inequality violation from the corruption bound.

Definition 5.5.1. A rectangle R of the input space X × Y is a subset of that space of the
form RA ×RB where RA ⊆ X and RB ⊆ Y.

Theorem 5.5.2 (Corruption bound [Yao83, BFS86, KN97]). Let f be a (possibly partial)
Boolean function on X × Y. Given γ, δ ∈ (0, 1), suppose that there is a distribution µ on
X × Y such that for every rectangle R ⊆ X × Y

µ(R ∩ f−1(1)) > γµ(R ∩ f−1(0))− δ.

Then, for every ε ∈ (0, 1), 2Rε(f) ≥ 1
δ

(
µ(f−1(0))− ε

γ

)
.

See, e.g., Lemma 3.5 in [BPSW06] for a rigorous treatment. For several problems, such
a µ is already known. In Theorem 5.5.3 below we show how to construct a Bell inequality
violation from this type of bound.

Theorem 5.5.3. Let f be a (possibly partial) Boolean function on X × Y, where X ,Y ⊆
{0, 1}n. Fix z ∈ {0, 1}. Let µ be an input distribution, and (Ui)i∈I (resp. (Vj)j∈J) be a family
of pairwise nonoverlapping subsets of f−1(z̄) (resp. of f−1(z)). Assume that there exists
g : N→ (0,+∞) and real constants (ui)i∈I , (vi)i∈I such that, for any rectangle R ⊆ X × Y∑

i∈I
uiµ(R ∩ Ui) ≥

∑
j∈J

vjµ(R ∩ Vj)− g(n). (5.3)

Then, the Bell functional B given by the following coefficients: for all (a, b, x, y) ∈ {0, 1} ×
{0, 1} × X × Y,

Ba,b,x,y =


1/2(−uig(n)−1µ(x, y)) if (x, y) ∈ Ui and a⊕ b = z,

1/2(vjg(n)−1µ(x, y)) if (x, y) ∈ Vj and a⊕ b = z,

0 otherwise.

satisfies

B(`) ≤ 1, ∀` ∈ L⊥det, (5.4)

B(pf ) =
1

2 · g(n)

∑
j

vjµ(Vj) (5.5)

and for any p′ such that |p′ − pf |1 ≤ ε :

B(p′) ≥ 1

2 · g(n)

∑
j

vjµ(Vj)− ε

∑
j

|vj |µ(Vj) +
∑
i

|ui|µ(Ui)

 . (5.6)



5.5. Explicit constructions 85

Proof. Let us first set Bz,x,y = Ba,b,x,y for all a ⊕ b = z. Let ` ∈ L⊥det. Then, we have:
B(`) =

∑
(x,y)∈RBz,x,y +

∑
(x,y)∈S Bz,x,y, where R and S are the two rectangles where `

outputs z. Let us take a rectangle R. Then

∑
(x,y)∈R

Bz,x,y =
1

2 · g(n)

∑
j

vjµ(Vj ∩R)−
∑
i

uiµ(Ui ∩R)

 ≤ 1/2

with the inequality following from (5.3). This proves (5.4). Let us now analyseB(pf ). By
linearity of B and the definition of its coefficients, we have:

B(pf ) =
∑
a,b,x,y

Ba,b,x,ypf (a, b|x, y)

=
1

2

∑
(x,y)∈f−1(z),a,b

Ba,b,x,yχ{z}(a⊕ b) +
1

2

∑
(x,y)∈f−1(z̄),a,b

Ba,b,x,yχ{z̄}(a⊕ b)

=
1

2

∑
j

∑
(x,y)∈Vj

vjg(n)−1µ(x, y)

=
1

2 · g(n)

∑
j

vjµ(Vj)

(for the third equality we used the fact that Ba,b,x,y = 0 when a⊕ b = z̄). This proves (5.5).
Moreover, for any family of additive error terms ∆(a, b|x, y) ∈ [−1, 1] such that∑

a,b

|∆(a, b|x, y)| ≤ ε ∀x, y ∈ X × Y,

denoted collectively as ∆, we have

|B(∆)| =

∣∣∣∣∣∣
∑
a,b,x,y

Ba,b,x,y∆(a, b|x, y)

∣∣∣∣∣∣
=

1

2 · g(n)

∣∣∣∣∣∣
∑

a,b : a⊕b=z

∑
i

∑
(x,y)∈Ui

(−ui)µ(x, y)∆(a, b|x, y)

+
∑
j

∑
(x,y)∈Vj

vjµ(x, y)∆(a, b|x, y)

∣∣∣∣∣∣
≤ 1

2 · g(n)

∑
i

∑
(x,y)∈Ui

|ui|µ(x, y)

∑
a,b

|∆(a, b|x, y)|


+
∑
j

∑
(x,y)∈Vj

|vj |µ(x, y)

∑
a,b

|∆(a, b|x, y)|


≤ ε

2 · g(n)

∑
i

|ui|µ(Ui) +
∑
j

|vj |µ(Vj)

 .
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From this calculation and (5.5), we obtain, for p′ = pf + ∆ :

B(p′) = B(pf ) +B(∆) ≥ 1

2 · g(n)

∑
j

vjµ(Vj)− ε

∑
j

|vj |µ(Vj) +
∑
i

|ui|µ(Ui)

 ,
which proves (5.6).

For many other problems in the literature, such as Vector in Subspace and Tribes, stronger
variants of the corruption bound are needed to obtain good lower bounds. These stronger
variants have been shown to be no stronger than the partition bound (more specifically, the
relaxed partition bound) [KLL+15]. The generalization in Theorem 5.5.3 of the hypothesis
of Theorem 5.5.2, which the reader might have notice, allow us to construct explicit Bell
functionals also for these problems.

5.5.2 Some specific examples

Using Corollary 5.3.3 and the construction to go from a corruption bound (or its variants) to
a Bell inequality (Theorem 5.5.3), we give explicit Bell inequalities and violations for several
problems studied in the literature. Since our techniques also apply to small gaps, we include
problems for which the gap between classical and quantum communication complexity is
polynomial.

Vector in Subspace

In the Vector in Subspace Problem VSP0,n, Alice is given an n/2 dimensional subspace of an
n dimensional space over R, and Bob is given a vector. This is a partial function, and the
promise is that either Bob’s vector lies in the subspace, in which case the function evaluates
to 1, or it lies in the orthogonal subspace, in which case the function evaluates to 0. Note
that the input set of VSP0,n is continuous, but it can be discretized by rounding, which leads

to the problem ṼSPθ,n (see [KR11] for details). Klartag and Regev [KR11] show that the
VSP can be solved with an O(log n) quantum protocol, but the randomized communication
complexity of this problem is Ω(n1/3). As shown in [KLL+15], this is also a lower bound on
the relaxed partition bound. Hence Corollary 5.3.3 yields the following.

Proposition 5.5.4. There exists a Bell inequality B and a quantum distribution qV SP ∈ Q
such that B (qV SP ) ∈ 2Ω(n1/3)−O(logn) and for all ` ∈ L⊥det, B(`) ≤ 1.

Note that the result of [KR11] (Lemma 4.3) is not of the form needed to apply The-
orem 5.5.3. It is yet possible to obtain an explicit Bell functional following the proof of
Lemma 5.1 in [KLL+15].

Disjointness

In the Disjointness problem, the players receive two sets and have to determine whether they
are disjoint or not. More formally, for every n, if we denote with P([n]) the power set of
{1, . . . , n}, the DISJn predicate is defined over X = Y = P([n]) by

DISJn(x, y) = 1 iff x and y are disjoint
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It is also convenient to see this predicate as defined over length n inputs, where for x, y ∈
{0, 1}n,

DISJn(x, y) = 1 iff |{i : xi = 1 = yi}| = 0

In [Raz92], Razborov proved the following.

Lemma 5.5.5 ([Raz92]). There exist two distributions µ0 and µ1 with supp(µ0) ⊆ DISJ−1
n (1)

and supp(µ1) ⊆ DISJ−1
n (0), such that: for any rectangle R in the input space,

µ1(R) ≥ Ω(µ0(R))− 2Ω(n).

Following his proof, one can check that we actually have:

µ1(R) ≥ 1

45
µ0(R)− 2−εn+log2(2/9).

So, letting µ := (µ0 + µ1)/2,

µ(R ∩ f−1(0)) ≥ 1

45
µ(R ∩ f−1(1))− 2−εn+log2(4/9). (5.7)

Remark 5.5.6. Actually, supp(µ1) = A1 := {(x, y) : |x| = |y| = m, |x∩y| = 1} ⊆ DISJ−1
n (0).

Note that by this construction, µ(f−1(0)) = µ(f−1(1)) = 1/2. Combining (5.7) with
Theorem 5.5.3 (with g(n) = 2−εn+log2(4/9)), we obtain:

Corollary 5.5.7. There exists a Bell inequality B satisfying: ∀` ∈ L⊥det, B(`) ≤ 1,

B(pDISJn) =
1

90
2εn−log2(4/9),

and for any distribution p′ such that |p′ − pDISJn |1 ≤ ε,

B(p′) ≥ 2εn−log2(4/9) 1− 46ε

90
.

More precisely, Theorem 5.5.3 gives an explicit construction of such a Bell inequality: we
can define B as:

Ba,b,x,y =


−2εn−log2(4/9)µ(x, y) if DISJn(x, y) = 0 and a⊕ b = 1
1
452εn−log2(4/9)µ(x, y) if DISJn(x, y) = 1 and a⊕ b = 1

0 otherwise.

Combining Corollary 5.3.3 together with the fact there is a quantum protocol for DISJn
using O(

√
n) communication [AA05] we obtain, through Corollary 5.3.3, the following:

Proposition 5.5.8. There is a quantum distribution qDISJ ∈ Q and an explicit Bell inequal-
ity B satisfying: B(qDISJ) = 2Ω(n)−O(

√
n), and for all ` ∈ L⊥det, B(`) ≤ 1.
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Tribes.

Let n = (2r + 1)2 with r ≥ 2 and let TRIBESn : {0, 1}n × {0, 1}n → {0, 1} be defined as:

TRIBESn(x, y) :=

√
n∧

i=1

√n∨
j=1

(x(i−1)
√
n+j and y(i−1)

√
n+j)

 .

In [HJ13][Sec. 3] the following is proven:

Lemma 5.5.9. There exists a probability distribution µ on {0, 1}n × {0, 1}n for which there
exist numbers α, λ, γ, δ > 0 such that for sufficiently large n and for any rectangle R in the
input space:

γµ(U1 ∩R) ≥ αµ(V1 ∩R)− λµ(V2 ∩R)− 2−δn/2+1

where U1 = TRIBES−1
n (0), {V1, V2} forms a partition of TRIBES−1

n (1) and µ(U1) = 1 −
7β2/16, µ(V1) = 6β2/16, µ(V2) = β2/16 with β = r+2

r+1 .

In [HJ13], the coefficients are α = 0.99, λ = 16
3(0.99)2 and γ = 16

(0.99)2 (the authors say these

values have not been optimized).

Combining this result with our Theorem 5.5.3 (taking z = 1, i = 1, j = 2, U1, V1, V2 as in
Lemma 5.5.9, u1 = γ, v1 = α, v2 = −λ, and g(n) = 2−δn/2+1), we obtain:

Corollary 5.5.10. There exists a Bell inequality satisfying: ∀` ∈ L⊥det, B(`) ≤ 1,

B(pTRIBESn) = 2δn/2−1β
2

16
(6α− λ),

and for any distribution p′ such that |p′ − pTRIBESn |1 ≤ ε,

B(p′) ≥ 2δn/2−1

[
β2

16
(6α− λ)− ε(γ(1− 7β2/16) + λβ2/16 + α6β2/16)

]
.

More precisely, Theorem 5.5.3 provides a Bell inequality B yielding this bound, defined
as:

Ba,b,x,y =


−γ2δn/2−1µ(x, y) if (x, y) ∈ U1 and a⊕ b = 1

α2δn/2−1µ(x, y) if (x, y) ∈ V1 and a⊕ b = 1

−λ2δn/2−1µ(x, y) if (x, y) ∈ V2 and a⊕ b = 1

0 otherwise.

Combining Corollary 5.5.10 together with the fact there is a quantum protocol for TRIBESn
using O(

√
n(log n)2) communication [BCW98] we obtain, through Corollary 5.3.3, the follow-

ing:

Proposition 5.5.11. There is a quantum distribution qTRIBES ∈ Q and an explicit Bell
inequality B satisfying: B(qTRIBES) = 2Ω(n)−O(

√
n(logn)2), and for all ` ∈ L⊥det, B(`) ≤ 1.
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Gap Orthogonality.

The Gap Orthogonality (ORT) problem was introduced by Sherstov as an intermediate step
to prove a lower bound for the Gap Hamming Distance (GHD) problem [She12]. We derive an
explicit Bell inequality for ORT from Sherstov’s lower bound of Ω(n), shown in [KLL+15] to
be a relaxed partition bound. (Applying Corollary 5.3.3 also gives a (non-explicit) violation
for GHD.) The quantum upper bound is O(

√
n log n) by the general result of [BCW98]. In the

ORT problem, the players receive vectors and need to tell whether they are nearly orthogonal
or far from orthogonal. More formally, we consider the input space {−1,+1}n (to stick to the
usual notations for this problem), and we denote 〈·, ·〉 the scalar product on {−1,+1}n. Let
ORTn : {−1,+1}n × {−1,+1}n → {−1,+1} be the partial function defined as in [She12] by:

ORTn(x, y) =

{
−1 if |〈x, y〉| ≤ √n
+1 if |〈x, y〉| ≥ 2

√
n.

Let fn be the partial functions over {−1,+1}n×{−1,+1}n by fn(x, y) = ORT64n(x64, y64),
that is:

fn(x, y) =

{
−1 if |〈x, y〉| ≤ √n/8
+1 if |〈x, y〉| ≥ √n/4.

In [She12], Sherstov proves the following result.

Lemma 5.5.12 ([She12]). Let δ > 0 be a sufficiently small constant and µ the uniform
measure over {0, 1}n×{0, 1}n . Then, µ(f−1

n (+1)) = Θ(1) and for all rectangle R in {0, 1}n×
{0, 1}n such that µ(R) > 2−δn,

µ(R ∩ f−1
n (+1)) ≥ δµ(R ∩ f−1

n (−1)).

This implies that if we put uniform weight on inputs of ORT64n of the form (x64, y64) and
put 0 weight on the others, we get a distribution µ′ satisfying the constraints of Theorem
5.5.3 for ORT64n together with γ = δ from Lemma 4 and g(64n) = 2δn.

To get a distribution satisfying the constraints of Theorem 5.5.3 on inputs of ORT64n+l

for all 0 ≤ l ≤ 63 we extend µ′ as follows:

µ̃(xu, yv) =


µ′(x, y) if u = +1l and v = −1l and

(
〈x, y〉 < −

√
64n or 0 ≤ 〈x, y〉 ≤

√
64n

)
µ′(x, y) if u = +1l and v = +1l and

(
−
√

64n ≤ 〈x, y〉 < 0 or 〈x, y〉 >
√

64n
)

0 otherwise

Using this distribution µ̃ together with γ = δ from Lemma 5.5.12 and with g(n) = 2−δn

we obtain, from Theorem 5.5.3, a Bell inequality violation for ORT64n+l for all 0 ≤ l ≤ 63:

Corollary 5.5.13. There exists a Bell inequality B satisfying: ∀` ∈ L⊥det, B(`) ≤ 1,

B(pORT64n+l
) = 2δnδµ̃(ORT−1

64n+l(−1)),

and for any distribution p′ such that |p′ − pORT64n+l
|1 ≤ ε,

B(p′) ≥ 2δn
(
δµ̃(ORT−1

64n+l(−1))− ε
[
δµ̃(ORT−1

64n+l(−1)) + µ̃(ORT−1
64n+l(+1))

])
.



More precisely, Theorem 5.5.3 gives an explicit construction of such a Bell inequality: we
can define B as:

Ba,b,x,y =


−2δnµ̃(x, y) if (x, y) ∈ ORT−1

64n+l(+1) and a⊕ b = −1

δ2δnµ̃(x, y) if (x, y) ∈ ORT−1
64n+l(−1) and a⊕ b = −1

0 otherwise.

Combining Corollary 5.5.13 together with the fact thatQε′(ORTn) = O(
√
n log n) [BCW98]

we obtain, through Corollary 5.3.3, the following:

Proposition 5.5.14. There is a quantum distribution qORT ∈ Q and an explicit Bell in-
equality B satisfying: B(qORT) = 2Ω(n)−O(

√
n logn), and for all ` ∈ L⊥det, B(`) ≤ 1.

5.6 Discussion

We have given three main results. First, we showed that normalized Bell inequalities can
be modified to be bounded in absolute value on the larger set of local distributions that can
abort without significantly changing the value of the violations achievable with non-signaling
distributions. Then, we showed how to derive large inefficiency-resistant Bell violations from
any gap between the partition bound and the quantum communication complexity of some
given distribution p. The distributions q achieving the large violations are relatively simple
(only 3 outputs for boolean distributions p) and can be made resistant to uniform noise at
the expense of an increase in the number of outputs exponential in Q(p). Finally, we showed
how to construct explicit Bell inequalities when the separation between classical and quantum
communication complexity is proven via the corruption bound.

From a practical standpoint, the specific Bell violations we have studied are probably not
feasible to implement, because the parameters needed are still impractical or the quantum
states are infeasible to implement. However, our results suggest that we could turn our
attention to functions with small gaps in communication complexity, in order to find practical
Bell inequalities that are robust against uniform noise and detector inefficiency.

To be more specific, let us consider an experimental setup with non-abort probability
η per side, and ε uniform noise. Suppose we have a Boolean function with a lower bound
of c > 3 log(1/η2) on classical communication with ε′ error, and an (ε′−ε)-correct quantum
protocol, with ε′ > ε, using q = log(1/η2) qubits. Our construction gives an inefficiency-
resistant Bell violation of 2c−2q > 1/η2, which is robust against ε uniform noise (the number
of outcomes per side increases to 2

η2 ). Factoring in the inefficiency, the observed violation

would still be η22c−2q > 1.



RESUMEN DEL CAPÍTULO

La cuestión de alcanzar grandes violaciones de Bell ha sido estudiada desde el articulo sem-
inal de Bell en 1964 [Bel64]. En una linea de investigación, propuestas han sido hechas
para exhibir familias de distribuciones que admiten violaciones no acotadas [Mer90, LPŻB04,
NLP06, PGWP+08]. En otra, varias medidas de no-localidad han sido estudiadas, como
ser la cantidad de comunicación necesaria y suficiente para simular distribuciones cuánticas
clásicamente[Mau92, BCT99, Ste00, TB03a, Pir03, DKLR11], o la resistencia a ineficiencias de
detección y ruido. Más recientemente, el foco ha pasado a dar cotas superiores e inferiores en
las violaciones alcanzables, en términos de varios parámetros: cantidad de jugadores, cantidad
de entradas, cantidad de salidas, dimensión del estado cuántico, y nivel de entrelazamiento
[DKLR11, JPPG+10b, JP11].

Hasta bastante recientemente, las violaciones fueron estudiadas en el caso de distribu-
ciones espećıficas (midiendo estados de Bell), o familias de distribuciones. Buhrman et
al. [BRSdW12] dio una construcción que puede ser aplicada a varios problemas que tienen
protocolos de comunicación cuántica eficientes (Definition 1.10.7), y para los cuales uno puede
mostrar un trade-off entre comunicación y error en el setting clásico. Esto todav́ıa requeŕıa
un análisis ad hoc de problemas de comunicación. Recientemente Buhrman et al. [BCG+16]
propusieron la primera construcción general de estados cuánticos junto con desigualdades
de Bell a partir de cualquier problema de comunicación. Los estados cuánticos violan las
desigualdades de Bell cuando hay un espacio suficientemente grande entre la complejidad co-
municacional cuántica y clásica (se necesita un espacio supra-cuadrático, al menos que exista
un protocolo cuántico sin memoria local).

Volvemos al asunto de alcanzar grandes violaciones de Bell al explotar conexiones conoci-
das con complejidad comunicacional. Cotas inferiores fuertes en complejidad comunicacional,
equivalentes a la cota de partición [JK10], equivalen a encontrar desigualdades de Bell re-
sistentes a ineficiencias [LLR12]. Estas son funciones de Bell que están acotadas superior-
mente por 1 en todas las distribuciones locales que pueden abortar.

Primero estudiamos la resistencia de desigualdades de Bell a la ineficiencia. Mostramos
que, hasta un factor constante en el valor de la violación, cualquier desigualdad de Bell
normalizada puede ser hecha resistente a ineficiencia a la vez que mantiene la propiedad de
normalización (Theorem 5.2.1).

Segundo, mostramos cómo derivar grandes violaciones de Bell a partir de cualquier prob-
lema de comunicación para el cual la cota de partición está acotada inferiormente y la comple-
jidad computacional cuántica está acotada superiormente. Los problemas estudiados en com-
plejidad computacional se encuentran mucho más allá del conjunto cuántico, pero mostramos
cómo derivar fácilmente una distribución cuántica a partir de un protocolo cuántico. El valor
de Bell que obtenemos es 2c−2q, donde c es la cota inferior de partición en la complejidad co-
municacional clásica del problema considerado, y q es una cota superior sobre su complejidad
de comunicación cuántica (Theorem 5.3.2 y Corollary 5.3.3). La distribución cuántica
tiene una salida extra por cada jugador comparada con la distribución original y usa la misma
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cantidad de entrelazamiento que el protocolo cuántico y tantos pares EPR como son necesar-
ios para teleportar en el protocolo la comunicación cuántica. Mostramos que estas violaciones
de Bell pueden ser hechas resistentes al ruido, al costo de un factor 22q en el número de salidas
por jugador (Theorem 5.4.1).

Finalmente, proveemos herramientas para construir desigualdades de Bell a partir de
cotas inferiores de comunicación en la literatura. Cotas inferiores usadas en la práctica para
separar complejidad comunicacional clásica de la cuántica usualmente son conseguidas usando
cotas de corrupción y sus variantes. En Theorem 5.5.3, damos una construcción expĺıcita
que traduce estas cotas en un adecuado funcional de Bell. La tabla 5.3 resume los nuevos
resultados o mejoras que obtenemos en este trabajo.

Problema Violaciones normalizadas de
Bell [BCG+16]

Violaciones de Bell
resistentes a ineficiencia (este

trabajo)

VSP [Raz99a, KR11]
Ω
(

6
√
n/
√

log n
)

d = 2Θ(n logn),K = 2Θ(n)
2Ω( 3√n)−O(logn)

d = 2O(logn),K = 3

DISJ [Raz92, Raz03, AA05] N/A 2Ω(n)−O(
√
n)

d = 2O(
√
n),K = 3

TRIBES [JKS03, BCW98] N/A 2Ω(n)−O(
√
n log2 n)

d = 2O(
√
n log2 n),K = 3

ORT [She12, BCW98] N/A 2Ω(n)−O(
√
n logn)

d = 2O(
√
n logn),K = 3

Tab. 5.3: Comparación de las violaciones de Bell obtenidas por la construcción general de Buhrman et
al. [BCG+16] para violaciones de Bell normalizadas (segunda columna) y este trabajo, para
violaciones de Bell resistentes a ineficiencia (ver Propositions 5.5.4, 5.5.8, 5.5.11, and 5.5.14),
en términos de la dimensión d del espacio de Hilbert local, el tamaño n de conjuntos de config-
uración de mediciones (o entradas) (t́ıpicamente X = Y = {0, 1}n) y el número de resultados
K (o salidas) por parte de las distribuciones cuánticas. Desigualdades de Bell expĺıcitas son
dadas en la Sección5.5.2. La construcción de Buhrman et al. solo da una violación cuando
el espacio entre las complejidades clásica y cuánticas es mayor que cuadrática. En el caso en
que el espacio sea demasiado pequeño como para provar una violación, indicamos esto con
“N/A”.



6. OPEN QUESTIONS AND FUTURE RESEARCH

We close this thesis with a list of the main questions that remain open in each chapter.

In Chapter 2, we have shown that if at least one of the players in a bipartite Bell experiment
uses a computable function f to choose his inputs, then an eavesdropper without knowledge
of f can prepare seemingly non-local boxes provided she knows a computable upper bound on
the time computational complexity of f . In spite of the fact that every computable function
f is computable O(T (n))-time for some computable time bound T (furthermore, as discussed
before, such a bound can be derived from physical assumptions on the computing devices)
and therefore every Bell experiment with computable inputs is subject to our loophole, it is
natural to wonder if we can give a strategy for the eavesdropper which is independent of the
running time of the target f .

Second, in Chapter 3, we have shown that any model of Nature predicting non-local
correlations between the outputs of distributed computing devices, linked via some kind of
instantaneous hidden-signaling mechanism, is in conflict with special relativity. As in Chapter
2, we have an assumption about the time computational complexity of the devices, this time
to prove the soundness of the protocol derived. Therefore, again one can study the possibility
of getting rid of that assumption. Furthermore, it is interesting to study if even with non-
computable devices one can still have signaling.

Third, in Chapter 4, we have shown that no amount of pseudorandomness is enough to
prepare a maximally mixed state as a mixture of pure states. The distinguishing procedures
given, although sufficient to reach the theoretical result, are far from being efficient and
therefore, from a cryptographic perspective, unfair (in cryptography, Bob, being the adversary,
is usually limited to polynomial resources). Hence, a future line of research could be to come
up with efficient distinguishing protocols.

Finally, in Chapter 5, we have shown how to derive quantum Bell violations, resistant
to the detection loophole and uniform noise, from any gap between the partition bound and
quantum communication complexity (QCC). Although it is one the largest lower bounds on
classical communication complexity (CC) so far, we know that, for low complexities, the
partition bound is not tight [GJPW15]. Hence, it is possible that the general construction of
[BCG+16] (requiring, as the reader may recall, a quadratic gap between CC and QCC) applies
to functions for which ours does not. Therefore, it is interesting to investigate whether we can
come up with a general construction, via CC lower bounds, that works for every gap between
CC and QCC. Or, at least, one that works when there is a, say, quadratic gap but has the
nice properties in terms of resource usage (number of outputs, amount of entanglement, etc)
that ours have. Another open question relates to the study of upper bounds for the quantum
violations of Bell inequalities. For normalized Bell inequalities, it is known that the maximum
violation is upper bounded by max{d,K,N} with d the local dimension of the Hilbert spaces
and N (resp. K) the number of inputs (resp. outputs) per side (see Table 5.2). For the
quantum violations of inefficiency-resistant Bell inequalities, we have an upper bound of N
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and we know that they are not bounded by the K (we have given exponential violations with
K = 3) but we do not know any bound in terms of d.



RESUMEN DEL CAPÍTULO

Cerramos esta tesis con una lista de las principales preguntas abiertas que surgen de cada
caṕıtulo.

Caṕıtulo 2. En el caṕıtulo 2, hemos mostrado que si al menos uno de los jugadores en un
experimento bipartito de Bell usa una función computable f para elegir sus entradas, entonces
un esṕıa sin conocimiento de f puede preparar cajas aparentemente no-locales siempre y
cuando sepa una cota superior computable a la complejidad temporal de f .

A pesar de que toda función computable f es computable en tiempo O(T (n)) para al-
guna cota temporal computable T (más aún, como se discutió, tal cota puede ser derivada
de hipotesis f́ısicas sobre los dispositivos computacionales intervinientes) y, por lo tanto, todo
experimento de Bell con entradas computables es pasible de nuestro loophole, es natural pre-
guntarse si se puede dar una estrategia para el esṕıa que sea independiente de la complejidad
temporal de f .

Caṕıtulo 3. En el caṕıtulo 3, hemos mostrado que cualquier modelo para la Naturaleza que
prediga correlaciones no-locales entre las salidas de dispositivos computacionales distribuidos,
vinculados a través de algún tipo de mecanismo de señalización instantáneo, está en conflicto
con la relatividad especial.

Aśı como en el caṕıtulo 2, tenemos una hipótesis sobre la complejidad temporal de los
dispositivos, esta vez para probar la correctitud del protocolo presentado. Por lo tanto, de
nuevo uno puede preguntarse acerca de la posibilidad de deshacerse de tal hipótesis. Más
aún, seŕıa interesante estudiar si aún con dispositivos no-computables uno todav́ıa puede
tener señalización.

Caṕıtulo 4. En el caṕıtulo 4, hemos mostrado que no hay cantidad de pseudoaleatoriedad
suficiente que permita preparar el estado máximamente mixto como una mezcla de estados
puros.

El protocolo de realizar la distinción presentado, aunque suficiente para concluir el re-
sultado teórico, está lejos de ser eficiente y entonces, desde una perspectiva criptográfica, es
injusto (en criptograf́ıa, Bob, el adversario, está usualmente limitado a recursos polinomiales).
Por lo tanto, una linea de investigación futura podŕıa ser la de tratar de encontrar protocolos
de distinción eficientes.

Caṕıtulo 5. Finalmente, en el caṕıtulo 5, hemos mostrado cómo derivar violaciones cuánticas
de Bell, resistentes al loophole de la detección y a ruido uniforme, de cualquier separación
entre la partition-bound y la complejidad comunicacional cuántica (CCQ).

A pesar de que es de las cotas inferiores a la complejidad comunicacional clásica (CC)
más ajustadas que se han desarrollado hasta el momento, sabemos que, para complejidades
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bajas, la partition-bound coincide con la estrictamente menor a la CC [GJPW15]. Por lo
tanto, es posible que la construcción general de Buhrman et al. [BCG+16] (la cual requiere,
como el lector recordará, una separación cuadrática entre QCC y CCC), aplique a funciones
para las cuales nuestra construcción no aplica. En consecuencia, seŕıa interesante investigar la
posibilidad de encontrar una construcción general, via cotas inferiores a la CC, que funcione
para cualquier gap entre QCC y CC; o, por lo menos, una que funcione para cuando hay,
digamos, una separación cuadrática pero que tengas las buenas propiedades en términos de
utilización de recursos (número de salidas, cantidad entrelazamiento, etc) que tiene nuestra
construcción.

Otra pregunta abierta tiene que ver con el estudio de cotas superiores a las violaciones
cuánticas de desigualdades de Bell. Para desigualdades de Bell normalizadas, se sabe que la
máxima violación está acotada superiormente por max{d,K,N} , con d la dimensión de los
espacios de Hilbert locales y N (resp. K) la cantidad de entradas (resp. salidas) por lado (ver
la Tabla 5.2). Para la violación máxima de desigualdades de Bell resistentes-a-ineficiencias,
tenemos una cota superior de N y sabemos que no están acotadas por K (dimos violaciones
exponenciales en QCC−CC con K = 3), pero no sabemos si están o no acotadas por alguna
función de d.
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quantum key distribution with causally independent measurement devices, Na-
ture communications 2 (2011), 238.

[MPRG02] S. Massar, S. Pironio, J. Roland, and B. Gisin, Bell inequalities resistant to
detector inefficiency, Physical Review A 66 (2002), 052112.

[NC11] M.A. Nielsen and I.L. Chuang, Quantum computation and quantum informa-
tion: 10th anniversary edition, Quantum Computation and Quantum Infor-
mation, Cambridge University Press, 2011.
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